

ADRIANA NANNINI INFN — FIRENZE

Istituto Nazionale di Fisica Nucleare

COULOMB EXCITATION AT LNL WITH THE SPIDER ARRAY

Low-energy Coulomb excitation is a simple and precise tool to measure excitation probabilities and provide insight on the collectivity of nuclear excitations and in particular on nuclear shapes.

cross-sections give a measure of the matrix elements of the

e.m. operators

$$\frac{d\sigma_{clx}}{d\Omega} = \frac{d\sigma_{Ruth}}{d\Omega} \cdot P\left(i \longrightarrow f\right)$$

• cross-sections give a measure of the matrix elements of the e.m. operators $d\sigma_{ell} = d\sigma_{Pl}t$

$$\frac{d\sigma_{clx}}{d\Omega} = \frac{d\sigma_{Ruth}}{d\Omega} \cdot P\left(i \longrightarrow f\right)$$

 diagonal matrix elements (spectroscopic quadrupole moments) give a measure of charge distribution

$$Q_s(J) = \sqrt{\frac{16\pi}{5}} \frac{\langle JJ20|JJ\rangle}{\sqrt{2J+1}} \langle J||E2||J\rangle$$

• cross-sections give a measure of the matrix elements of the e.m. operators $d\sigma_{abc} = d\sigma_{Bath}$

$$\frac{d\sigma_{clx}}{d\Omega} = \frac{d\sigma_{Ruth}}{d\Omega} \cdot P\left(i \longrightarrow f\right)$$

 diagonal matrix elements (spectroscopic quadrupole moments) give a measure of charge distribution

$$Q_{s}\left(J\right) = \sqrt{\frac{16\pi}{5}} \frac{\langle JJ20|JJ\rangle}{\sqrt{2J+1}} \langle J ||E2||J\rangle$$

 complete set of E2 matrix elements brings information on shape parameters via the quadrupole sum rules

Adriana Nannini

20th AGATA Week - LNL 17-20 Sept 2019

COULOMB EXCITATION MEASUREMENTS

- germanium detectors to detect γ-rays
 - Doppler correction of γ-ray spectra
 - inverse kinematics: excitation of a heavy projectile on a light target (typically ¹²C)

COULOMB EXCITATION MEASUREMENTS

- germanium detectors to detect γ-rays
- segmented particle detector to detect the scattered projectiles and/or recoiling target nuclei
 - to select Coulomb Excitation events
 - to determine scattering angle and reconstruct the kinematics of the reaction
 - to perform Doppler correction

20th AGATA Week — LNL 17-20 Sept 2019

THE SPIDER ARRAY

SPIDER Silicon Ple DEtectoR

- 8 independent sectors, 8 strips + guard ring
- Detector thickness ~ 300 µm
- FWHM ~21 keV for α-particles @ ~5.5 MeV
- modularity: with GALILEO cone configuration (7 sectors) at backward angles $\Rightarrow \Delta \Theta \sim 38^{\circ}$, $\Omega/4\pi \sim 17\%$

Strip	θ_{min}	θ_{mean}	θ_{max}	$\Delta \theta$	Ω
	[deg]	[deg]	[deg]	[deg]	[srad]
7	123.5	125.4	127.5	4.0	0.046
6	127.5	129.6	131.8	4.3	0.046
5	131.8	134.0	136.4	4.6	0.045
4	136.4	138.7	141.2	4.8	0.043
3	141.2	143.6	146.1	5.0	0.040
2	146.1	148.6	151.2	5.1	0.035
1	151.2	153.7	156.3	5.1	0.030
0	156.3	158.8	161.3	5.1	0.028
Tot	123.5	142.4	161.3	37.8	2.2

Simulated FWHM @ 1332 keV as a function of the polar (n θ) and azimuthal (n ϕ) segmentation

- annular particle detector at 8.5 cm from the target with $\Delta \Theta = 35^{\circ}$
- ⁶⁰Ni nuclei scattered on a 1 mg/cm2 ²⁰⁸Pb target

20th AGATA Week — LNL 17-20 Sept 2019

IFN DOPPLER CORRECTION OF GAMMA SPECTRA

20th AGATA Week — LNL 17-20 Sept 2019

Istituto Nazionale di Fisica Nucleare Sezione di Firenze

THE SPIDER - GALILEO SETUP

ACQUISITION SYSTEM

20th AGATA Week - LNL 17-20 Sept 2019

ACQUISITION SYSTEM

20th AGATA Week - LNL 17-20 Sept 2019

20th AGATA Week — LNL 17-20 Sept 2019

First Experiment: Collectivity of ⁶⁶Zn Spokespersons: M. Rocchini, K. Hadynska-Klek

- Commissioning: B(E2; 2₁⁺ —> 0₁⁺) and Q(2₁⁺) known with high precision.
- New physics:
 - ▶ Shape of 0₂+? B(E2) value unknown
 - Is the 2₂+ high-collective or not? Discrepant values for its lifetime
 - Is the 4₁+ collective or not? Discrepant values for the B(E2; 4₁+ -> 2₁+)

- Beam: ⁶⁶Zn (240 MeV, 1 1.5 pnA)
- Target: 1 mg/cm² of ²⁰⁸Pb

First Experiment: Collectivity of ⁶⁶Zn Spokespersons: M. Rocchini, K. Hadynska-Klek

 Data already available in the literature confirmed, sufficient precision to distinguish between discrepant values achieved

	Present	NDS	M. Koizumi e <i>t al</i> ., 2003	K. Moschner <i>et al</i> ., 2010
B(E2; $2_1^+ \longrightarrow 0_1^+$) [W.u.]	17.5(10)	<u>17.5(4)</u>	<u>18.2(11)</u>	<u>17.4(3)</u>
Q _s (2 ₁ +) [efm ²]	+24(9)	<u>+24(8)</u>	<u>+24(8)</u>	
B(E2; $4_1^+ \longrightarrow 2_1^+$) [W.u.]	8.1(12)	18(3)	17.5(7)	<u>8.4(15)</u>
B(E2; $2_2^+ \longrightarrow 2_1^+$) [W.u.]	35(13)	330(130)	<u>41(14)</u>	

- First measurement of B(E2) values from 0_2^+ : B(E2; $0_2^+ \longrightarrow 2_1^+$) = 3.1(11) W.u., B(E2; $0_2^+ \longrightarrow 2_2^+$) = 1.6(6) W.u. (\mathbf{T} = 3.9(13) ps)
- First measurement of shape parameters for the 0_1^+ : $\langle \beta \rangle = 0.224(6), \langle \gamma \rangle = 45^{\circ}(5^{\circ})$

Sectione di Fisica Nucleare Sectione di Fisica Nucleare Sectione di Fisica Nucleare Sectione di Fisica Nucleare Spokespersons: D. Doherty, M. Rocchini, M. Zielinska

 Recent state-of-the-art Monte Carlo shell model calculations* predict shape coexistence in Zr isotopes.

* T. Togashi et al., PRL 117, 17252 (2016).

- Observation* of a strong 2+2 → 0+2 transition (19 W.u.) suggests a deformed band built on 0+2 * A. Chakraborty et al., PRL 110, 022504 (2013).
 - Beam: ⁹⁴Zr (370 MeV, 1 1.5 pnA)
 - Target: 1 mg/cm² of ²⁰⁸Pb
 - Six 3"X3" LaBr₃:Ce used for the first time in COULEX @LNL

20th AGATA Week — LNL 17-20 Sept 2019

EXAMPLE A CONFIGURATION CONTRACT OF A CONFIGURATION COEXISTENCE IN 94Zr Sectore di Fisica Nucleare Sectore di Fisica Nucleare Sectore di Fisica Nucleare Spokespersons: D. Doherty, M. Rocchini, M. Zielinska

 Random-background-subtracted γ-γ coincidence spectrum gated on the 382 keV
* A. Chakraborty et al., PRL 110, 022504 (2013).

Random-background-subtracted
γ-γ-particle coincidence
spectrum gated on the 382 keV

20th AGATA Week - LNL 17-20 Sept 2019

Shape Coexistence in the Tin isotopic chain: Coulomb Excitation measurement of ¹¹⁶Sn Spokespersons: M. Saxena, M. Siciliano, A. Illana

- > The semi-magic Sn isotopes represent a good case to study shape coexistence
- Within Sn isotopes ¹¹⁶Sn intriguing position Z=50, N=66
- Discrepant values for the 2₁+ quadrupole moments in the literature

- Beam: ⁵⁸Ni @ 180 MeV 4 pnA, continuous
- Target: ¹¹⁶Sn 1 mg/cm² ¹²C backing
- Setup: GALILEO (25 HPGe) 6 LaBr₃ SPIDER

 Target excitation: kinematics reconstruction needed

Adriana Nannini

20th AGATA Week — LNL 17-20 Sept 2019

COULEX @ LNL SPIDER&AGATA

- Workshop at the INFN Legnaro National Laboratories (25-26 March 2019)
- Five Lol for Coulex with AGATA SPIDER presented

- Why AGATA?
 - Better Energy resolution
 - Better Efficiency
 - Higher granularity

better Doppler correction for peak identification

COULEX @ LNL SPIDER&AGATA

▶ To increase sensitivity to Qs and EM signs ⇒ Use of an additional forward angles particle detector f.i. four ring of SiPM

RADIOACTIVE BEAMS @LNL

20th AGATA Week — LNL 17-20 Sept 2019

RADIOACTIVE BEAMS @LNL

SPES International Workshop: 47 Letter of Intents

- Ground States Properties
- Nuclear Moments
- Direct Reaction with ActiveTarget
- Direct Reaction with Si Detectors
- Multinucleon Transfer
- Coulomb Excitation
- Collective excitation
- **Fusion**
- Super Heavy
- Oynamics

SUMMARY AND OUTLOOK

- Coulomb Excitation @LNL with stable beams is on-going
- Near future 2nd phase GALILEO 30 GASP detectors + 10 triple cluster
- Future: AGATA
- Far future: Coulex @LNL with SPES radioactive beams

THANK YOU FOR THE ATTENTION

A. N¹, M. Rocchini¹, K. Hadynska-Klek², N. Marchini^{1,3}, D.T. Doherty⁴, M. Zielinska⁵, M. Siciliano⁵, A. Illana⁶, M. Saxena², D. Bazzacco^{7,8}, G. Benzoni⁹, F. Camera^{9,10}, A. Goasduff^{7,8}, P.R. John¹¹, M. Komorowska², M. Matejska-Minda^{2,12}, D. Mengoni^{7,8}, P. Napiorkowski², D.R. Napoli⁶, M. Ottanelli¹, F. Recchia^{7,8}, P. Sona¹, D. Testov^{7,8} and J.J. Valiente-Dobon⁶,

1 INFN, Sezione di Firenze, Firenze, Italy 2 Heavy Ion Laboratory, University of Warsaw, Warsaw, Poland 3 Division of Physics, School of Science and Technology, Universit`a di Camerino, Camerino (Macerata), Italy 4 University of Surrey, Guildford, UK 5 CEA Saclay, IRFU/SPhN, France 6 INFN, Laboratori Nazionali di Legnaro, Legnaro (Padova), Italy 7 Dipartimento di Fisica e Astronomia, Universit`a degli Studi di Padova, Padova, Italy 8 INFN, Sezione di Padova, Padova, Italy 9 INFN, Sezione di Milano, Milano, Italy 10 Dipartimento di Fisica, Universit`a degli Studi di Milano, Milano, Italy 11 Institut fu¨r Kernphysik, Technische Universit¨at Darmstadt, Darmstadt, Germany 12 Institute of Nuclear Physics Polish Academy of Sciences, Cracow, Poland.

THE SPIDER - GALILEO SETUP

GALILEO 1st Phase

- 25 HPGe Compton-suppressed detectors (GASP type)
- FWHM (@1332.5 keV) < 2.4 keV</p>
- Efficiency (@1332.5 keV) = 2.1%
- Complete digital DAQ (takes advantage of the developments made for AGATA):
 - Trigger-less mode
 - Typical operational rate ~ 20 kHz/det
 - Common clock synchronization

$$\begin{split} \left\langle \beta^2 \right\rangle &= \frac{\sqrt{5}}{q_0^2 \sqrt{2I_i + 1}} \sum_t \left\langle i \left| \left| E2 \right| \right| t \right\rangle \left\langle t \left| \left| E2 \right| \right| i \right\rangle \begin{cases} 2 & 2 & 0\\ I_i & I_i & I_t \end{cases} \\ \left\langle \beta^3 \cos\left(\gamma\right) \right\rangle &= \frac{\sqrt{35}}{q_0^3 \sqrt{2}} \frac{1}{\sqrt{2I_i + 1}} \sum_{tu} \left\langle i \left| \left| E2 \right| \right| t \right\rangle \left\langle t \left| \left| E2 \right| \right| u \right\rangle \left\langle u \left| \left| E2 \right| \right| i \right\rangle \begin{cases} 2 & 2 & 2\\ I_i & I_t & I_u \end{cases} \end{split}$$

ANPC - Kruger National Park 1-5 July 2019

Example: first 2⁺ state in an even-even target nucleus

$$P\left(0_{1}^{+} \longrightarrow 2_{1}^{+}\right) = F\left(\theta, E_{P}\right) B(E2) \left[1 + 1.32 \frac{A_{P}}{Z_{T}} \frac{\Delta E}{\left(1 + \frac{A_{P}}{A_{T}}\right)} Q_{s}\left(2^{+}\right) K\left(\theta, E_{P}\right)}\right]$$

Access to: transition probabilities and spectroscopic quadrupole moments in a model independent way