AGATA Week 2019

Machine Learning and Topological Data Analysis for Pulse Shape Analysis

Fraser Holloway

Pulse Shape Analysis (PSA)

- > γ -ray tracking requires positions at resolution ~5mm FWHM at ~5kHz/CPU.
- Positions must be inferred from electrical response (PSA).
- > Complex detector response makes parametric methods insufficient.
- Instead we simulate the detector response in ADL.
- Interaction locations are then determined by optimisation metrics:

Figure of Merit =
$$\sum_{j} \sum_{t_i} |A_m^j[t_i] - A_s^j[t_i]|^p$$

- > Other metrics can be used to highlight different sensitivities.
 - > Different exponents, weighting for segments.
- > My work is on developing Novel PSA techniques for AGATA.

Detector Simulation

- Simulated data looks reasonable as expected.
- Parametric trends are seen in the data, useful for clustering
 - > T_{10-90} , charge asymmetry, knee-point, skewness etc.
- 6-fold symmetric, polar and tetrahedral basis sets simulated.
- High resolution (0.5mm) basis set generated too.
- Option for dynamic resolution basis sets.

Simulation Limitations

- Field simulation limited to 1mm spacing
- Odd effects seen at segment boundaries & high resolution
 - Unexplained charge sharing between segments
 - > Sharp discontinuities at edge changes.

Algorithm Development

Topological Data Analysis (TDA) techniques try to organize data and form efficient search spaces.

- Generally kd-ball or cover trees used.
- Less prone to local minima.
- Search algorithms aren't naïve.
- Each step made moves search closer to optimum.
- Searching n points can be $O \log(n)$.

Machine Learning (ML) uses the simulated basis to learn trends via feature extraction.

- No searching is performed whatsoever.
- Simulated basis only needed for training.
- Needs an appropriate model & good data.

Algorithm Development

Tree-based search approaches:

- ► kNN
- LSH
- Dual-Tree / Single-Tree MKS

Machine Learning options:

- Signal Classification
- Regression (CNN)
- Autoencoding/Fingerprinting (BVAE)

Other options:

GPU Acceleration

GPU Acceleration

- GPUs have advanced significantly (10x) since the last investigation.
- GPU acceleration can be used on embarrassingly parallel problems:
 - Exhaustive search
 - Adaptive Grid search (two step)
 - Matrix manipulations
 - Figure of merit (although matrix sum $O \log_2(n)$)
- Shared memory makes things complicated
- Multiple languages can use GPU accelerated code:
 - C, C++ (NVCC)
 - Python (with Numba)
- Programs can be compiled to use NVBLAS:
 - MLPACK (Armadillo)

GPUs are very powerful for ML approaches.

Routine	Types	Operation	
GEMM	S, D, C, Z	Multiplication of 2 matrices.	
SYRK	S, D, C, Z	Symmetric rank-k update	
HER <i>k</i>	C, Z	Hermitian rank-k update	
SYR2 <i>k</i>	S, D, C, Z	Symmetric rank-2k update	
HER2k	C, Z	Hermitian rank-2k update	
trsm	S, D, C, Z	Triangular solve (right angled)	
TRMM	S, D, C, Z	Triangular matrix-matrix multiply	
SYMM	S, D, C, Z	Symmetric matrix-matrix multiply	
HEMM	C, Z	Hermitian matrix-matrix multiply	

Cluster Optimisation & Tree Building

- Basis was converted to Cover Tree using parametric splitting.
 - ▶ Segment number → T_{10-90} → Charge asymmetry → Transient Signal Fingerprint → FoM
- Resolution of metrics inversely related to execution time.
- ▶ FoM test only applied at lowest level.
- Most Parametric methods break down at higher multiplicity.
 - > Either use fold-invariant metrics or add all combinations to tree.
- Cluster distribution shows evidence of variable detector sensitivity.

Cluster Optimisation & Tree Building

- Basis was converted to Cover Tree using parametric splitting.
 - ▶ Segment number \rightarrow T₁₀₋₉₀ \rightarrow Charge asymmetry \rightarrow Transient Signal Fingerprint \rightarrow FoM
- Resolution of metrics inversely related to execution time.
- FoM test only applied at lowest level.
- Most Parametric methods break down at higher multiplicity.
 - Either use fold-invariant metrics or add all combinations to tree
- Cluster distribution shows evidence of variable detector sensitivity.

YAxis

-20

Automated TDA Searching

- Established C++ Library MLPACK used for KNN & MKS operations
- GPU acceleration possible using NVBLAS
- Additional Python API & Command line interfaces available
- Modular design allows for custom Figures of Merit, segment handling
- Prefers smooth & convex search spaces
 - Doesn't like searching multiple segments
 - Metric penalizes segments far from interaction
- > <u>Should</u> work for multiple interactions within the same segment
 - Combinations need to be precomputed
 - > Outrageous memory costs if implemented
- Currently 3 techniques look applicable to Fold-1 searches:
 - ► kNN
 - LSH
 - MKS

FastMKS Searching

- Fast Maximum Kernel Search uses two trees to search an ordered data structure.
- > First tree is used to convert reference set into structured data.
- Second tree is then dynamically built using query set.
- > Efficient comparisons mean that the space can be searched quickly.
- Mercer Kernels allow for modifications of phase space, improve separations.
 - ▶ More complex kernels have execution penalty.

Fast-MKS Preliminary Results

> 10% Gaussian noise added to simulated database for preliminary validation.

- MKS with Gaussian kernel used to return top 5 solutions of kernel search.
- > 95% of fold-1 events identified at input location.
- > 99% of fold-1 events within 2mm.
- Discrete distances due to finite grid size.
- Currently deviations are not well understood, needs further analysis.

Signal Discrimination with ML

> Main motivation of this method was to distinguish interesting sections of the interaction from noise.

14

- > Possible groundwork for software-based trigger.
- Because of this these networks need to be fast (and likely simple).
- Position gated pulses used to generate database of hit, transient & noise samples.
- > Various networks trained to predict category.
- > Ultimately the cut is arbitrary, open to interpretation.
- Doesn't offer much above traditional methods.
 - ▶ However if we really want to look for something it's pretty useful.

Method	Agreement with Midas Label	Execution Time (μ s)
Multi-Level Perceptron	~68%	9
Binary Perceptron	~87%	9
Neural Network	~94%	22
Convolution Neural Network	~97.6%	26

> Additional investigation into predicting fold of AGATA events, not mentioned in this talk.

CNNs for Regression

- Instead of searching basis set the neural network is used to directly infer locations.
- Trained on 6x8x120 tensor (core excluded).
 - > Column repeats used for CNN windows.
- ResNet architecture used for robustness.
- Gaussian noise layers & Dropouts used to improve reliability.
 - > Should use experimental noise instead.
- Works well on detectors with high connectivity.
- Currently only implemented for fold-1 events.
 - Training on multi-fold requires separate networks.
 - This isn't difficult, I'm just waiting for an accurate simulation of multiple fold events.
- Reasonable execution time ~300µs.
- Variable FWHM, performs worse at boundaries.
 - Will likely decrease with realistic data.

Autoencoders for Tagging & Compression

- Encoder: converts input to a learned latent space via feature extraction.
- Decoder: converts latent space into a reconstructed output.
- As a whole the network replicates a denoised input.
 - Signal is intelligently denoised, small transients are unaffected.
- Autoencoders become more useful when split into parts:
 - The Encoder and Decoder compress data far better than traditional methods.
 - The latent representation can be used to express parametric trends.
 - > This requires disentangling the latent space (difficult)
 - Can this be used for tagging?
- Compression isn't necessarily bad, oddly the reconstructed pulses could end up being better than the inputs due to denoising.

Example Reconstructions, ~44x compression

Randomly selected from reconstructed database

0.2

0.0

0 5 10 15 20 25 30 35

Example Reconstructions, ~44x compression

Autoencoders for Basis Correction

- What happens if we use experimental data as validation?
- > PSA and GRT perform differently when given real & simulated data.
- > Therefore there's likely some form of discrepancy between the two.
- How about using ML to transform simulated into real data?
- Simulation reduced to latent & then converted to experimental.
- > This approach requires very good experimental data:
 - Full x, y, z characterisation of the crystal.
 - No guarantee that trained model can be adapted to different crystals.
- Validation data for A005 will be taken anyways.
 - May as well test the feasibility of this method.
- Transform of preamplifier response also possible.
 - **Way** easier

Experimental Validation

- Coincidence scanning will be used to validate simulation & ML efforts.
- ▶ 1GBq 137 Cs source collimated to 1mm on *x*, *y* stage.
- Vertical stage added to apparatus for z movements.
- 90° scatter gating using BGO array & energy gating (374 & 288keV).
- ▶ I'm currently writing the MTSort code for acquisition.
- Typical validation measurements will be taken:
 - > ²⁴¹Am surface scan for alignment.
 - ▶ Gated cross & circle measurements for CAO.
 - Gated coarse cubic grid using vertical stage.
 - ▶ High-resolution pencil beam of front segmentation.
 - (Time permitting) Automated High-resolution scan.

Coincidence scanning apparatus found at Liverpool

Conclusion

- GPUs have advanced significantly over the last decade, likely to continue in the future.
 - Definitely should be revisited considering future projections.
- Tree-based search methods are incredibly efficient but difficult to adapt to high fold.
 - Very applicable for Fold-1 regardless.
- ML approaches offer good learned relationships but need adaptions to high fold.
- We have a good standing for more ambitious ML techniques.
 - Discrimination
 - Regression
 - Auto-tagging / Fingerprinting
 - Compression
 - Basis Correction
- I can't take all these methods to completion

Thanks for Listening

Any Questions?

Science & Technology Facilities Council AGATA

ADVANCED GAMMA TRACKING ARRAY

Fraser Holloway – F.Holloway@Liverpool.ac.uk

This project has received funding from STFC under grant reference ST/P006752/1

CNN x Deviations

CNN y Deviations

CNN z Deviations

Cover Tree Rules

- For a collection of points C_i on level i of T which represent a subset of points in S the following rules must be enforced:
 - ▶ $C_i \subset C_{i-1}$ Nesting: any point $p \in S$ that exists in C_i must have an associated node in all lower levels.
 - ▶ $\forall_p \in C_{i-1}$ Covering: for every $p \in C_{i-1}$ there exists one $q \in C_i$ such that $d(p,q) \leq 2^i$ where the node for q is the sole parent of the node for p.
 - ▶ \forall_p , $r \in C_i$, $d(p,r) > 2^i$ Separation: For all $p, r \in C_i$ then $d(p,r) > 2^i$

In Summary

- Several algorithms have been developed for fold-1
- Adaptions for multiplicity are hard
- Database needs to be validated experimentally
- Odd effects in basis set need to be investigated

Position Regression with Machine Learning

- Training set taken from ADL simulated pulses, Gaussian noise added
- CNN attempts to predict interaction location from superpulse
- Currently limited to fold-1 events, may be mitigated by using windows

