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Pulse Shape Analysis (PSA)

 𝛾𝛾-ray tracking requires positions at resolution ~5mm FWHM at ~5kHz/CPU.

 Positions must be inferred from electrical response (PSA).

 Complex detector response makes parametric methods insufficient.

 Instead we simulate the detector response in ADL.

 Interaction locations are then determined by optimisation metrics:

𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑜𝑜𝑜𝑜 𝑀𝑀𝐹𝐹𝐹𝐹𝐹𝐹𝑀𝑀 = �
𝑗𝑗

�
𝑡𝑡𝑖𝑖

𝐴𝐴𝑚𝑚
𝑗𝑗 𝑀𝑀𝑖𝑖 − 𝐴𝐴𝑠𝑠

𝑗𝑗 𝑀𝑀𝑖𝑖
𝑝𝑝

For signals of segment 𝑗𝑗 at time step 𝑀𝑀𝑖𝑖 with 𝑝𝑝 typically =2 

 Other metrics can be used to highlight different sensitivities.
 Different exponents, weighting for segments.

 My work is on developing Novel PSA techniques for AGATA. 
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Detector Simulation 

 Simulated data looks reasonable as expected.

 Parametric trends are seen in the data, useful for clustering
 T10-90, charge asymmetry, knee-point, skewness etc.

 6-fold symmetric, polar and tetrahedral basis sets simulated.

 High resolution (0.5mm) basis set generated too.

 Option for dynamic resolution basis sets.
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B.Bruyneel – Eur. Phys. J. A (2016)
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Simulation Limitations
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 Field simulation limited to 1mm spacing 

 Odd effects seen at segment boundaries & high resolution
 Unexplained charge sharing between segments

 Sharp discontinuities at edge changes.

0.5mm FoM Plot showing odd effects 



Algorithm Development
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Topological Data Analysis (TDA) techniques try to 
organize data and form efficient search spaces.

 Generally 𝑘𝑘𝑘𝑘-ball or cover trees used.

 Less prone to local minima.

 Search algorithms aren’t naïve.

 Each step made moves search closer to 
optimum.

 Searching 𝑛𝑛 points can be 𝒪𝒪 log 𝑛𝑛 .

Machine Learning (ML) uses the simulated basis to 
learn trends via feature extraction.

 No searching is performed whatsoever.

 Simulated basis only needed for training.

 Needs an appropriate model & good data.



Algorithm Development
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Tree-based search approaches:

 𝑘𝑘NN

 LSH

 Dual-Tree / Single-Tree MKS

Machine Learning options:

 Signal Classification

 Regression (CNN)

 Autoencoding/Fingerprinting (BVAE)

Other options:

 GPU Acceleration



GPU Acceleration

 GPUs have advanced significantly (10x) since the last investigation.
 GPU acceleration can be used on embarrassingly parallel problems:

 Exhaustive search
 Adaptive Grid search (two step)
 Matrix manipulations

 Figure of merit (although matrix sum 𝒪𝒪 log2 𝑛𝑛 )

 Shared memory makes things complicated
 Multiple languages can use GPU accelerated code:

 C, C++ (NVCC)
 Python (with Numba)

 Programs can be compiled to use NVBLAS:
 MLPACK (Armadillo)

 GPUs are very powerful for ML approaches.
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Routine Types Operation
GEMM 𝑆𝑆,𝐷𝐷,𝐶𝐶,𝑍𝑍 Multiplication of 2 matrices.
SYRK 𝑆𝑆,𝐷𝐷,𝐶𝐶,𝑍𝑍 Symmetric rank-𝑘𝑘 update
HER𝑘𝑘 𝐶𝐶,𝑍𝑍 Hermitian rank-𝑘𝑘 update
SYR2𝑘𝑘 𝑆𝑆,𝐷𝐷,𝐶𝐶,𝑍𝑍 Symmetric rank-2𝑘𝑘 update
HER2𝑘𝑘 𝐶𝐶,𝑍𝑍 Hermitian rank-2𝑘𝑘 update
TRSM 𝑆𝑆,𝐷𝐷,𝐶𝐶,𝑍𝑍 Triangular solve (right angled)
TRMM 𝑆𝑆,𝐷𝐷,𝐶𝐶,𝑍𝑍 Triangular matrix-matrix multiply
SYMM 𝑆𝑆,𝐷𝐷,𝐶𝐶,𝑍𝑍 Symmetric matrix-matrix multiply
HEMM 𝐶𝐶,𝑍𝑍 Hermitian matrix-matrix multiply

Nvidia P5000
(277 GFLOPS)



Cluster Optimisation & Tree Building

 Basis was converted to Cover Tree using parametric splitting.
 Segment number → T10-90 → Charge asymmetry → Transient Signal Fingerprint → FoM

 Resolution of metrics inversely related to execution time.

 FoM test only applied at lowest level.

 Most Parametric methods break down at higher multiplicity.

 Either use fold-invariant metrics or add all combinations to tree.

 Cluster distribution shows evidence of variable detector sensitivity.
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Automated TDA Searching

 Established C++ Library MLPACK used for KNN & MKS operations

 GPU acceleration possible using NVBLAS

 Additional Python API & Command line interfaces available

 Modular design allows for custom Figures of Merit, segment handling

 Prefers smooth & convex search spaces

 Doesn’t like searching multiple segments
 Metric penalizes segments far from interaction

 Should work for multiple interactions within the same segment
 Combinations need to be precomputed

 Outrageous memory costs if implemented

 Currently 3 techniques look applicable to Fold-1 searches:
 𝑘𝑘NN

 LSH

 MKS
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FastMKS Searching

 Fast Maximum Kernel Search uses two trees to search an ordered data structure.

 First tree is used to convert reference set into structured data.

 Second tree is then dynamically built using query set.

 Efficient comparisons mean that the space can be searched quickly.

 Mercer Kernels allow for modifications of phase space, improve separations.
 More complex kernels have execution penalty.
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Fast-MKS Preliminary Results

 10% Gaussian noise added to simulated database for preliminary validation.

 MKS with Gaussian kernel used to return top 5 solutions of kernel search.

 95% of fold-1 events identified at input location.

 99% of fold-1 events within 2mm.

 Discrete distances due to finite grid size.

 Currently deviations are not well understood, needs further analysis.
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Signal Discrimination with ML

 Main motivation of this method was to distinguish interesting sections of the interaction from noise.

 Possible groundwork for software-based trigger.

 Because of this these networks need to be fast (and likely simple).

 Position gated pulses used to generate database of hit, transient & noise samples.

 Various networks trained to predict category.

 Ultimately the cut is arbitrary, open to interpretation.

 Doesn’t offer much above traditional methods.

 However if we really want to look for something it’s pretty useful.
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Method Agreement with Midas Label Execution Time (𝝁𝝁s)
Multi-Level Perceptron ~68% 9
Binary Perceptron ~87% 9
Neural Network ~94% 22
Convolution Neural Network ~97.6% 26

 Additional investigation into predicting fold of AGATA events, not mentioned in this talk. 



CNNs for Regression

 Instead of searching basis set the neural network is 
used to directly infer locations.

 Trained on 6x8x120 tensor (core excluded).
 Column repeats used for CNN windows.

 ResNet architecture used for robustness.

 Gaussian noise layers & Dropouts used to improve 
reliability.
 Should use experimental noise instead.

 Works well on detectors with high connectivity.

 Currently only implemented for fold-1 events.
 Training on multi-fold requires separate networks.

 This isn’t difficult, I’m just waiting for an accurate 
simulation of multiple fold events. 

 Reasonable execution time ~300μs.

 Variable FWHM, performs worse at boundaries.
 Will likely decrease with realistic data.

Fraser Holloway - F.Holloway@liverpool.ac.uk

15

Discrepancy (mm)



Autoencoders for Tagging & Compression 16
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Reparameterization 

 Autoencoders combine two separate networks to function:

 Encoder: converts input to a learned latent space via 
feature extraction.

 Decoder: converts latent space into a reconstructed output.

 As a whole the network replicates a denoised input.

 Signal is intelligently denoised, small transients are 
unaffected.

 Autoencoders become more useful when split into parts:

 The Encoder and Decoder compress data far better than 
traditional methods.

 The latent representation can be used to express parametric 
trends.

 This requires disentangling the latent space (difficult)

 Can this be used for tagging?

 Compression isn’t necessarily bad, oddly the reconstructed pulses 
could end up being better than the inputs due to denoising.



Example Reconstructions, ~44x compression
7

Randomly selected from reconstructed database



Example Reconstructions, ~44x compression 18



Autoencoders for Basis Correction
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Reparameterization

 What happens if we use experimental data as validation?

 PSA and GRT perform differently when given real & simulated data.

 Therefore there’s likely some form of discrepancy between the two.

 How about using ML to transform simulated into real data?

 Simulation reduced to latent & then converted to experimental.

 This approach requires very good experimental data:

 Full 𝑥𝑥,𝑦𝑦, 𝑧𝑧 characterisation of the crystal.

 No guarantee that trained model can be adapted to different crystals.

 Validation data for A005 will be taken anyways.

 May as well test the feasibility of this method.

 Transform of preamplifier response also possible.

 Way easier
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Experimental Validation
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 Coincidence scanning will be used to validate simulation & ML efforts.

 1GBq 137Cs source collimated to 1mm on 𝑥𝑥, 𝑦𝑦 stage.

 Vertical stage added to apparatus for 𝑧𝑧 movements.

 90° scatter gating using BGO array & energy gating (374 & 288keV).

 I’m currently writing the MTSort code for acquisition.

 Typical validation measurements will be taken:

 241Am surface scan for alignment.

 Gated cross & circle measurements for CAO.

 Gated coarse cubic grid using vertical stage.

 High-resolution pencil beam of front segmentation.

 (Time permitting) Automated High-resolution scan.

𝑉𝑉𝐹𝐹𝐹𝐹𝑀𝑀𝐹𝐹𝑉𝑉𝑉𝑉𝑉𝑉 𝑆𝑆𝑀𝑀𝑉𝑉𝐹𝐹𝐹𝐹

𝐷𝐷𝐹𝐹𝐷𝐷𝑉𝑉𝐹𝐹

𝑃𝑃𝐹𝐹𝐹𝐹𝑉𝑉𝑃𝑃𝑝𝑝𝑉𝑉𝐹𝐹𝑜𝑜𝐹𝐹𝐹𝐹𝐹𝐹



Conclusion

 GPUs have advanced significantly over the last decade, likely to continue in the future.

 Definitely should be revisited considering future projections.

 Tree-based search methods are incredibly efficient but difficult to adapt to high fold.

 Very applicable for Fold-1 regardless.

 ML approaches offer good learned relationships but need adaptions to high fold.

 We have a good standing for more ambitious ML techniques.

 Discrimination

 Regression

 Auto-tagging / Fingerprinting

 Compression

 Basis Correction

 I can’t take all these methods to completion 
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Thanks for Listening
Any Questions?
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CNN 𝑥𝑥 Deviations
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CNN 𝑦𝑦 Deviations
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CNN 𝑧𝑧 Deviations
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Cover Tree Rules

 For a collection of points 𝐶𝐶𝑖𝑖 on level 𝐹𝐹 of 𝑇𝑇 which represent a 
subset of points in 𝑆𝑆 the following rules must be enforced:
 𝐶𝐶𝑖𝑖 ⊂ 𝐶𝐶𝑖𝑖−1 - Nesting: any point 𝑝𝑝 ∈ 𝑆𝑆 that exists in 𝐶𝐶𝑖𝑖 must have an 

associated node in all lower levels.

 ∀𝑝𝑝∈ 𝐶𝐶𝑖𝑖−1 - Covering: for every 𝑝𝑝 ∈ 𝐶𝐶𝑖𝑖−1 there exists one 𝑞𝑞 ∈ 𝐶𝐶𝑖𝑖 such that 
𝑘𝑘 𝑝𝑝, 𝑞𝑞 ≤ 2𝑖𝑖 where the node for 𝑞𝑞 is the sole parent of the node for 𝑝𝑝.

 ∀𝑝𝑝 , 𝐹𝐹 ∈ 𝐶𝐶𝑖𝑖 , 𝑘𝑘 𝑝𝑝, 𝐹𝐹 > 2𝑖𝑖 − Separation: For all  p, 𝐹𝐹 ∈ 𝐶𝐶𝑖𝑖 then 𝑘𝑘 𝑝𝑝, 𝐹𝐹 > 2𝑖𝑖
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In Summary

 Several algorithms have been developed for fold-1

 Adaptions for multiplicity are hard

 Database needs to be validated experimentally

 Odd effects in basis set need to be investigated
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Position Regression with Machine Learning

 Training set taken from ADL simulated pulses, Gaussian noise added

 CNN attempts to predict interaction location from superpulse

 Currently limited to fold-1 events, may be mitigated by using windows 
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CNN Prediction Discrepancy
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