

PSA uncertainties estimation via bootstrap technique

Marco Siciliano Irfu/CEA, Université de Paris-Saclay, Gif-sur-Yvette, France

20th AGATA week 4th Position Sensitive Germanium Detectors and Application Legnaro, 16-19 September 2019

CONTENTS

The **bootstrap method** is a resampling technique used to estimate statistics on a population by sampling a dataset with replacement. It allows to estimate some properties of AGATA Pulse-Shape Analysis.

• Bootstrap on AGATA

- PSA uncertainties estimation
 - > Definition?
 - Energy dependence
 - Position dependence

Issues?

By comparing the original (short) trace with those from the database, the γ -ray interaction point position is identified inside the segment.

 $(\mathbf{E}_{i}, \mathbf{x}_{i}, \mathbf{y}_{i}, \mathbf{z}_{i})_{OR}$

M. Siciliano – PSA uncertainties estimation via bootstrap technique

AGATA week - Legnaro, 16-19 Sept. 2019

RESULTS PSA error

- In adaptive grid search, the PSA distinguishes the bootstrapped traces 17%
- Asymmetric distribution requires the definition of positive/negative error
 - Fluctuations distribution is position dependent
 - Fluctuations distribution is energy dependent

M. Siciliano – PSA uncertainties estimation via bootstrap technique

RESULTS PSA error

- Overall standard deviation 1.85 mm (2.36 mm for *fire>1* condition)
- Standard deviation increasing (from 1.6 to 4.4 mm) as a function of the number of firing segments
- When only one segment is firing (~40%), PSA does not distinguish the bootstrap traces
 - > Neighboring positions χ^2 largely different?

RESULTS PSA error

- In adaptive grid search, the PSA distinguishes the bootstrapped traces 17%
- Asymmetric distribution requires the definition of positive/negative error
 - Fluctuations distribution is position dependent
 - Fluctuations distribution is energy dependent

How do we define the error on PSA position?

RESULTS PSA error vs Energy

- Fluctuations decrease with the increasing gamma-ray energy
- Fluctuations are almost symmetric with respect to 0
- PSA defines the interaction-point position withing the firing segment, so the coordinates are limited
 - For x and y coordinates, fluctuations have similar trend
 - For z coordinate, fluctuations distribution is narrower

RESULTS PSA error vs Energy

M. Siciliano – PSA uncertainties estimation via bootstrap technique

RESULTS PSA error vs Energy

M. Siciliano – PSA uncertainties estimation via bootstrap technique

AGATA week - Legnaro, 16-19 Sept. 2019

RESULTS PSA error vs Position

M. Siciliano – PSA uncertainties estimation via bootstrap technique

AGATA week - Legnaro, 16-19 Sept. 2019

PROBLEMS Local Mask

In the case of an electrically segmented detector, charges are induced also on the neighboring electrodes

- *Net-charge signal* in the firing segment(s)
- *Tansient signals* in the neighboring segments

Usually for each firing segment, 4-6 signals are taken into account by the PSA.

PROBLEMS Local Mask

In the case of an electrically segmented detector, charges are induced also on the neighboring electrodes

- *Net-charge signal* in the firing segment(s)
- *Tansient signals* in the neighboring segments

Usually for each firing segment, 4-6 signals are taken into account by the PSA.

Not-neighboring segments are considered in the comparison

PROBLEMS Local Mask

- Overall standard deviation is half of the "normal" PSA-comparison procedure
- Standard deviation is rather constant as a function of the number of firing segments
- When only one segment is firing, PSA does not distinguish the bootstrap traces

PROBLEMS Accumulation Areas?

- Some detectors present accumulating areas for X=0 and Y=0
 Twice the intensities of the closest coordinates
 - Twice the intensities of the closest coordinates

In the ADL bases different segments have same coordinates

PROBLEMS Accumulation Areas?

- Some detectors present accumulating areas for X=0 and Y=0 $\,$
 - Twice the intensities of the closest coordinates

In the ADL bases different segments have same coordinates

PROBLEMS Accumulation Areas?

- Some detectors present accumulating areas for X=0 and Y=0
 Twice the intensities of the closest coordinates
 - Twice the intensities of the closest coordinates

In the ADL bases different segments have same coordinates

CONCLUSIONS

- Bootstrapping is an established procedure that can help in identifying PSA features
 - PSA code is a jungle!
 - > In order to have enough statistics, the procedure requires large disk space
- Problems in defining the error on the position (?)
- **<u>Preliminary results</u>** highlight the expected energy dependence of PSA-position fluctuations
- **<u>Preliminary results</u>** highlight that fluctuations are position dependent
 - Defining a map of uncertainties
- By knowing uncertainties dependencies, the PSA procedure can be simplified and it would make the online/offline data process much faster