

4th Position Sensitive Germanium Detectors and Application Workshop (PSeGe)

16-19 Semptember 2019 – INFN LNL

n-type high doping of Ge by Sb deposition and pulsed laser melting

Carraro Chiara

PhD student Physics – Univ. Of Padova

Ge-based devices

FineET

γ-Ray detectors

Ge hot topics

Ge-based devices

Issues on Ge n-type doping

Low active concentrations

High Diffusivities

Ion Implantation Damage

Ge implanted with 50 KeV 6×10^{15} Sb/ cm^2 (Bruno JAP 2010)

chiara.carraro.13@phd.unipd.it - 4th PSeGe Workshop

Sb deposition + PLM

(F. Sgarbossa et al., Appl. Surf. Sci. **496** (2019))

Pulsed Laser Melting

for dopant diffusion, incorporation, and activation

- Nd-YAG λ =355 nm, 7 ns, 400 mJ/cm² 1 to 8 pulses
- KrF λ=248 nm, 25 ns, 300-700 mJ/cm²
 1 to 8 pulses

Chemical profile evolution

Sb incorporation at >10% concentration

8nm

4nm

2nm

1nm

ML

6

- No surface segregation
- Diffusion confined in molten layer

8

Dopant activation

- Van der Pauw Hall measurements
- Maximum active concentration extracted from measured RHs assuming SIMS profiles fully active below N_{max}
- Hall scattering factor r_H=1

(R. Baron, G. Shifrin, O. Marsh and J. W. Mayer, and J. Menéndez, J. Appl. Phys. 40, 3702 (1969))

 $RH_{s} = \frac{\int n(x)\mu^{2}(x)dx}{e \cdot \left(\int n(x)\mu(x)dx\right)^{2}}$

Dopant activation

- Alternating VdP-Hall measurements with chemical etching → carrier depth profile
- Differential Van der Pauw Hall measurements confirm active profile.

$$n(x) = \frac{(\Delta \sigma_S)^2}{q \cdot \Delta x \cdot \Delta (RH_S \sigma_S^2)}$$
$$\iota_H(x) = \frac{\Delta (RH_S \sigma_S^2)}{\Delta \sigma_S}$$

Dopant activation

• Active Sb saturates at 3x10²⁰cm⁻³

FTIR

- Active Sb saturates at 3x10²⁰cm⁻³
- Plasma wavelength below 3 μm

Resistivity and Mobility

Substitutionality (c-RBS dip)

[111] Random 1,0 Sb Ge Random Level 8,0 - ^{0,6 -} O 0,4 0,2 0.0 0,0 0,2 0,4 0,6 0,8 3,0 ${\sf Sb}_2{\sf V}$

small displacementsAfter PLM inactive Sb is in the form of very

small Sb_nV complexes.

C-RBS: Sb \sim 100 % nearly substitutional with

(José Coutinho, et al., J. Mater. Sci. Mater. Electron. 2007) (A. Chroneos, J. Appl. Phys. 2010)

HRXRD strain depth profiling

HRXRD strain depth profiling

- At low concentrations misfit aligns with literature data for 100% active Sb
- At high concentrations misfit continue to increase up to 0.7%

Conclusions

- The combination of Sb deposition and PLM provides an extremely efficient doping technique.
- Carrier concentration up to 3x10²⁰cm⁻³ with record low resistivity and excellent mobility
- No bulk contamination as consequence of PLM

IOD Dublishing		
J. Phys. D: Appl. Phys. 52 (2019) 035104 (11pp)	Journal of Physics D: Applied Physics https://doi.org/10.1088/1361-6463/aae9c0	
Characterization and	I modeling of thermally-	
induced doping con	taminants in high-purity	
germanium	Eur. Phys. J. A (2018) 54 : 34 DOI 10.1140/epja/i2018-12471-0	THE EUROPEAN PHYSICAL JOURNAL A
V Boldrini ^{1,2,4} , G Maggioni ^{1,2} , S Carturan ^{1,2} R Milazzo ¹ , D R Napoli ² , E Napolitani ^{1,2} , R C and D De Salvador ^{1,2}	Special Article – New Tools and Techniques	
	Pulsed laser diffusion of thin hole-barrier contacts in high purity germanium for gamma radiation detectors	
	G. Maggioni ^{1,2,a} , S. Carturan ^{1,2} , W. Raniero ² , S. Riccetto ³ , F. Sg. D.R. Napoli ² , D. Scarpa ² , A. Andrighetto ² , E. Napolitani ^{1,2} , and D.	arbossa ^{1,2} , V. Boldrini ^{1,2} , R. Milazzo ¹ , De Salvador ^{1,2}

Conclusions

- The combination of Sb deposition and PLM provides an extremely efficient doping technique.
- Carrier concentration up to 3x10²⁰cm⁻³ with record low resistivity and excellent mobility
- No bulk contamination as consequence of PLM
- Pseudomorphic layers Ge:Sb layers with no extended defects
- FTIR reports plasma wavelengths below 3 μm in the MIR range useful for gas sensing applications
- Inactive Sb is nearly substitutional with small displacement, compatible with very small Sb_nV clusters.

Thanks for your attention!

16/9/2019

chiara.carraro.13@phd.unipd.it - 4th PSeGe Workshop

IOP Publishing

J. Phys. D: Appl. Phys. 52 (2019) 035104 (11pp)

Journal of Physics D: Applied Physics

https://doi.org/10.1088/1361-6463/aae9c0

Characterization and modeling of thermallyinduced doping contaminants in high-purity germanium

V Boldrini^{1,2,4}, G Maggioni^{1,2}, S Carturan^{1,2}, W Raniero², F Sgarbossa^{1,2}, R Milazzo¹, D R Napoli², E Napolitani^{1,2}, R Camattari³

Eur. Phys. J. A (2018) 54: 34 DOI 10.1140/epja/i2018-12471-0

THE EUROPEAN PHYSICAL JOURNAL A

Special Article – New Tools and Techniques

Pulsed laser diffusion of thin hole-barrier contacts in high purity germanium for gamma radiation detectors

G. Maggioni^{1,2,a}, S. Carturan^{1,2}, W. Raniero², S. Riccetto³, F. Sgarbossa^{1,2}, V. Boldrini^{1,2}, R. Milazzo¹, D.R. Napoli², D. Scarpa², A. Andrighetto², E. Napolitani^{1,2}, and D. De Salvador^{1,2}

Chemical profile evolution

- Sb incorporation at >10% concentration
- No surface segregation
- No Sb loss

FIG. 1. $As_n V$ configurations in a unit cell of the Ge. White circles represent the Ge atoms, black circles the As atoms, and squares V.

A. Chroneos, R. W. Grimes, B. P. Uberuaga, S. Brotzmann, and H. Bracht, Appl. Phys. Lett. **91**, 192106 (2007).

HRXRD

