

AGATA@GANIL Status report

AGATA week 2019

AGATA campaigns@GANIL

2015-2017 VAMOS Campaign 24-35 capsules

2018 NEDA/DIAMANT Campaign 35 capsules

2019-2020 MUGAST Campaign 41-44 capsules

2021 ?? Campaign ~ 44 capsules

The GANIL Campaign organization

The AGATA campaign at GANIL has been extend to 2017, 2018, 2020, 2021.

✓ 5th PAC in November 2018: call for MUGAST-AGATA-VAMOS experiments only

- ➢ 5 MUGAST-AGATA-VAMOS experiments proposed
- 2 experiments approved (E. Clément/A. Goasduff & A. Gottardo/M. Assié)

✓ 6th PAC 17-18 October 2019: call for MUGAST-AGATA-VAMOS experiments only

3 MUGAST-AGATA-VAMOS experiments only proposed due to Spirall beam test canceled: ²⁴Ne(⁶Li,d), ²⁶Al(d,p) and ⁴⁷K(d,p)

899 UT have been already approved spanned on 33 experiments 709 UT have been spanned on 25 experiments

Backlog is 3 NEDA (+ DIAMANT, PARIS, FATIMA) 66 UT 4 VAMOS 92 UT 1 MUGAST 32 UT

✤ 2020 beam time should be ~3 months; starting first week of February

The 7th and LAST PAC in 2020 for the 2021 beam time is to be defined

2019 Technical achievements

□ Operation

*We ran 25 experiments since 2015

*In-beam data since 2014, the campaign is approved until 2021 (8 years operation)

*Detectors maintained cold since October 2014

*41 Detectors took data in 2019 in unstable conditions**

Upgrades

* DCOD upgrade with trigger soft, on-line event builder and AGASPY watchers

* 7 new GGP channels were installed and put in operation from the 2nd production batch, 5 more are installed in the last workstation delivery batch. 24 ATCA** channels + 23 GGP channels are delivered at GANIL

* Delivery of the last batch of workstation for the next GGP production

*Several maintenance and re-ordering in the DAQ-box

*Migration of the Muscade client to Java OpenJDK for the Autofill

*Continus upgrades of the data-analysis tool (femul upgrade, Cubix, AGATASPY, GRID ...)

*All the hardware is delivered at GANIL for the 1π

41 detectors on-line in 2019

AGATA@GANIL

Cumulative [TB]

- ✤ Relatively easy GTS and DAQ coupling between AGATA-VAMOS-MUGAST
- EXOGAM2 TP is not 100% reliable at > 25kHz/core due to non-ordered request from GGP's.
- The 2019 run was performed in TriggerLess
- Aging of the V0 electronic (several digitizers with sever problems and first ATCA carrier off)
- 2/3 of the experiments performed with the CEPH spear
- GTS instabilities during the 2nd experiment (12h lifetime) solved after a complete disassembly of the GTS Tree
- ✤ More and more detectors are requesting a refill before the 6h period

The MUGAST-AGATA-VAMOS setup

Commissioning / E744 efficiencies : 37 capsules AGATA is approached by 51 mm for the MUGAST campaign

Efficiencies @ 1.4 MeV AddBack 6.3(1)% Tracked 5.5(1)% According to G4 with adjusted crystal relative efficiencies

No loss at low energy was measured due to MUGAST

MUGAST commissioning

 $870 \text{ keV}^{17}\text{O} = 7.8\%$.

Geant4 = 7.5%

MUGAST campaign 2019

fs scale sensitivity Eu energies calibration calibrate well the 6.1 MeV line of ¹⁶O

UNBOUND STATES **Above barrier narrow resonances in** ¹⁵**F** ¹⁴O(p,p') inelastic scattering

- Search for new negative parity states
- Type of two-proton decay
- Gamma transition within unbound nucleus (extremely rare)

I. Stefan (IPN), F. de Oliveira (GANIL)

\rightarrow Expected γ-rays not seen (would have been a real discovery)

MUGAST campaign 2019

SHELL MODEL Is there a problem with protons in N=28 nucleus ⁴⁶Ar ? ⁴⁶Ar(³He,d)⁴⁷K to probe proton WF and study vacancies in $s_{1/2}$ and $d_{3/2}$ shells. ³He cryogenic target ! A. Gottardo INFN, M. Assié IPN K masses isotopes in coincidence with particle at backward angle 47 48 46 Cubix® $s_{1/2}$ state : 360 d_{5/2} state

MUGAST campaign 2019

NUCLEAR ASTROPHY. **Determining the α+¹⁵O radiative capture rate** ¹⁵O(⁷Li,t)¹⁹Ne indirect measure Important reaction for breakout from Hot-CNO cycle to rp-process in Type I X-ray bursts

C. Diget (York), N De Séréville (IPN)

→ Expected transition not seen It is a result, ie that the $C_s \alpha$ is small

E.Clément

AGATA spectrum in triple coincidence with MUGAST and ¹⁹Ne

Recent Publication from past campaigns

The quenching of the N=50 gap towards ⁷⁸Ni can be investigated looking at the Spectroscopy of excited states involving particlehole excitations across the N=50 gap

⁸¹Ga spectroscopy

J. Dudouet et al, Phys.Rev. C 100, 011301 (2019)

- First lifetime of excited states measured in ⁸⁸Kr
- Lifetime measured with better accuracy in ⁸⁶Se
- First lifetime measured in the very exotic ⁸⁴Ge
- Unexpected enhancement of collectivity in ⁸⁴Ge

Sudden rise of collectivity after the N=50 shell closure

... in contradiction with shell model calculation

C. Delafosse et al., Phys.Rev.Lett. 121, 192502 (2018)

Effects of one valence proton on seniority and angular momentum of neutrons in neutron-rich ^{122–131}Sb isotopes

LSSM calculations in the ¹³²Sn vicinity constrained by combined prompt-spectroscopy, isomer spectroscopy and related B(E2) in Sb isotopes

Modifications of several components of the shell-model interaction were introduced to obtain a consistent agreement in neutron-rich Sn and Sb isotopes

S. Biswas et al. Phys. Rev. C 99, 064302 (2019)

Shell evolution around ²⁰⁸Pb

Study of the two-phonon vibrational states in the ^{208}Pb region Case of the ^{207}Pb v(i_{13/2})^{-1} state band structure

Evidence of octupole-phonons at high spin in ²⁰⁷Pb

The measured reduced transition probability is compatible with a contribution from the two-to-one-octupole-phonon *E*3 transition.

Further information on the double-octupole-phonon state can be obtained by a more precise lifetime measurement of the $19/2^{-}$ state in 207 Pb

D. Ralet et al Physics Letters B 797 (2019) 134797

Cumulative number of publications (Technical excluded)

Conclusion

•AGATA is operated since 2014 at GANIL and 25 experiments have been performed

•The number of detectors is approaching the 1π

•In 2019, we observed a clear aging of the electronic and detectors

• Successful start of the MUGAST-VAMOS-AGATA campaign in 2019 to be continued in 2020

- Many results are coming all along the nuclear chart for many different physics topics
- Publications are important for GANIL and AGATA
- Many thanks to all AGATA collaborators !