Cryogenic detector systems: recent work.

M.Borri Daresbury Laboratory UKRI-STFC

Outline:

- Photon-science: XH for x-rays and mid-IR*.
- Nuclear physics: Prospectus.
- Conclusion.
- * not Ge sensor.

See also BEGe cryostat I.Lazarus @ AGATA Week Milan, 2017.

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

ESRF-ID24 upgrade.

- Extremely Brilliant Source ESRF: new lattice.
- ID24 refurbished to High Power Laser Facility (HPLF).
- Coupling 100J ns-Laser to 4th Generation Synchrotron.
- Pump-probe experiments in single shot.
- Experimental technique is Energy Dispersive EXAFS (EDE).
- ... And to upgrade XH.

XH system.

- Radiation Harsh Environment: $10^{14} \gamma$ /s on Active Area;
- Cryostat Unit: Coolant is LN2; Ge Sensor @ T<-170C; Front-End Electronics; Pwr [10-14W] @ T>-40C;
- DAQ Unit:

Operated in Atmosphere; FPGA + μ Processor; CTRL, CLK, DATA;

• Upgrade:

New Ge Sensors; New Cryostat;

Micro-strip Ge sensors.

- Size: 1024 strips.
- Strip pitch: 50 um with 25um gap.
- Strip length: 5mm.
- Sensor thickness: 1.5mm.
- Two guard-rings.
- Interleaved wire-boning pads.
- Back illuminated.

X3CHIP.

- STFC designed.
- Process: AMS 0.35um.
- Channels: 128.
- Analogue front-end: Charge integration; Charge sampling;
- Analogue output: 32 chs per mux; 4 mux per ASIC;

carrier board [aka head-board]

DAQ.

Prototyping: in-beam tests.

- Anticipate shut-down.
- Enable early testing while still developing new cryostat.
- First assembly: New sensors; Old cryostat;
- Study Q-collection time Vs fill-patern.
- In-beam tests: Q-collection time Vs Voltage; Q-collection time Vs Flux;

Mid-IR system.

- STFC Central Laser Facility.
- Electronic and structural dynamics at quantum level.
- Ultrafast [s]: 10⁻³-10⁻¹⁵.
- Chemistry, physics and biology.
- Mid-IR detectors with STFC Technology.
- Sensor selection ongoing: not Ge!

700 nm 14,286 cm ⁻¹		2500 nm 4000 cm ⁻¹		6897 1450	' nm Icm ⁻¹	25,000 nm 400 cm ⁻¹	50,000 nm 200 cm ⁻¹
Near IR 0.7–1.4 µı	→ Short Wavelength IR m 1.4–3.0 μm	→(Mid Wave 3.0–8	length IR .0 μm			Far Wavelength IR 8.0 µm–1.0 mm
		Infrared Region			<mark>λ=2</mark>	- <mark>10 μm for CL</mark> l	
Gamma	X-Rays	Ultraviolet		Radar	FM	TV Shortw	vave AM
10 ⁻¹⁴ 1 x 1	0-12 1	x 10 ⁻⁸	0.7 μm–1mm 1	x 10-4	1 x 10-2	1 x 10 ²	1 x 10 ⁴

Starting point

- XH system: not upgraded cryostat.
- Max 4 XCHIPs to r/o up-to 512 strips.
- Sensor T: -297C (or below?).
- Mod the current design to build a demonstrator.

Study on head-board module.

- 4 XCHIP, pwr [W]: 5-7.
- T_{HB} > -40C.
- Increased thermal resistivity.
- Torlon spacer non-linearity becomes dominating factor.

Low IR contribution.

- Low IR contribution to T.
- No IR-shield installed.
- Heated chassis and checked effect on components.
- To repeat with IR-shield.

Prospectus.

- Compton camera.
- Nuclear medicine.
- Low dose diagnostics.
- Single Photon Emission Computed Tomography (SPECT).
- Scatterer and absorber in same cryostat.
- Cryostat characterization ongoing.
 -Vacuum;
 - -Temperature;

Repeated cycles

Vacuum tests.

- P measured in vessel.
- Comparing P cycles.
- Base-line pressure in vessel.
- LN2 burn-rate @ 0W.
 - Next: -T_{min}VsVac; -Pump-speedVsTemp; -TempVsPwr;

Conclusion.

- Results of the XH system for X-rays.
- T optimisation for a possible demonstrator for Mid-IR.

(ロ)、

• Characterisation of Prospectus cryostat.