Characterisation: Plans and discussion

AGATA collaboration Scanning tables

- Liverpool
 - Conventional singles and Coincidence
 - used to commission PSCS
 - validate other tables
- Orsay
 - Singles and Coincidence
- GSI 511 keV coincidence upgrade plan defined
- IPHC Strasbourg scanning table based on the PSCS technique
- Salamanca Scanning table (SALSA)
 - 511keV coincidence and PSCS

Characterisation

- Impact of electronics on signal shape
 - Digitiser: AGATA v2 vs TNT2 vs Caen v1724 etc
 - Preamplifier and grounding: single vs triple etc
- Validation of PSCS methodology
- ADL validation and questions (good progress)
- Acquire data from one detector with different DAQs
- Acquire data from one detector at two different scanning centres

Pulse Shape Analysis

Factors influencing PSA performance

- Field and Weighting Potential:
 - Overall impurity concentration
 - Longitudinal impurity gradient (Linear? Nonlinear?)
 - Radial impurity gradient?
 - Hole diameter; hole depth; etching cycles; lithium thickness
 - Neutron damage (p-type)
- Charge carrier mobilities as a function of electric field

Factors influencing PSA performance

- Crystal axis orientation (~ 5 degrees from maker)
- Crystal temperature
- Cross-talk (differential and integral)
- Neutron damage (trapping)
- Impulse response of 37 preamps
- Charge cloud size
- Digitizer nonlinearity

Observations: Clustering of points distributed inside detectors

GRETINA Decomposition Basis Observations

Courtesy David Radford

- Signal decomposition algorithm appears to work very well
 - Validated using simulated signals
- Most issues with the decomposition results appear to come from the fidelity of the signal basis
- Poor fidelity results in
 - Too many fitted interactions
 - Incorrect positions and energies
- Already included
 - Integral cross-talk
 - Differential cross-talk
 - Preamplifier rise-time
 - Differential cross-talk signals look like image charges, so they strongly affect position determination

PSA objectives

- The implementation of the existing AGS algorithm will be optimised for performance throughput.
 - Include the addition of the export of PSA position uncertainties from the AGS algorithm to the Gamma-ray tracking algorithm.
 - This will potentially allow performance improvements in the gamma-ray tracking.
- The PSA algorithm will be upgraded* to include the handling of multiple interactions in a segment. The performance of this algorithm will be evaluated and a decision on implementation during phase 2.
- An exploration into the use of other (non AGS) PSA algorithms for future implementation.
 - The focus is on the possibilities available using machine learning and will build on initial work that has started within the collaboration.

PSA tasks going forward

- Pristine basis generation with irregular basis using SIG-GEN
- Optimised basis with experimental corrections (from ⁶⁰Co flood data)
- Development of an integrated data set of two interactions/segment using collimated scanning data
- Development of an integrated data set of two interactions/segment using collimated scanning data from AGATA digitisers
- New PSA algorithm development

PSA tasks going forward

- Implementation of multiple interaction algorithm for testing in beam
- Inclusion of positon uncertainties in PSA output
- Including regular/irregular basis and ADL/SIG-GEN
- Multiple interaction algorithm implementation
- Tracking: use of uncertainties propagated from PSA

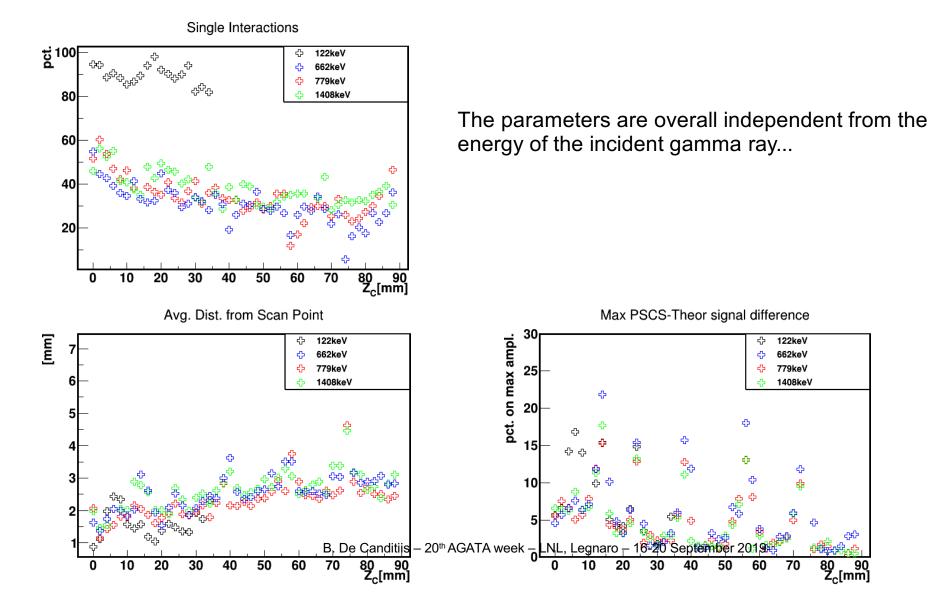
Perspectives

• Availability of AGATA capsules for characterisation

Continuity of available personnel to implement PSA algorithms

Yesterdays talks - discussion

- AGATA detector PSCS simulations & first 2D scan with ¹⁵²Eu: B. De Canditiis (IPHC Strasbourg)
- Self-calibration of gamma-ray tracking arrays: S. Paschalis (Uni. Of York)
- Error Estimates for Pulse shape analysis: M. Siciliano (CEA Saclay)
- Machine learning approaches for PSA: F. Holloway (Uni. Of Liverpool)



AGATA detector PSCS simulations and first 2D scan with 152Eu

20th AGATA week and 4th PSeGe Workshop LNL, Legnaro – 16-20 September 2019

B. De Canditiis, G. Duchêne, F. Didierjean, M. Filliger, M.H. Sigward

Simulations on A-type detector: different energy scans

Next steps...

- Full volume scan with ¹³⁷Cs source (**Vertical done**)
- Full volume scan (of a sector) with ¹⁵²Eu source (Vertical ongoing)
- Comparison between simulations and real data scans

Stefanos Paschalis

20th AGATA Week and 4th PSeGe Workshop

Outlook: implementation

Measurements:

- The cleanest experimental data set would be with one hit segment per crystal (e.g. can set crystal multiplicity trigger >=2 to reduce also the data size)
- Statistics and calibration timescales (currently estimated to be about a weeks time but a more careful estimate is needed)
- Maximum Crystal rate for "safe" pulse shape ?
- Appropriate high-energy source (⁸⁸Y) or stick with monoenergetic for simplicity (¹³⁷Cs), or in-beam data if clean enough

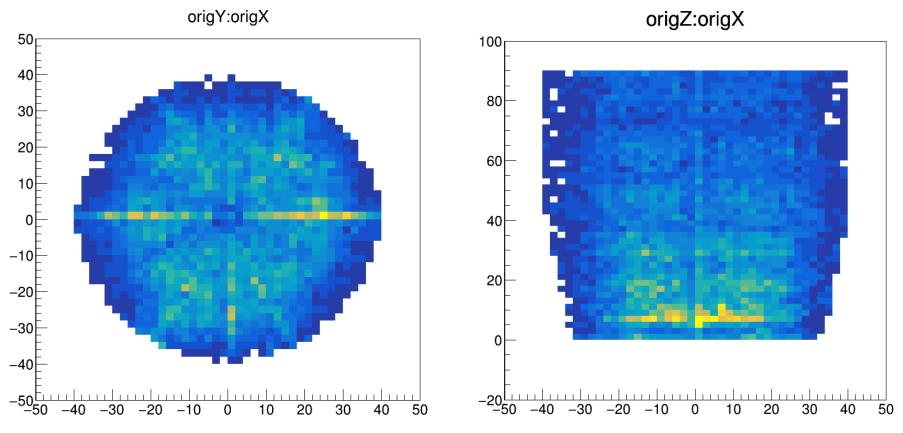
Analysis:

- Pulse-shape comparison code
- Basic tracking code to select and order initial data
- Adapt the current self-calibration code to work with experimental data

Conclusions

- A novel self-calibration method for γ-ray energy tracking arrays is proposed and evaluated with Geant4 simulations
- A basis generation with 1 mm RMS fidelity is possible with realistic statistics (based on this simulation)
- The method promises *in situ* calibration of the arrays in realistic timescales
- Next steps and challenges towards implementation and experimental validation

PSA uncertainties estimation via bootstrap technique


Marco Siciliano Irfu/CEA, Université de Paris-Saclay, Gif-sur-Yvette, France

20th AGATA week 4th Position Sensitive Germanium Detectors and Application Legnaro, 16-19 September 2019

PROBLEMS Accumulation Areas?

- Some detectors present accumulating areas for X=0 and Y=0
 - $\,\gg\,$ Twice the intensities of the closest coordinates

In the ADL bases different segments have same coordinates

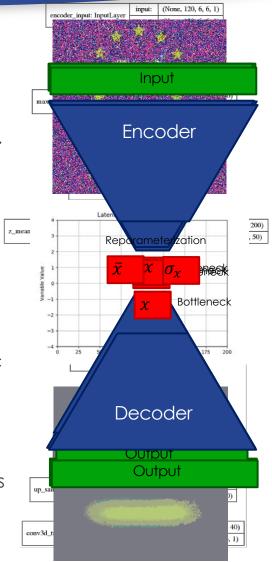
CONCLUSIONS

- Bootstrapping is an established procedure that can help in identifying PSA features
 - > PSA code is a jungle!
 - > In order to have enough statistics, the procedure requires large disk space
- Problems in defining the error on the position (?)
- **Preliminary results** highlight the expected energy dependence of PSA-position fluctuations
- Preliminary results highlight that fluctuations are position dependent
- > Defining a map of uncertainties
- By knowing uncertainties dependencies, the PSA procedure can be simplified and it would make the online/offline data process much faster

AGATA Week 2019

Machine Learning and Topological Data Analysis for Pulse Shape Analysis

Fraser Holloway



Autoencoders for Tagging & Compression

Autoencoders combine two separate networks to function:

- Encoder: converts input to a learned latent space via feature extraction.
- > Decoder: converts latent space into a reconstructed output.
- As a whole the network replicates a denoised input.
 - Signal is intelligently denoised, small transients are unaffected.
- Autoencoders become more useful when split into parts:
 - The Encoder and Decoder compress data far better than traditional methods.
 - The latent representation can be used to express parametric trends.
 - > This requires disentangling the latent space (difficult)
 - Can this be used for tagging?
- Compression isn't necessarily bad, oddly the reconstructed pulses could end up being better than the inputs due to denoising.

Conclusion

- GPUs have advanced significantly over the last decade, likely to continue in the future.
 - > Definitely should be revisited considering future projections.
- Tree-based search methods are incredibly efficient but difficult to adapt to high fold.
 - Very applicable for Fold-1 regardless.
- > ML approaches offer good learned relationships but need adaptions to high fold.
- > We have a good standing for more ambitious ML techniques.
 - Discrimination
 - Regression
 - Auto-tagging / Fingerprinting
 - Compression
 - Basis Correction
- I can't take all these methods to completion