

MUGAST-AGATA-VAMOS campaign @ GANIL

Marlène Assié, spokesperson of MUGAST campaign IPN Orsay, assie@ipno.in2p3.fr

With the help of F. Galtarossa, D. Ramos, V. Alcindor, E. Clément, N. de Séréville, C. Diget, A. Gottardo, I. Stefan and the MUGAST collab.

MUGAST-AGATA-VAMOS set-up @ GANIL with Spiral1 beams An extremely complete set-up for transfer reactions measurement

MUGAST in pictures

PosX

Cryogenic ³He target

LHe

LN2

M. Pierens, V. Delpech, F. Galet, H. Saugnac (IPN) A. Giret & J. Goupil (GANIL)

Monitoring of target thickness with VAMOS Target pressure & temperature stable

Bρ evolution with target filling

Courtesy of F. Galtarossa (IPN)

E,T

all strips

of hit det.

4 analog bus

Control signals

2C bus

VACUUM

AIR

MUVI + GMT on VXI boards :

GAP GANIL

16 ADC14 bits 2.3K parameters 2MHz **Slow Control I2C Pedestal substraction**

~ 58000 channels

MUFEE boards (MUST2) :

IPN by E. Rauly & E. Wanlin

- 12 MUFEE pairs in total •
- 7 MUFEE pairs (X&Y) redone in 2016 • (components & cabling) with new chips (ATHED instead of MATE) --> validated !

5

ACQUISITION for the MUGAST campaign

Analysis with NPTool + VAMOS + AGATA

- A common framework for low energy nuclear physics experiment
- \bullet Modular and scalable \rightarrow Any detector, any setup, any physics
- Promote good practices:
 - Framework philosophy \rightarrow best use of Root and Geant4, readable input, ...
 - Implementation \rightarrow Well commented, documented, readable code, ...
 - \bullet Physics \rightarrow Validate simulation and analysis together`

- Publi: J. of Phys. G, Volume 43, Number 4
- Website: nptool.org
- Repo: gitlab.in2p3.fr/np/nptool
 - Continuous Integration (CI)
 - Docker image

MUGAST-AGATA-VAMOS: analysis workflow

MUGAST-AGATA-VAMOS set-up @ GANIL with Spiral1 beams

An extremely complete set-up for direct reactions measurement

SHELL MODEL Is there a problem with protons in N=28 nucleus ⁴⁶Ar ?

 $^{46}\text{Ar}(^{3}\text{He},\text{d}\gamma)^{47}\text{K}$ to probe proton WF and study vacancies in $\text{s}_{1/2}$ and $\text{d}_{3/2}$ shells.

³He cryogenic target !

A. Gottardo INFN, M. Assié IPN)

NUCLEAR ASTROPHY. **Determining the α+¹⁵O radiative capture rate** ¹⁵O(⁷Li,tγ)¹⁹Ne indirect measure

Important reaction for breakout from Hot-CNO cycle to rp-process in Type I X-ray bursts

C. Diget (York), N De Séréville (IPN)

UNBOUND STATES Above barrier narrow resonances in ¹⁵F

¹⁴O(p,p') inelastic scattering

- Search for new negative parity states
- Type of two-proton decay
- Gamma transition within unbound nucleus

I. Stefan (IPN), F. de Oliveira (GANIL)

Shell model : Is there a problem with protons in N=28⁴⁶Ar ?

A. Gottardo (INFN), M. Assié (IPN)

Method: proton stripping ⁴⁶Ar(³He,dγ)⁴⁷K to probe proton wave functions

- Spiral1 beam of ⁴⁶Ar at 10 MeV/u and 4 10⁴ pps with cryogenic ³He target
- Triple coincidence measurement : d (MUGAST)+ γ (AGATA) + ⁴⁷K (VAMOS)
- Normalisation / ToF : Beam tracking detector (CATS)

Excellent theory for neutrons WF : -confirming N=28 shell closure in ⁴⁶Ar -SDPF interaction describes valence-core neutrons interaction very well

Large discrepancy with the measured B(E2) value at N=28: problem with the proton E2 contribution ?

- Proton shell structure at N=28 : inversion of $\pi s_{1/2}$ and $\pi d_{3/2}$

Measuring $\pi s1/2$ depletion in ⁴⁶Ar --> indication on possible change in the $\pi s1/2$ - $\pi d3/2$ positions

Central density depletion linked to spin-orbit splitting reduction

Nuclear astrophysics : Determining the α +¹⁵O radiative capture rate

Spokespersons : C. Diget, N. De Séréville

Method: Indirect measurement of alpha capture rate through alpha stripping ${}^{15}O({}^{7}Li,t\gamma){}^{19}Ne$

- Spiral1 beam of ¹⁵O at 4.7 MeV/u and 2 10⁷ pps with 1.25 mg/cm² LiF target
- Triple coincidence measurement of ${}^{15}O({}^{7}Li,t\gamma){}^{19}Ne$: t (MUGAST)+ γ (AGATA) + ${}^{19}Ne$ (VAMOS)
- Mirror reaction ${}^{15}N({}^{7}Li,t\gamma){}^{19}F$ at same energy and few $10^{8}pps$

• Explosive burning on neutron star surface : breakout to rp-process ${}^{15}O(\alpha,\gamma){}^{19}Ne$ and ${}^{18}Ne(\alpha,p){}^{21}Na$

key beak-up route from the Hot-CNO cycle and in the right conditions lead to rp-process
start-up of Type I X-ray burst on the surface of a neutron star depends critically upon this reaction rate

Resonant reaction rate ${}^{15}O(\alpha,\gamma){}^{19}Ne$ expected to dominate through 4033 keV resonance (to be measured in AGATA)

• $\Gamma_{tot} = \Gamma_{\gamma} \propto 1/\tau$ with $\tau = 7.9(15)$ fs from: γ -ray Doppler-shift lineshape Tan et al., PRC 72:041302(R) (2005) Kanungo et al., PRC 74:045803 (2006) Mythili et al., PRC 77:035803 (2008) • $B_{\alpha} = 2.9(21) \cdot 10^{-4}$ from: ${}^{19}F({}^{3}He, t){}^{19}Ne^{*}(\alpha){}^{15}O$ Difficult: 8 t- α on 35 b.gr. $\Gamma_{\alpha} = B_{\alpha} \cdot \Gamma_{tot} = 24(18) \,\mu eV$ Tan et al., PRL, 98:242503 (2007) Tan et al., PRC, 79:055805 (2009)

Unbound states : Above barrier narrow resonances in ¹⁵F

I Stefan (IPN), F. De Oliveira (GANIL)

Method: Resonant elastic scattering & inelastic scattering with thick target technique : ¹⁴O(p,p^('))

- Spiral1 beam of ¹⁴O at 7.6 MeV/u and few 10⁵ pps with thick CH₂ target (105 um)
- Coincidence measurement : p-p (MUGAST)+ eventual γ (AGATA) + ¹³N (VAMOS)
- ToF : Beam tracking detector (CATS)
- VAMOS : ¹⁴O and ¹³N (after 2p decay) / finger remove direct ¹⁴O beam / counting rate few 10⁵ pps

12

18/09/2019

Conclusions & perspectives

2019 MUGAST-AGATA-VAMOS campaign at GANIL :

- transfer experiments to study nuclear structure and nuclear astrophysics
 - -> proton shell evolution
 - -> study of unbound states decay properties
 - -> nuclear astrophysics : alpha capture rate
- set-up very well adapted to study transfer reaction (stripping & pick-up)
 - High gamma efficiency, 50 to 80% efficiency for particles (backward/forward)
 - Triple coincidences --> very low-background
 - Correlator techniques implemented (two-proton decay)
 - High & low beam intensity (from Spiral1 beams) with VAMOS
 - Special targets can be integrated ³He cryogenic target, tritium target under study

2020 MUGAST-AGATA-VAMOS campaign at GANIL :

- improvement of particle efficiency up to 85%
- transfer reaction + DSAM measurement already accepted by the PAC http://grit.in2p3.fr

2023 GRIT detector will start operating

- 90% efficiency, two to three layers of DSSSD
- 15000 channels read by numerical electornics (iPACI+ PLAS+ FASTER)

MUGAST collaboration

IPN Orsay M. Assié, D. Beaumel, Y. Blumenfeld, N. de Séréville, F. Flavigny, F. Galtarossa, J. Guillot, F. Hammache, L. Lalanne, I. Stefan

GANIL.: E. Clément, A. Lemasson, D. Ramos, M. Rejmund, O. Sorlin, F. de Oliveira, G. De France, B. Bastin, S. Leblond

LPC Caen : F. Delaunay, A.Matta, N.Orr

IPHC Strabourg : K. Rezynkina, G. Duchêne, F. Didierjean

INFN-Padova, LNL: D. Mengoni, A Goasduff, A. Gottardo, D. Testov, D. Brugnara, A. Raggio, A. Montanera Piza

University of York C. Diget, A. Laird, J. Sanchez-Rojo

University of Surrey : W. Catford

University of Santiago : B. Fernandez-Dominguez

University of Valencia : A. Gadea