

LNF, 09/07/2019 Consiglio di Laboratorio preventivi 2020

G. Finocchiaro INFN - Laboratori Nazionali di Frascati

15 SIGLE DI CSN1

- In presa dati
 - ATLAS BELLE2 BESIII CMS KLOE GMINUS2_DTZ LHCb
 NA62 PADME
- In fase di costruzione
 - FASE2_ATLAS FASE2_CMS PMU2E
- Proposte / in fase di progettazione
 - RD_FA SHiP_DTZ
- In evoluzione
 - UA9_DTZ
- Calcolo scientifico

Quanti siamo

Quanti FTE

Anno

<FTE> LNF in CSN1

Mai così parcellizzati.

Una carrellata delle attività di CSN1

- BES III e ATLAS-ITK discussi in presentazioni dedicate
- Le richieste di servizi, già presentate, discusse e approvate dal CIF, sono mostrate in appendice.

Una carrellata delle attività di CSN1

- BES III e ATLAS-ITK discussi in presentazioni dedicate
- Le richieste di servizi, già presentate, discusse e approvate dal CIF, sono mostrate in appendice.

DISCLAIMER:

LE ATTIVITÀ SONO TANTE E INTERESSANTI, POTREI SFORARE DI QUALCHE MINUTO

ATLAS (FASE 2) - newSmallWheels

Toroid Magnets Solenoid Magnet SCT Tracker Pixel Detector TRT Tracker

NSW, wheel structure:

- 8 large sectors (LM) and 8 small ones (SM)
 (2 MM modules per sector)
- MM aim: precision tracking (between 2 sTGC chambers for trigger)
- p_T resolution ~15% at 1TeV
- 4 type of chambers: LM 1-2, SM 1-2
- production shared between several institutes and industries: Italy (SM1), Germany (SM2), France (LM1), Russia/Greece (LM2 – CERN for drawings and first prototypes)

Giada Mancini (LNF INFN)

ATLAS - nSW Status

Number of chambers produced and performances

	Sectors @ 570 V	Spark rate
M3	40	3 with 3 spark/min
M6	37	Ok
M7	40	1 with 7 spark/min on stereo
M 8	36	Ok but 1 (26 spark/ min)
M9	37	Ok
M10	35	Ok but 2 (5 spark/ min) on stereo
M11	37	1 with 30, 2 with 12, 2 with 5 (all stereo but 1)
M12	38	1 with 11, 1 with 5 on stereo
M13	40	-
M14	39	3 with 5, 3 with 10, 1 with 20, 2 with 40

Well within the schedule

Performances and numbers from all sites

			LM1	M3	86,55	
SM1	M3	93,8		M4	82,25	
	M6	90,34	SACLAY	M5	63,48	
<u>_NF</u>	M7	93				
	M8	91,23		LM2	M3	88,89
	M9	88,12			M4	93
	M10	89,67		DUBNA	M5	92,54
	M11	90,71			M6	91,75
	M12	90,48				
	M13	93				
	M14	92,45	SM2	M5	92,54	T
				M6	89,71	
				M7	93	Γ

- INFN is now "de facto" leading the project coordinator by LNF
- LNF is the main INFN site (assembly, tests and complete drift panels)
- Far better than other sites in terms of performances and number of
- chamber produced
- LNF team appointed as production manager **BIG THANKS TO ALL TEAM**
- Already promising results on other chambers

Gruppo 1 LNF, richieste 2020

Sigla	Ric	Тес	FTE	<fte></fte>	MISS	CON	APP	ALTR	O CAP
ATLAS	13	6	10	0.79	120	40	84	10	INV

Measurement of the cross section in the H \rightarrow ZZ* \rightarrow 4l final state at 13 TeV with 2015-2018 data.

Interpretation in the framework of Pseudo - Observables

- The H→ZZ*→4l decay channel is referred to as the *Golden Chan*nel due to the high signalbackground ratio (~2) and to a clear signature for the trigger due to the presence of leptons that comes from the Z bosons decays.
- Differential cross sections measurement can been performed with observables sensitive to the Higgsboson production and decay modes and the results have been used to test the couplings of the Higgs boson with Standard Model particles and also to put constraints on anomalous Higgs-boson interactions with them using the Pseudo-Observable framework^[1].
- Limits are set on modified Higgs boson interactions in this framework. The scenarios considered are:
 - Linear EFT-inspired: (κ_{ZZ} vs. $\epsilon_{Zl(R)}$), where $\epsilon_{Zl(R)} = 0.48 \epsilon_{Zl(R)}$, $\epsilon_{Ze(L,R)} = \epsilon_{Z\mu(L,R)}$.
 - Flavor universal contact terms: $(\epsilon_{Z(R)}vs. \epsilon_{Z(L)})$: where $\epsilon_{Ze(L)} = \epsilon_{Z\mu(L)}$, $\epsilon_{Ze(R)} = \epsilon_{Z\mu(R)}$, $\kappa ZZ = 1$.
 - Flavor non-universal vector contact terms: $(\epsilon_{Ze(R)} \text{ vs. } \epsilon_{Z\mu(R)})$, where $\epsilon_{ZI(L)} = \epsilon_{ZI(R)}$, $\kappa ZZ = 1$.
 - Flavor non-universal axial contact terms: $(\epsilon_{Ze(R)} \text{ vs. } \epsilon_{Z\mu(R)})$, where $\epsilon_{Zl(L)} = -\epsilon_{Zl(R)}$, $\kappa ZZ = 1$.
- The contact terms only affect the dilepton invariant mass spectra, then the m12 vs m34 distribution is used to put limits.

The cross-section in each bin of m12 vs m34 has been computed by simulating a grid of couplings values for the given parameters and parametrizing the cross section with 2D quadratic functions. These fitted functions are incorporated into the likelihood and exclusions limits are derived.

[1] M. Gonzalez-Alonso, A. Greljo, G. Isidori and D. Marzocca, *Pseudo-observables in Higgs decays*, Eur. Phys. J. C75 (2015) 128

C. Arcangeletti et al.

Belle II (at LNF)

DOUG IL AC ELA

Hardware

- Sostituzione dei 16 crate VME contenenti l'elettronica di front end degli RPC del BKLM
- Manutenzione schede di front end
 - Sostituzione e riparazione
- Manutenzione apparato RPC
- Software
 - Ottimizzazione clustering KLM
- Fisica
 - Studio efficienza e risoluzione rivelazione di tracce cariche e $K_{\rm L}$ nel KLM utilizzando eventi $e^+e^- \rightarrow \mu^+\mu^-\gamma$ ed $e^+e^- \rightarrow \phi(K_{\rm S}K_{\rm L})\gamma$ nei dati di Fase 2 e Fase 3
 - Analisi dati raccolti durante la «Fase 3»

Belle II – Manutenzione apparato

- Intervento a Gennaio per riparare tre crate nei settori BF1, BF2 e BF4
- Ripristinate le connessioni di cavi di segnale disconnessi e sostituiti con cavi di riserva quelli rotti
- Recuperati al 100% tutti i 16 settori barrel BWD e FWD, meno uno nel quale manca l'ultimo layer di RPC perché inaccessibile

Belle II – Studi efficienza tracce cariche

- Hit in corrispondenza di tracce di muoni in eventi e⁺e[−]→µµγ estrapolate nel KLM
- Mappe di efficienza, canali morti ecc. ottenute strip per strip sono inserite nel db e aggiornate nel tempo

LNF - CL preventivi 2020 - CSN1

Belle II – «Phase 3» Primo run di Fisica

- Belle II ha iniziato la presa dati nella cosiddetta «Fase 3»
- Iniziata l'11 Marzo 2019, stop di 3 settimane dovuto ad un incendio che ha inondato di fuliggine parte del linac
- Attualmente la luminosità di picco raggiunta è di 1.2x10³⁴ cm⁻² s⁻¹ con Belle II spento, 6.1x10³³ cm⁻² s⁻¹ in presa dati, mentre quella integrata è stata di ~6.5 fb⁻¹
- Parametri raggiunti dalla macchina [goal finale]

16

Hardware

- Manutenzione schede front end lettura degli RPC
- Software
 - Studio delle prestazioni del KLM come rivelatore di μ e K_L (efficienza, risoluzione spaziale, ecc.)
- Analisi
 - Studio del canale di decadimento $B \rightarrow J/\psi K_L$

Belle 2 LNF, richieste e composizione 2020

Sigla	Ric	Tec	FTE	<fte></fte>	MISS	CON	ALTRO CAP
Belle II	6	1	3	0.47	58.1	4.5	

Componenti del gruppo 2020

- M. Beretta (0.2)
- R. de Sangro (Resp.) (0.8)
- G. Finocchiaro (0.8)
- B. Oberhof (AR) (1.0)
- P. Patteri (0.2)
- I. Peruzzi
- M. Piccolo

Responsabilità

- R. de Sangro Resp KLM Italia, Belle II Shift Manager
- B. Oberhof Contact KL reconstruction
- I. Peruzzi Chair Sdello peakers Committee

CMS Frascati 2019-2020

CMS Forward Muon Upgrade: GEM

GE1/1: GEM Endcap Ring 1 Station 1

CMS FRASCATI Attività 2019-2020

- Assemblaggio SuperCamere GE1/1 (ongoing @CERN)
- Sito di produzione GE2/1 e ME0 (inizio produzione GE2/1 previsto prima metà 2020 – Soggetto a modifiche della schedula LS3)
- L'Installazione GE1/1 in CMS inizierà in autunno 2019
- R&D eco-gas e studio compatibilità materiali con nuove miscele
- Sviluppo sistema sensori FBG per monitoring temperatura delle camere GE1/1, GE2 (in P5).
 - Design, installazione, commissioning, analisi
- Upgrade del Sistema Gas Gain Monitoring degli RPC

CMS Frascati 2020

L.Benussi^a, S.Bianco^a, M.A.Caponero^b, M. Ferrini^c, L.Passamonti^{a,} D.Piccolo^a D.Pierluigi^a, G.Raffone^a, M. Parvis^d, A.Russo^a, G.Saviano^c t.b.d. (assegno di ricerca)

^aLaboratori Nazionali di Frascati dell'INFN, Italy ^bLaboratori Nazionali di Frascati dell'INFN and ENEA Frascati, Italy ^cLaboratori Nazionali di Frascati dell'INFN and Facolta' di Ingegneria Roma1, Italy ^d Laboratori Nazionali di Frascati dell'INFN and Politecnico di Torino, Italy

PERCENTUALI 2019 (FTE)

L. Benussi	0.9
S. Bianco (resp)	0.8
M. Caponero	1.0
D. Piccolo	0.8
G. Raffone	0.5
G. Saviano	1.0
M. Parvis	0.3
M. Ferrini	1.0
TOTALE	6.3

PERCENTUALI 2020 (FTE)

L. Benussi	0.9
S. Bianco	0.8
M. Caponero	0.8
D. Piccolo (resp)	0.8
G. Raffone	0.5
G. Saviano	0.8
M. Parvis	0.3
M. Ferrini	1.0
Tbd (assegn.)	1.0
TOTALE	6.9

RESPONSABILITÀ 2019

L. Benussi	CMS_FASE2					
RESPONSABILITÀ 2020						
L.Benussi	Lev 2 GEM Detector HW coordinator					
L. Benussi	CMS_FASE2					
S.Bianco	Lev 3 Gas Gain Monitoring					
D.Piccolo	Lev 3 Ecogas studies					

RICHIESTE 2019 kEUR

Missioni	150.0
Consumi	19.5
TOTALE	169.5

RICHIESTE 2020 kEUR

Missioni	120.0
Consumi	12.5
Assegno Ric.	48.0
TOTALE	180.5

Attività 2019 e 2020

- Importante attività di montaggio SuperCamere al CERN (Al momento sono state assemblate 15 SC e attualmente sono in test presso un cosmic stand al 904).
- Nel 2020 le attività previste nei laboratori per le quale si richiedono strutture e personale sono:
 - Costruzione SuperCamere al CERN 6 mesi uomo personale tecnico
 - Installazione SC GE1/1 in P5 (inizio a fine 2019) 6 mesi uomo personale tecnico
 - Installazione dei sensori FOSxTemp nelle super-chamber 3 mesi uomo di personale tecnico
 - Pre-produzione GE2/1 Camera pulita ed. 27 e strutture attualmente utilizzate per produzione GE1/1 per caratterizzazione prototipo, 8 mesi uomo personale tecnico di supporto
 - Studi eco-gas per rivelatori RPC utilizzo struttura ed. 27, 3 mesi uomo di personale tecnico di supporto

Lista pubblicazioni (esclusi articoli CMS)

• Articoli

- Layout and Assembly Technique of the GEM Chambers for the Upgrade of the CMS First Muon Endcap Station By CMS Muon Collaboration (D. Abbaneo et al.). arXiv:1812.00411 [physics.ins-det]. <u>10.1016/j.nima.2018.11.061</u>. Nucl.Instrum.Meth. A918 (2019) 67-75.
- 2. Operational Experience With the GEM Detector Assembly Lines for the CMS Forward Muon Upgrade By D. Abbaneo et al.. <u>10.1109/TNS.2018.2871428</u>. IEEE Trans.Nucl.Sci. 65 (2018) no.11, 2808-2816.
- 3. Quality control for the first large areas of triple-GEM chambers for the CMS endcaps By CMS Collaboration (M. Tytgat et al.). <u>10.1051/epjconf/201817403003</u>. EPJ Web Conf. 174 (2018) 03003.
- 4. CMS GEM detector material study for the HL-LHC By S. Muhammad et al.. <u>10.22323/1.314.0799</u>. PoS EPS-HEP2017 (2017) 799.
- 5. Characterization of the water diffusion in GEM foil material By L. Benussi et al.. arXiv:1512.08621 [physics.ins-det]. <u>10.1051/epjconf/201817403005</u>. EPJ Web Conf. 174 (2018) 03005.
- Candidate eco-friendly gas mixtures for MPGDs By L. Benussi et al.. arXiv:1512.08542 [physics.ins-det]. <u>10.1051/epjconf/201817405004</u>. EPJ Web Conf. 174 (2018) 05004.
- 7. A novel application of Fiber Bragg Grating (FBG) sensors in MPGD By D. Abbaneo et al.. arXiv:1512.08529 [physics.insdet].

<u>10.1051/epjconf/201817403002</u>. EPJ Web Conf. 174 (2018) 03002.

- Properties of potential eco-friendly gas replacements for particle detectors in high-energy physics By G. Saviano et al.. arXiv:1505.00701 [physics.ins-det]. <u>10.1088/1748-0221/13/03/P03012</u>. JINST 13 (2018) no.03, P03012.
- 9. Performance of GE1/1 Chambers for the CMS Muon Endcap Upgrade By CMS Muon Collaboration (D. Abbaneo et al.). arXiv:1903.02186 [physics.ins-det].

10.Layout and Assembly Technique of the GEM Chambers for the Upgrade of the CMS First Muon Endcap Station By CMS Muon Collaboration (D. Abbaneo et al.). arXiv:1812.00411 [physics.ins-det]. <u>10.1016/j.nima.2018.11.061</u>. Nucl.Instrum.Meth. A918 (2019) 67-75.

- Conferenze
 - S.Bianco, Convener's report, Spectroscopy Session, Heavy Quarks and Lepton 2019, Yamagata (Japan)

KLOE-2 Achievements 2019 (I)

D. Babusci, C. Bloise, F. Bossi, G. Capon, F. Curciarello, P.Ciambrone, E. De Lucia, A. De Santis, P. De Simone, A. Di Cicco, D. Domenici, S. Giovannella, X. Kang, M.Martini, S.Miscetti, D. Moricciani, E.Perez-DelRio, P. Santangelo, F. Sirghi and F. Fortugno, F. Sborzacchi

- KLOE-2 first round of Data Reconstruction completed with 20 pb-1/day average reconstruction rate
- MC running in parallel with 15 pb-1/day average reconstruction rate

KLOE-2 Achievements 2019 (II)

HET π O search: First statistical evidence of Preliminary @ PhiPsi 2019 tagged sample π⁰ candidates+e⁺e⁻ γ + Accidentals Accidentals hptou hptin 18000 hmou 8000 hmin 48.14 ± 0.021 48.05 = 0.0779 141.2 + 0.0628 16000 141.4 ± 0.168 7000 >14000 ¥12000 Events/20 MeV 3.6324-6000 3.6280+0 π^0 candidates+e⁺e⁻ γ + Accidentals 5000 ຊີ10000 Accidentals Events// 4000 8000 ELE + POS events 3000 6000 2000 4000 ELE + POS events 1000 2000 0 60 80 100120140160180200220 20 40 60 80 1001 201 401 601 80 200 M_{inv} (MeV) Ptot (MeV) 1600 hmd hptd 700 142.9 = 2.47 47.06 = 1.128 1400 33.19 ad Des 15.11 600 Diff 2704 2702 1200 Events/20 MeV Events/20 MeV 500 1000 Integral = 2702 ± 202 400 800 300 600 Integral = 2704 ± 202 **ELE + POS Events** 200 400 ELE + POS Events 100 200 0 0^L 60 80 100 120 140 160 180 200 220 20 40 60 80 100120140160180200 Miny (MeV) P_{tot} (MeV)

• MVA classifiers to separate radiative Bhabha scattering events from πO from $\gamma \gamma$ scattering

KLOE-2 Achievements 2019 (III)

CP v uppe	riolation source in strong interaction : er limit on $\eta \rightarrow \pi^{+}\pi^{-}$	Final Result in preparation	Draft
¢	Best UL set by KLOE with 350 pb-1 BR($\eta \rightarrow \pi^{+}\pi^{-}$) < 1.3x10 ⁻⁵ @ 90% CL [PLB 606 (2005) 276]	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	
¢	Recent limit from LHCb with 3.3 fb-1 BR($\eta \rightarrow \pi^{+}\pi^{-}$) < 1.6x10 ⁻⁵ @ 90% CL [PLB 764 (2017) 233]	Since 1000 - γe⁺e⁻ η→π⁺π΄ 500 - γe⁺e⁻	
¢	Updated with full statistics L = 1.6 fb-1 BR($\eta \rightarrow \pi^+\pi^-$) < 5.8x10 ⁻⁶ @ 90% CL	0 500 520 540 560 58 Μ(π ⁺ π) Μ	0 600 leV/c ²

KLOE-2 Achievements 2019 (III)

CP v uppe	violation source in strong interaction : er limit on $\eta \rightarrow \pi^{+}\pi^{-}$	Final Result in preparation	Draft
÷	Best UL set by KLOE with 350 pb-1 BR($\eta \rightarrow \pi^{+}\pi^{-}$) < 1.3x10 ⁻⁵ @ 90% CL [PLB 606 (2005) 276]	500 400 	na.Ĉ
÷	Recent limit from LHCb with 3.3 fb-1 BR($\eta \rightarrow \pi^{+}\pi^{-}$) < 1.6x10 ⁻⁵ @ 90% CL [PLB 764 (2017) 233]	300 ⁻ γe⁺e ⁻ η→π⁺π ⁻ 200 ⁻ ^γ e⁺e ⁻	
¢	Updated with full statistics L = 1.6 fb-1 BR($\eta \rightarrow \pi^+\pi^-$) < 5.8x10 ⁻⁶ @ 90% CL		- Sile
÷	Analysis with KLOE-2 data ongoing UL expected to reach 2.7x10 ⁻⁶ @ 90% CL	500 520 540 560 58 Μ(π ⁺ π ⁻) Μ	0 600 eV/c ²

KLOE-2 Achievements 2019 (III)

CP violation source in strong in upper limit on $\eta \rightarrow \pi^+\pi^-$	Final Result in preparatio	Draft on		
 Best UL set by KLOE with BR(η → π⁺π⁻) < 1.3x10⁻⁵ @ [PLB 606 (2005) 276] Recent limit from LHCb w BR(η → π⁺π⁻) < 1.6x10⁻⁵ @ [PLB 764 (2017) 233] Updated with full statistic BR(η → π⁺π⁻) < 5.8x10⁻⁶ @ Analysis with KLOE-2 data UL expected to reach 2.7x 	 Best UL set by KLOE with 350 pb-1 BR(η → π⁺π⁻) < 1.3x10⁻⁵ @ 90% CL [PLB 606 (2005) 276] Recent limit from LHCb with 3.3 fb-1 BR(η → π⁺π⁻) < 1.6x10⁻⁵ @ 90% CL [PLB 764 (2017) 233] Updated with full statistics L = 1.6 fb-1 BR(η → π⁺π⁻) < 5.8x10⁻⁶ @ 90% CL Analysis with KLOE-2 data ongoing UL expected to reach 2.7x10⁻⁶ @ 90% CL 			
Measurement of K _s → πμν Branching Ratio First measurement ever Vus & Lepton Universality 2.5% stat and O(3%) syst 	Finalizing systematics test w KSe3	1400 1400 1400 1400 1400 1200 1000 Preliminary 000 000 000 000 000 000 000 0	MC_pipi_fitted MC_ksmu3_fitted MC_ksmu3_fitted MC_others_fitted	
09-07-2019	LNF - CL preventivi 2020 – CSN	11	29	

Gruppo 1 LNF, richieste nel 2020

Preventivi di spesa preliminari (Keuro) (possibili aggiustamenti al ~10%):

Sigla	Ric ⁻	Tec	FTE	<fte></fte>	MISS	CON	APP	ALTRO) CAP
KLOE-2	16	3	9.2	0.5	19.5	95.	5	26	MAN

D. Babusci, C. Bloise, F. Bossi, G. Capon, F. Curciarello, P.Ciambrone, E. De Lucia, A. De Santis, P. De Simone, A. Di Cicco, D. Domenici, S. Giovannella, X. Kang, M.Martini, S.Miscetti, D. Moricciani, E.Perez-DelRio, P. Santangelo, F. Sirghi and F. Fortugno, F. Sborzacchi

LHCb Cumulative Integrated Recorded Luminosity in pp, 2010-2018

Fantastic 2018 data harvest. Total 9/fb collected by LHCb in Run 1 + Run 2

1

LHCb: broad physics program

- <u>CKM mechanism and CP Violation</u>: γ , sin2 β , ϕ_s , amplitude and mixing in B,D decays,...
- <u>Rare decays</u>: $B^{0}_{s,d} \rightarrow \mu\mu, b \rightarrow sll, ...$
- <u>SL decays</u>: $B \rightarrow D\tau \nu / B \rightarrow D\mu \nu$,
- <u>Spectroscopy</u>: Xi^{++}_{cc} , tetraquark, pentaquark,...
- <u>EW, QCD, direct searches</u>: Z⁰, W[±], top, dark-photons, Long Lived Particles...
- Heavy ion, fixed target: astroparticle measurements and hadronic effects in pA, AA

Most of the results from Run 1 data only. Full Run 1 + 2 data results coming soon

- Barbara Sciascia - LNF preventivi 2020 - 9 July 2019 -

Ongoing data analyses (Frascati)

$B_{(s)}\mu\mu$ full Run 1 + Run 2:

[Fabio De Vellis (laureando), Palutan, Rotondo, Santimaria, Sarti, Sciascia] - pubblicato [PRL 118, 191801 (2017)] con i dati di Run 1 + 1.6/fb di Run 2; prima osservazione (7.8 σ) di singolo exp. per il B_s. Ripetere per full Run 1 + Run 2

Misura del rapporto $R(D_s) = B_s \rightarrow D_s \mu \nu / B_s \rightarrow D_s \tau \nu$; $B \rightarrow D$ form factors:

[Calì (PhD), de Simone, Klaver, Rotondo, Gianluigi Salerno (laureando)]

- the analogous R(D) e R(D*) show deviation (~4 σ) from SN.
- Form factors analysis: under collaboration review; expected for Beauty2019
- Specific study to seize impact of New Physics models on form factors measurements

Misura della polarizzazione della Λ_0 [on going]:

[Calero Diaz (PhD), Di Nezza, Liuti]

- importante per determinare la struttura di spin dei nucleoni

Misura del rapporto
$$\Lambda_{\rm b} \rightarrow \Lambda_0 ee/\Lambda_{\rm b} \rightarrow \Lambda_0 \mu\mu$$
 e ricerca del decadimento $\Lambda_{\rm b} \rightarrow \Lambda_0 e\mu$:

[Jacopo Cerasoli (laureando), Santimaria, Sciascia]

- LFU test
- Publication expected for 2020 Winter conferences

- Barbara Sciascia - LNF preventivi 2020 - 9 July 2019 -

only Frascati

LHCb: towards Run 3

Dismantling of all "old" detectors completed - big contribution from Frascati for M1 (Arpaia, Capitolo, Santimaria, Saputi, Zossi)

Installation of the new ones ongoing full steam

90% of detector channels and 100% of read-out channels will be replaced. New DAQ system and data centre

RIA LHCb Real Time Analysis Project

New project born in 2019 to coordinate software trigger and online reconstruction High Frascati involvement: muon decoding (de Simone, Palutan), muon identification (de Simone, Kazeev (PhD), Palutan, Santimaria), monitoring (Sciascia), data challenges (Klaver), SMOG2 reconstruction and luminosity (Di Nezza)

- Barbara Sciascia - LNF preventivi 2020 - 9 July 2019 -

LHCb: towards Run 3

System for MOnitoring Gas (SMOG) 2 (Di Nezza):

- Thanks to SMOG system, LHCb can run in fixed-target mode.

- beam-beam and beam-target data collected <u>in parallel</u>: successfully tested and used since 2017

New system (will be installed in November 2019)

- TDR ready since April 2019
- Excellent collaboration with LHC groups/experts
- order 10-100 increase of the useful target density for the same gas flow to the LHC than SMOG
- Injection of H_2 , D_2 , He, ... all noble gasses up to Xe
- More precise target density (major systematic error so far)

- Barbara Sciascia - LNF preventivi 2020 - 9 July 2019 -

Ricercatori [12.35 FTE, tbc]:

- 1) Gianni Bencivenni: 50 % 1 Ric.
- 2) Liliet Calero Diaz: 100 % PhD (Sapienza)
- 3) Stefano Calì: 100 % PhD (Tor Vergata)
- 4) Pierluigi Campana: 50 % Dir. Ric.
- 5) Patrizia de Simone: 90 % 1 Ric.
- 6) Pasquale di Nezza: 85 % 1 Ric.
- 7) Nikita Kazeev: 100 % PhD (Sapienza)
- 8) Suzanne Klaver: 100 % PosDoc straniero
- 9) Gaia Lanfranchi: 60 % 1 Ric.
- 10) Simonetta Liuti: 50 % Ric. Straniero Associato (Virginia University, US)
- 11) Gianfranco Morello: 70% Ric. TD
- 12) Matteo Palutan: 100 % 1 Ric.
- 13) Marcello Rotondo: 80 % Ric.
- 14) Marco Santimaria: 100 % AdR
- 15) Barbara Sciascia: 90 % Ric
- 16) Adalberto Sciubba: 10 % Prof. Associato (Sapienza)

Tecnologi [2.0 FTE]:

- 1) Pietro Albicocco: 30 % AdR
- 2) Paolo Ciambrone: 70 % 1 Tecnologo
- 3) Giulietto Felici: 20 % Dir Tecnologo
- 4) Marco Poli Lener: 60 % Tecnologo
- 5) Paolo Santangelo: 20 % 1 Tecnologo

Ruoli di coordinamento attivi:

- P. de Simone: Muon Software Coordinator [01/2017 01/2020]
- P. Di Nezza: Luminosity Coordinator [01/2019 03/2021]
- P. Di Nezza: SMOG2 Project Leader [04/2019 03/2021]
- S. Klaver: Convener of CPV, mixing and production SL subWG [01/2018 03/2020]
- S. Klaver: Convener of Data Challenger for Run 3 [03/2019 03/2021]
- M. Palutan: Responsabile nazionale [07/2018 06/2021]
- M. Rotondo: Editorial Board member [07/2018 06/2020]
- M. Santimaria: Convener of Very Rare Decays subWG [06/2019 06/2021]

Per tutto Run 2, ampia partecipazione ai "turni centrali" (sala controllo, piquet, run chief)

Gruppo 1 LNF, LHCb, richieste nel 2020

Sigla	Ric	Tec	FTE	<fte></fte>	MISS	CON	APP	ALTRO CAP
LHCb	16	5	14.35	0.68	146	31.5	-	75

Missioni: tot 146.44 kE Estere: FTE*2MU*3.7kE = 106.2 kE Interne: FTE*1kE = 14.35 kE Responsabilità: 3MU*3.7kE [SMOG2 PL]+4*1MU*3.7kE[CPV + VRD + Muon soft. + Lumi] = 25.9 kE

<u>Consumo</u>: Metabolismo: FTE*1.5 kE = 21.5 kE SMOG2, costruzione gas feed system: 10 kE

Altri servizi diversi: tot 75 kE MoF-B LHCb MUON (70% of 120 CHF, 1.11 CHF/EUR) 75 kE

- Barbara Sciascia - LNF preventivi 2020 - June 2019 -

NA62 — Flagship: $K \rightarrow \pi \nu \nu$ decays

NA62

NA62: Photon Veto System LNF

Photon Veto

- LKr: NA48 LKr Calorimeter ($1 < \theta\gamma < 8.5 \text{ mrad}$) also for PID. $\sigma_t \sim 500 \text{ ps}$ (E > 3 GeV), $\sigma_t \sim 1 \text{ ns}$ (hadronic and MIP clusters), $\sigma_{dx,dy} \sim 1 \text{ mm}$
- LAV: Large Angle Veto. 12 stations (8.5 < $\theta\gamma$ <50 mrad). 4 or 5 rings of lead glass crystals read out by PMTs. $\sigma_t \sim 1 \text{ ns}$, 10⁻³ to 10⁻⁵ inefficiency (down to 150 MeV).
- **IRC/SAC:** Inner Ring Calorimeter and Small Angle Calorimeter ($\theta\gamma$ <1 mrad). Shashlik calorimeters. Lead and plastic scintillator plates. σ_t < 1 ns, 10⁻⁴ inefficiency.

NA62

The expected rejection is obtained with an estimate based on single-photon efficiencies

Fraction of surviving $K^+ \rightarrow \pi^+\pi^0$ (15 – 35 GeV momentum range) : ~2.5 \cdot 10⁻⁸

16

NA62 result for $K \longrightarrow \pi \nu \nu$ 1.21 × 10¹¹ K ⁺ decays in 2016 - 2% of collected data

$$BR(K^+ \to \pi^+ \nu \bar{\nu}) < 14 \times 10^{-10} @95\% CL$$

 $BR(K^+ \to \pi^+ \nu \bar{\nu})_{SM} = (0.84 \pm 0.10) \times 10^{-10}$ $BR(K^+ \to \pi^+ \nu \bar{\nu})_{exp} = (1.73^{+1.15}_{-1.05}) \times 10^{-10}$

BNL E949/E787 Kaon Decay at Rest

- Present result is from cut based analysis
- Full probability based analysis is under development

Search for $\pi^0 \rightarrow \gamma A'$, $A' \rightarrow invisible$

arXiv:1903.08767 (JHEP)

The analysis has been performed with a fraction of 2016 data, equivalent to ≈ 1% of the total kaon flux collected by NA62 through 2018.

 Search for excess of events in missing mass spectrum:

$$\mathbf{M}_{\mathrm{miss}}^{2} = (\mathbf{P}_{\mathrm{K}} - \mathbf{P}_{\pi} - \mathbf{P}_{\gamma})^{2}$$

No significant statistical excess has been identified and upper limits on the coupling strength ε^2 in the mass range 30–130 MeV/c² have been set, improving on the previous limits over the mass range **60– 110 MeV/c²**

 Limit improved by more than three orders of magnitude:

BR($\pi^0 \rightarrow \gamma \nu \nu$) < 1.9 × 10⁻⁷ at 90% CL

• Improvement on BR($\pi^0 \rightarrow$ invisible) over current limit of 2.7×10⁻⁷ is also possible

LNF responsibilities in NA62

Large Angle (LAV) and Small Angle (SAV) photon veto detectors

- Coordination of the photon veto system (fully constructed at LNF, calibrated and commissioned by Frascati group)
- Data quality monitoring and performance evaluation
- MC and Reconstruction framework upgrades
- Analysis of 2016 data and measurement of photon veto efficiency and random veto
- Experts support during data taking

L1 Trigger streams

- Development and optimization of algorithms; performance monitoring
- Experts support during data taking

Run coordination

Coordination of hidden sector analysis

Feasibility studies for the experimental program after the end of LHC Run 2

PHYSICISTS: Antonella Antonelli, Gaia Lanfranchi, Gianpaolo Mannocchi, Silvia Martellotti, Matteo Martini, Elisa Minucci, Matthew Moulson, Tommaso Spadaro. Associates: Georgi Georgiev, Venelin Kozhuharov (Sofia). TECHNICIANS: Rosario Lenci, Vincenzo Russo, Sauro Valeri, Tania Vassilieva, Giovanni Corradi, Diego Tagnani, Cesidio Capoccia, Emilio Capitolo.

CSN1 LNF*: Richieste 2020 molto indicative

	Sigla	Ric	Тес	FTE	<fte></fte>	Μ	1ISS	CC	DN
	NA62	9	0	6.3	0.70	91.5	<mark>66</mark> +17.5	20	5.5
Anag:	rafica:		1008						
Caia	Tanfranchi		1003 209						
Gala	ia Martollot	+ i	100%						
Matt	o Martini		308						
Elis			100%						
Mattl	hew Moulson		100%						
Tomm	aso Spadaro		80%						
Asso	ciates: Sofi	а							
Geor	qi Georgiev		50%						
Vene	lin Kozhuhar	ov	50%						
TOTA	LE		5.3	+ 1.0	FTE				

Goal: BR to 10% from **NA62** by end of Run 3

Measurement of BR(Re 34 oft VV) oft JFARCe feesents of Sector by 20 K EVER

New physics affects K^+ and K_L differently

Measurements of both can discriminate among NP scenarios

K_LEVER target sensitivity 5 years starting Run 4 (2026) 60 SM $K_L \rightarrow \pi^0 vv$ events S/B ~ 1 δ BR($K_L \rightarrow \pi^0 vv$) ~ 20%

400-GeV SPS proton beam incident on Be target at z = 0 m

Status and timeline

KLEVER is a subproject of NA62 to help define the future program in kaon physics at the SPS

Project timeline – target dates:

2018-2019 Project consolidation

- Participation in Physics Beyond Colliders
- Beam test of crystal pair enhancement
- Input to European Strategy for Particle Physics
- Expression of Interest to CERN SPSC in preparation
- 2019-2021 Detector R&D
- 2021-2025 Detector construction
 - Possible K12 beam test if compatible with NA62
- **2024-2026** Installation during LS3
- **2026-** Data taking beginning Run 4

Most groups participating in NA62 have expressed interest in KLEVER We are actively seeking new collaborators

Activity at Frascati in 2018-2019

Current Frascati responsibilities (NA62 group):

- Overall project coordination: M. Moulson
- Monte Carlo development and sensitivity estimation
- Conceptual design of Active Final Collimator
- Study of coherent interactions of tagged photons in high-Z metal crystals

Enhancement in charged particle production vs. photon energy

Exploitation of coherent interactions for KLEVER:

- **1. Beam photon converter in dump collimator** Effective at converting beam γ s while relatively transparent to K_L
- 2. Absorber material for small-angle calorimeter (SAC) Must be insensitive as possible to high flux of beam neutrons while efficiently vetoing high-energy γ s from K_L decays

Planned future activity at Frascati

Photon efficiency measurements at BTF-2 will be key to KLEVER R&D

- Precision measurements of detection efficiency with single electrons
- Development of techniques for efficiency measurements with tagged photons

Beam test of shashlyk calorimeter with spy tiles (MEC)

Fine-sampling: 0.275 mm Pb + 1.5 mm scintillator Spy tiles measure longitudinal shower development:

- Identification of μ , π , n interactions
- Improved time resolution for EM showers

Development of ultra-fast calorimeter to intercept beam exit (SAC)

Synergy with PADME SAC upgrade for future running with continuous beam Desired characteristics:

- > 100 MHz sustained rates
- $\sigma_t < 100 \text{ ps}$; 2-pulse separation at ~ 1 ns
- Good radiation resistance

Could use PbF_2 , but validation required for use at continuous high rates and high radiation doses

PADME LNF

- Attività 2018
- Anagrafica
- Richieste finanziarie

The Complete Setup

Active target Lecce & University Salento

49

Veto scintillators (University of Sofia, Roma)

Dipole magnet (CERN TE/NSC-MNC)

C-fiber window

BGO calorimeter /(616 L3 endcap crystals: Roma, Cornell U., LNF, LE)

PbF₂ calorimeter (MTA Atomki, Cornell U., LNF)

Data Taking Run I

First PADME data taking took place from Nov. 2018 to Feb. 2019. Positron energy ~ 490 MeV

Online Monitor

All detectors were up and running

Anagrafica

Rispetto al 2019 la partecipazione rimane sostanzialmente invariata.

Nome	Percentuale
F. Bossi	50
B. Buonomo	20
R. De Sangro	20
D. Domenici	40
G. Finocchiaro	20
L. Foggetta	20
G. Georgiev	50
A. Ghigo	10
F. Giacchino	50
P. Gianotti	30
V. Kozhuharov	50
B. Liberti	20
M. Martini	20
I. Sarra	10
B. Sciascia	10
T. Spadaro	20
E. Spiriti	10
C. Taruggi	100
E. Vilucchi	10
тот.	5.6 FTE
Paola Gianotti	01/07/19
	000000000000000000000000000000000000000

Richieste finanziarie

			Mis	sioni		Consu	umo			Appar	ati	Inve	entar	io	
	LNF		10K(2K x 5FTE)		10K Metabolismo 10K PADME operation		24K Tape 84K CPU (Reco,MC) 20K Disk)						
		I							1						
Si	gla	Ric	Тес	FTE	<fte></fte>	MIS	S	CON		APP			I	NV	
PAD	ЧE	14	5	5.6	0.3	10		20						1	24 04

53

01/07/19

Calcolo Scientifico ai LNF nel Tier2 di Frascati

- Esperimenti con risorse pledged:
 - ATLAS, PADME
 - 2019: ~ 2PB disco, ~42 kHS06, ~4300 core,
 - ~20 disk server, ~20 macchine per servizi
- Altri esperimenti:
 - risorse opportunistiche del Tier2 e/o User Interface per accesso alla Grid e per uso interattivo:
 - ✓ Km3.net, Belle-II, LHCb, Muon Collider
- Altri progetti:
 - **PON IBISCO** (6/2019-2/2022): esperimento **CTA**
 - ✓ ~1PB disco netto, ~24 nodi di calcolo (~1300 core, ~20kHS06)
 - ✓ 10 server per servizi, core-switch con connessioni fino a 100Gbps
 - Partecipanti: INFN (Napoli, Bari, Catania), Università (Bari, Napoli), CNR, INAF, INGV
 - IDDLS: Italian Distributed Data Lake for Science
 - ✓ Partecipanti: GARR, INFN (CNAF, Bari, LNL, Napoli, Roma1, Pisa, Perugia)

MU2E status

- CLFV: conversione di un muone in e- su targhetta di Al @ BR ~ 6x10⁻¹⁷
- CD3 June 2016 , costo DOE 274 M\$
- Costruzione Civile completata. Acquisto cavi superconduttori completato.
- Costruzione magneti DS,PS e TS in corso. TS @ ASG (Genova)
- CSN1 ha approvato envelope finanziario Calorimetro a giugno 2015. (2.9 Meuro) Statement of Work tra Mu2e ed INFN firmato Novembre 2016.
- ◆ Produzione e test cristalli iniziata Feb 2018 → 1134/1450 shipped and tested
- Produzione e test SiPM Hamamatsu completata
- CRR per il calorimetro completata Maggio 2019 Completate Gare costruzione componenti
- Module-0 completato e testato con elettroni e sotto vuoto
- Mockup ad LNF, costruzione al FNAL
- □ INFN/GE Follow up per la costruzione del TS a ASG Genova + test cavi superconduttori
- INFN LNF/PI/LE responsabilita' calo elettromagnetico con Caltech(USA), JINR (RUS)

LNF responsabilita' costruzione calorimetro elettromagnetico – S. Miscetti, L2 Manager

L3 Cristalli - S. Giovannella; L3 fotosensori – M.Martini; L3 Meccanica - F. Happacher

55

L3 FEE - G. Corradi; L3 assemblaggio – A.Saputi, I. Sarra

Mu2e group composition 2020

Ricercatori/Tecnologi LNF (6,5/9)

- C. Bloise (0,7) Dir.Ric
 F. Colao (Ass. Enea) (0,5)
 M. Cordelli (Ass. senior) (1)
 F. Fontana (0,5) (Ass.Marconi),
 S. Giovannella (0,7) Ric,
 F. Happacher (1,0) Ric, Res.Locale 2020
 M. Martini (0,3) (Ass.Marconi),
- S. Miscetti (0,8) Dir.Ric (Res.Nazionale)
- D. Rinaldi (Ass. Ancona) (1,0)

Non strutturati (5,7 FTE/6)

- I. Sarra (0,7) RTDA Ass. Marconi
- M. Ricci (1,0) Dott
- R. Donghia (1,0) AR
- E. Diociaiuti (1,0) Dott
- D. Pasciuto (1,0) Dott
- L. Montalto (Ass. Ancona) (1,0)

DR: G.Pileggi(0,2), A.Saputi(0,3), A.Mengucci(0,5), M.Ventura(0,5), E.Capitolo (0,2) **SEA (6 MU)** G.Corradi (0,5), S.Ceravolo(0,5), B.Ponzio(0,2) **SPCM:** 6 MU

Tot FTE (Ric+Tecnologi+PHD) => 12.5 / 15= 0,83

Calorimetro: Descrizione, attivita' 2019 + piani 2020

Attivita' 2019

- + Caratterizzazione cristalli e fotosensori prod
- + Irraggiamento con neutroni (FNG e PELBE-Dresda)
- + Irraggiamento con dose a Calliope
- + Misura MTTF sensori e pre-production FEE
- + Test cristalli, cavi e fibre (Outgassing) e test meccanici (SPCM)
- + produzione nuovi amplificatori SiPM (SEA)
- + Completamento analisi dati Module-0
- + Test Modulo-0 a bassa temperatura
- + produzione prototipo mezzanine board rad-hard
- + produzione prototipo board FEE rad-hard
- + studio sistemi LV, HV
- + studio cavi definitivi FEE-MB
- + distribuzione secondaria LASER system
- + Mockup meccanico
- + Integrazione Disegno nel Detector Solenoid
- + Completamento Construction Readiness Meccanica

PIANI 2020

- → Completare Produzione/QA cristalli
- \rightarrow Produzione e QA Cavi
- → Produzione e QA FFF + Mezzanine Board
- → Completamento sistema LASER
- \rightarrow Assemblaggio & cable routing
- → Costruzione parti Meccaniche
- → Assemblaggio e test dischi
 - → Cristalli
 - \rightarrow FEE
 - → Elettronica digitale
 - \rightarrow Cabling
 - → Calibrazione

Ruolo LNF : Management, Meccanica, Test Cristalli, Sensori, FEE, Laser system

- ◇ Piani: Completamento Montaggio dischi
- ◇ Obiettivi: Installazione in sala

- QA Cristalli, incartaggio 80%
- QA Sensori produzione completata
- Full size Mockup
- Sviluppo elettronica FEE e test dose
- Construction Readiness Review
 Meccanica Calorimetro Integrato Tender assegnati Disegni esecutivi

	SICCAS	St.Gobain	Total
Shipped	725/725	409/725	1134/1450
$\frac{2}{5}$ CMM + inspection	725	409	1134
Sent to Caltech	257	116	373
Out-of-specs	30	44+46	120
Irradiation at Caltech	9	3	12

Mechanics

Attivita' 2019

PMU2E: Richieste 2020

MI	Metabolismo	8,5 kE	
	Gettone RN	3 kE	18 KE
	Missioni Marconi-LNF	6,5	
	Responsabilita` Project Leader+5 L3	71,5 kE	
ME	Missioni QA + Assembly	46,5 kE	174,5 kE+
	Missioni per personale tecnico (SJ)	16,5+16,5 (sj)kE	38,5 kE (sj)
	2 MU tecnici per supporto tracker activities	11 (sj)	
	Supporto addizionale assemblaggio e installazione In sala (F. Happacher – A. Saputi)	5,5+5,5 (sj) kE	
Trasporti	Trasporto	5 kE	
Consumi	Metabolismi	16 kE	21 kE
C.A	Cooling Station (SJ)	100	
• • • •	Shock absorber Lifting Transport fixture	3	
	Cables Trays and supports	7+5=11	209 kE
	G10 supports and inserts	5	
	Dist Boards+Patch panels	10+8	
	Flex pipes and Unions for cooling lines	8+5	
	LV/HV feed throughs	20	
	Laser crate+sync	20+10	

R&D sui Futuri Acceleratori:RD_FA @LNF

Attività suddivisa in WP, a Frascati siamo coinvolti in :

- WP2: Machine Detector Interface (MDI) per Futuri Acceleratori
 - M. Boscolo (convener WP), O. Blanco, L. Pellegrino
- WP7: μ-RWELL R&D
 - G. Bencivenni, M. Bertani, E. De Lucia, D. Domenici, G. Felici, M. Poli Lener, G. Morello
- WP8: Muon Collider
 - M. Antonelli (convener WP), M. Biagini, M. Boscolo, O. Blanco, A. Ciarma, S. Guiducci,
 L. Pellegrino, M. Rotondo

6.2 FTE totali:

WP2	
Boscolo Manuela	70
Blanco Oscar	20
Pellegrino Luigi	10

WP7	
Bencivenni Giovanni	40
Bertani Monica	10
De Lucia Erika	20
Domenici Danilo	30
Felici Giulietto	20
Morello Gianfranco	30
Poli Lener Marco	30

WP8

Antonelli Mario	20
Biagini Maria Enrica	50
Blanco Oscar	80
Boscolo Manuela	30
Ciarma Andrea	100
Guiducci Susanna	30
Pellegrino Luigi	10
Rotondo Marcello	20

WP2: Machine Detector Interface FCC-ee

2018 was focused on completion of CDR

https://fcc-cdr.web.cern.ch/ - FCCEE

• Refining in 2019 many aspects of the design:

Our goal is to have a feasible and engineered design of the Interaction Region that meets optics, beam dynamics and high current requirements, foresees tolerable radiation and meets as well the mechanical requirements in terms of integration, stability, assembly.

• MDI reports given on many on-going studies at the FCC-WEEK19 in Brussels (June 2019):

- Overview of MDI issues toward the TDR (M. Boscolo)
- Mechanical design of the interaction region (E. Levichev)
- Final focus quadrupoles and solenoids (M. Koratzinos)
- Beam-beam blow-up issues (D. El Khechen)
- Impact of beam-beam effects on luminosity measurement (E. Perez)
- Synchrotron radiation background studies (M. Luckhof)
- Beam losses at IR (H. Burkhardt)
- Improvement of detector performance with smaller central IP beam pipe (E. Leogrande)
- HOM and heating with smaller central IP beam pipe (A. Novokhatski)
- <u>Synchrotron radiation with smaller central IP beam pipe (M. Sullivan)</u>
- Luminosity Measurement (Mogens Dam)
- M Boscolo et al, *Machine detector interface for the e+e- future circular collider*, 62th ICFA ABDW on high luminosity circular e+e- colliders, eeFACT18, Hong Kong (2019) <u>link</u>

WP2 FCC-ee: Machine Detector Interface

- Next steps (towards the TDR) will cover the following macro-areas:
 - 1. Beam physics (optics, beam dynamics, collective effects)
 - 2. Experimental environment & Luminosity measurement
 - 3. Simulation software
 - 4. Engineering (mechanical, magnets, diagnostics, vacuum, cooling, ...)
- Consolidate baseline of the MDI design for FCC-ee including now more mechanical details:
 - try to converge on a design of the IR with enough details to constitute a real engineering baseline
 - understand installation procedures, mechanical detector interfaces, detector and machine elements accessibility for maintenance/upgrades
 - mechanical stability and position precisions of some detector elements (i.e. Lumical) is a relevant element to consider in the design
 - define better the general strategy for services in and out of the detector
- Much work continues in order to complete a full simulation tool (MDIsim/GEANT) that allow us to have detailed background studies (Synch. Radiation)

WP2: MDI FCC-hh: Synchrotron Radiation in the Experiments

- This work was part of the Experimental Insertion Region (WP3) EuroCirCol design study ended on 31/05/19: M. Boscolo was leader of Task 3.3 dedicated to the study of the impact of synchrotron radiation emitted by protons on detector and machine components in the interaction region.
- Very successful design study, ended with <u>FCC-hh CDR</u>
- See also: CERN-ACC-2019-0018 <u>http://cds.cern.ch/record/2655283</u>
- Talk at FCC-WEEK19: M. Boscolo, SR backgrounds in the exp. insertion region of the FCC-hh
 - Outcome: the contribution of SR in the experimental area is found to be negligible, including last bends and final focus quads
- The fraction entering the TAS is ~47 W and ~13 W reach the Be chamber.
- The emitted photons are ~10¹⁰ but have a critical energy ~1keV, safely stopped by the Be pipe
- No full simulation into experiments is needed
- Also the non-collisions scheme, with a beam separation at the IP was studied and found to be at a safe limit at 100 W

Lattice v9	half crossing	Power (TAS)	Power(Be)	Νγ(Be)	Em(Be)
	angle	[W]	[W]	[10 ⁹]	[keV]
Nominal	yes, 100µrad	47	13	16	0.2

WP7: The µ-RWELL architecture

The µ-RWELL is a MPGD composed of only two elements:

- μ-RWELL_PCB
- drift/cathode PCB defining the gas gap

 μ -RWELL_PCB = amplification-stage \oplus resistive stage \oplus readout PCB

- The "WELL" acts as a multiplication channel for the ionization produced in the gas of the drift gap
- The charge induced on the resistive layer is spread with a time constant, $\tau \sim \rho \times C$

 $C = \varepsilon_0 \times \varepsilon_r \times \frac{s}{t} \cong 50 \ pF/m$ (pitch/width 0,4 mm)

Detector Layouts

Single resistive layer – LOW RATE

Double resistive layer – HIGH RATE

Single resistive layer with dense grid grounding – SIMPLIFIED HIGH RATE55

Detector performance

G. Bencivenni, RD_FA Preventivi July 2019

Stato Programma 2019 (I)

WP7.1.0 - Trasferimento Tecnologico (ELTOS+TECHTRA): in corso, ottimi risultati nella realizzazione dei prototipi small area (10x10 cm²). Entro luglio 2019 dovremmo, seppur con un ritardo consistente (problema INFN-CADENCE), realizzare in ELTOS I primi prototipi low rate, 330x330 mm².

Il lavoro proseguirà in autunno con la realizzazione dei primi prototipi high rate (tipo SG2++), realizzati con DLC+Cu prodotto in Cina (pto successivo)

WP7.1.1 - R&D on improved DLC+Cu sputtering (Common Project RD51): collaborazione con USTC di HEFEI (PRC) in corso, risultati ottimi. I primi rivelatori high rate tipo SG2++ costruiti e testati con successo ottenendo rate capability di 10 MHz/cm² con efficienza 97%. A luglio 2019 verrà consegnato un batch di fogli DLC+Cu sufficiente per la produzione dei primi 16-20 prototipi di high rate in ELTOS

WP7.2.1 - **Costruzione di u-RWELL 2D readout:** in consistente ritardo a causa del problema INFN-CADENCE. Puntiamo a disegnare il primo prototipo 2D entro l'autunno e completarne la costruzione entro fine 2019 (o almeno impegnare l'ordine)

Servizi 2^{ndo} semestre 2019

SEA (4,5 mu): priorità A2

- 1. Progettazione circuiti resistivi per rivelatori MPGD
- 2. Progettazione readout PCB 2D (XY) della micro-RWELL
- 3. Supporto nello sviluppo di micro-RWELL in collaborazione con ditte italiane e straniere (ELTOS/TECHTRA/CERN)
- 4. Assemblaggio board di lettura basata su VTX per rivelatori MPGD

Programma preliminare 2020

Il programma 2020 è focalizzato principalmente sulle seguenti attività:

minare

- 1. realizzazione presso ELTOS/CERN/TECHTRA (**Technology Transfer**) di medium/large size High rate RWELLs (300x250 ÷ 600x250 mm²)
- 2. progettazione, costruzione e caratterizzazione della RWELL cilindrica (CREMLIN2)
- 3. progettazione, costruzione e caratterizzazione delle RWELL per la rivelazione di neutroni termici (ATTRACT uRANIA)

Richieste preliminari di finanziamento CSN1 per il 2020 (essenzialmente pto 1):

1.1 -	Consumi per prototipi medium/large size	25 k€
1.2 -	Co-funding CP-RD51 (attività su DLC/DLC+Cu)	8 k€
1.3 –	Missioni contatti con Ditte/CERN per costruzione protos	5 k€
1.4 -	Missioni per TB prototipi	8 k€

RDFA - WP8: Muon Collider

lead-glass quartz (3 blocks) 86.86cm

34

Some new Refs. (may be incomplete)

data taking in 2021

- CERN EP seminar: M. Antonelli, Why and What MC, CERN, 2 July 2019
 - P. Raimondi, Studies for a Low EMittance Muon Accelerator, CERN, 2 July 2019
- Positron driven muon source for a muon collider, Lemma collab., arXiv:1905.05747 (2019)
- The future prospects of muon colliders and neutrino factories, M. Boscolo, JP. Delahaye and M. Palmer, <u>arXiv:</u> <u>1808.01858</u> (2018)
- ARIES Muon Collider workshop, Padova Luglio 2018
- IPAC19 contributed talk, M. Biagini et al., *Positron driven muon source for a muon collider: recent developments*, IPAC19 (2019)
- IPAC19 poster: O. Blanco et al. , Multi-target lattice for muon production from e+ beam annihilation on target
- Invited plenary talk: M. Boscolo, Low emittance muon collider scheme, NUFACT18 (2018)
- Invited talk: M. Boscolo, The muon collider, 1st ARIES annual workshop, Riga (2018)
- Invited talk: M. Boscolo, New concepts for high energy colliders , SIF2018
- At present : work to well define the possible R&D developments to propose to target 10 Luminosity.
Possible schemes for muon production under investigation: goal is to maximize luminosity

Initial design on ring-with-target is evolving to relax the requirement on the e+ source and maximize the muons/ bunch

Anagrafica RD_FA

Antonelli Mario	20	WP8		
Bencivenni Giovanni	40	WP7		
Bertani Monica	10	WP7		
Biagini Maria Enrica	50	WP8		
Blanco Oscar	80	WP8	20	WP2 INFN-GrantCSN5 for LEMMA
Boscolo Manuela	70	WP2	30	WP8
Ciarma Andrea	100	WP8	PhD acce	eleratori Sapienza per LEIVIIVIA, borsa INFN
De Lucia Erika	20	WP7		
Domenici Danilo	30	WP7		
Felici Giulietto	20	WP7		
Guiducci Susanna	30	WP8		
Morello Gianfranco	30	WP7		
Pellegrino Luigi	10	WP2	10	WP8
Poli Lener Marco	30	WP7		
Rotondo Marcello	20	WP8		

Gruppo 1 LNF, richieste 2020

The UA9 SPS experimental setup 2018

Frascati contribution with 6 Timepix installed in SPS

A new Timepix3 has been installed in June 2018 on Roman Pot 1 external side with new readout system

The UA9 SPS experimental setup 2018

1 Timepix

Frascati contribution with 6 Timepix installed in SPS

A new Timepix3 has been installed in June 2018 on Roman Pot 1 external side with new readout system

Double Channeling seen with Timepix in 2018 in SPS

10 minutes of crystal angular scan

UA9 summary

A. Variola and F. Murtas are organizing the new INFN contribution to UA9 collaboration for the next MoU.

Frascati is now involved in the Timepix based Beam Instrumentation in collaboration with Pilsen & Prague University, EN and BI division at CERN.

Some studies on new radiation tolerance sensor and readout devices are in progress.

Frascati will be involved in the improvement of Timepix firmware, data acquisition, offline analysis and radiation tolerance.

All these studies and constructions can be used in Dafne and BTF.

SHiP

LNF group: G. Bencivenni, M. Bertani, A. Calcaterra, P. Ciambrone, G. Felici, G. Lanfranchi, + aiuto esterno di Alessandro Paoloni per i test beams.

E il (preziosissimo) contributo di: F. Angeloni, A. Balla, G. Papalino, A. Saputi Un grazie particolare ai servizi: SEA (Paolo Ciambrone) e SPCM (Tommaso Napolitano)

10⁻¹²

10

SHiP and the European Strategy for Particle Physics

1. SHiP-related deliverables submitted to the European Strategy Update:

- Physics Beyond Colliders summary report arXiv: 1902.00260 ESPP submission #42
- Physics Beyond Colliders BSM WG Report arXiv: 1901.09966 (main Editor: G. Lanfranchi)
- The SHiP experiment at CERN ESPP submission #12 (including cost-estimate)
- The SPS Beam Dump facility (BDF) ESPP submission #129 (including cost-estimate) (TDR being submitted to the Strategy in these weeks.)

2. SHiP and Beam Dump Facility mentioned in the Summaries of 5 (out of 7) Physics Working groups in Granada:

- ✓ Neutrinos (Marco Zito & Stan Bentvelsen)
- ✓ Flavor (Antonio Zoccoli & Belen Gavela)
- ✓ Dark Matter and Dark Sector (Marcela Carena & Shoji Asai)
- ✓ EW measurements (Beate Heinemann & Keith Ellis)
- ✓ BSM @ colliders (Gian Giudice & Paris Sphicas)
- ✓ QCD (J. D'Hondt, K. Redlich)
- ✓ Accelerators (Caterina Biscari, Lenny Rivkin)

3. European Strategy Group Chair: Report to CERN Council, June 21st:

https://indico.cern.ch/event/824273/contributions/3447355/attachments/1866788/3070019/CC-Report-from-Granada.pdf

Strategy Update, three main topics mentioned (beyond the big collider):

- 1. Physics Beyond Colliders (SHiP, LDMX, NA64++, proton EDM ring, etc);
- 2. Nuclear Physics & QCD;
- 3. Neutrinos & Astro-particles (includes Gravitational Waves).

4. New CERN Medium-Term-Plan (MTP) (approved by CERN Council, June 20th):

\longrightarrow 70 MCHF to Physics Beyond Colliders in 2020-2029

(will be revised next year after the Strategy Outcome and new timescale of HL-LHC).

1. SHiP-related deliverables submitted to the European Strategy Update:

- Physics Beyond Colliders summary report arXiv: 1902.00260 ESPP submission #42
- Physics Beyond Colliders BSM WG Report arXiv: 1901.09966 (main Editor: G. Lanfranchi)
- The SHiP experiment at CERN ESPP submission #12 (including cost-estimate)
- The SPS Beam Dump facility (BDF) ESPP submission #129 (including cost-estimate) (TDR being submitted to the Strategy in these weeks.)

2. SHiP and Beam Dump Facility mentioned in the Summaries of 5 (out of 7) Physics Working groups in Granada

Next steps for SHiP:

- **December 2019:** SHiP Comprehensive Design Report to be submitted to the SPSC (with updated cost-estimates)
- January 2020: Outcome of the European Strategy.

3. European Strategy Group Chair: Report to CEKN Council, June 21st

https://indico.cern.ch/event/824273/contributions/3447355/attachments/1866788/3070019/CC-Report-from-Granada.pdf

Strategy Update, three main topics mentioned (beyond the big collider):

- 1. Physics Beyond Colliders (SHiP, LDMX, NA64++, proton EDM ring, etc);
- 2. Nuclear Physics & QCD;
- 3. Neutrinos & Astro-particles (includes Gravitational Waves).

4. New CERN Medium-Term-Plan (MTP) (approved by CERN Council, June 20th):

 \rightarrow 70 MCHF to Physics Beyond Colliders in 2020-2029

(will be revised next year after the Strategy Outcome and new timescale of HL-LHC).

Beam Dump Facility: TDR completed

SHiP line branching off in TDC2

Responsibilities:

Overall coordination: Mike Lamont WP1.Extraction and beam transfer (Brennan Gotplare) WP2.Target and target complex (Marco Calvari) WP3.Radiation protection (Heinz Vincke) WP4.Safety engineering (Fernando Pedrosa, Simon Marsh) WP5.Integration (Yvon Muttoni, Francisco Galan Sanchez) WP6. Civil engineering (John Osborne)

400 GeV proton beam up to $4x10^{19}$ pot/year $2x10^{20}$ pot/5 years

SHiP experimental hall

Test of the SHiP spill structure (extraction via bent crystals, UA9-like s-PAGE1 Current user: SFTPR01 5.02E+12 24-10-18 12:58:0

C 9 (30BP, 36.0s) FT: 0 ms Last update: 3 seconds age

Experimental Hall being defined in all details: service & gas buildings, surface hall, stairs, cranes, rails, storage areas, ...

SHiP-LNF in 2020

Composizione Gruppo prevista nel 2020 (percentuali in via di definizione):

G. Bencivenni (10 %), M. Bertani (10 %), A. Calcaterra (40 %), P. Ciambrone (10 %),

G. Felici (10 %), G. Lanfranchi (30-50 %),

Supporto tecnico previsto nel II semestre 2019 e nel 2020:

II - semestre 2019:

Richieste solo per i muoni:

- SPCM: 1.5 m.u. -
- SEA: servizio automazione, 2.0 m.u.;
- Tecnici Divisione Ricerca: A. Saputi (10%);

Necessario per:

- \rightarrow Test Beam alla BTF: 23-29 settembre.
- \rightarrow Internal Review del Muon System: 11 Ottobre;

Grosso sforzo per completare il Comprehensive Design Report entro Dicembre.

2020: Similar requests as in 2019 (sj Outcome of the European Strategy).

Gruppo 1 LNF, sommario richieste^(*) 2020

Sigla	Ric	Тес	FTE	<fte></fte>	M	ISS	cc	DN	4	\PP	ALTRO	D CAP
ATLAS	13	6	10	0.79	120		40		84		10	INV
BELLE2	6	1	3	0.47	58		4.5					
BESIII	3	2	2.5	0.50	100		15		0		0	
CMS	9		6.9	0.77	120		12.5					
KLOE-2	16	3	9.2	0.5	19.5		95.		5		26	MAN
LHCb	16	5	14.4	0.68	146		31.5		-		75	
NA62	9	0	6.3	0.70	91.5	<mark>66</mark> +17.5	20	5.5				
PADME	14	5	5.6	0.3	10		20				128	INV
PMU2E	15		12.5	0.83	193	38	16		109	100	5	TRA
RDFA	8	4	5	0,42	33		25				8	INV

Conclusioni (I)

Attività di CSN1 molto variegate:

- 2 esperimenti locali importanti
 - KLOE-2 ha terminato la presa dati nel 2018. Ora deve analizzare 5.5fb⁻¹ di dati. Risultati potenzialmente di estrema rilevanza.
 - PADME ha brillantemente iniziato la presa dati nel 2018, dimostrando che il rivelatore funziona a dovere. Ora deve analizzare i dati acquisiti. Buoni progressi nell'analisi (non mostrati oggi).
- NA62: "PNN" su dati 2017 attesi per KAON 2019, su dati 2018 per estate 2020 (F. Ambrosino @CSN1 08/07/2019).

Conclusioni (II)

- Iniziata la presa dati di Belle II a SuperKEKB. La strada verso l'altissima luminosità è ancora lunga (e perigliosa).
- Le attività di costruzione per gli upgrade di LHC (Atlas, CMS, LHCb) procedono a pieno ritmo.
- e anche di (P)MU2E.
- Nuove proposte
 - SHiP, RD_FA: attendiamo il verdetto dell'European
 Strategy
 - KLEVER: a quando la decisione se installare durante LS3?

Buon lavoro a tutti noi!

Backup slides

Riepilogo delle richieste e assegnazioni di servizi

ATLAS: richieste servizi II sem. 2019 e I sem. 2020

	Richieste II semestre 2019								
SEA	staff	3 mu	3 mu						
SPCM	completamento attrezzature NSW + taglio profilati	3 mu	3 mu						
SPAS	Assemblaggio camere e tools per siti nSW	9.6 mu	9,6 mu						
	Tecnici gruppo rivelatori	6 mu	6 mu						

	Richieste I semestre 2020								
SEA	staff	3 mu	3 mu						
SPCM	completamento attrezzature NSW + taglio profilati	3 mu	3 mu						
SPAS	Assemblaggio camere e tools per siti nSW	9.6 mu	9,6 mu						
	Tecnici gruppo rivelatori	6 mu	6 mu						

Belle II: richieste servizi I sem. 2020

	Richieste 2020	I Semestre	II Semestre
SSE	Tecnici gruppo esperti di elettronica	2 mu	2 mu

Utilizzo servizi II sem. 2019 gruppo KLOE

Personale tecnico

Computing (Fortugno 100% - Sborzacchi 50%)

Utilizzo servizi I sem. 2020 gruppo KLOE

Personale tecnico						
Computing (Fortugno 100% - Sborzacchi 50%)						

PADME: Richieste servizi II sem. 2019

	Richieste II semestre 2019			
	Prog.Elettronica	2 mu		
SEA	CAD	0.5 mu		
	Collaudo e produzione	1 mu	5 mu	
	Contingenza	1 mu		
SPCM	Progettazione/stampe 3D	0.5 mu	3.5 mu	
	Meccanica: supporti SAC	3 mu		
	Metrologia			
SEM	Progettazione camera da vuoto, tooling assemblaggio	6	бти	
SSE	Tecnici gruppo esperti di meccanica	6 mu	6 m11	
	Tecnici gruppo esperti di elettronica			
90	Report Coordinatore I - LNF		9/7/2019	

Richieste servizi PADME per il 2020

Richieste I e II semestre 2019							
SEA							
	Reparto carpenteria: tooling vari	0.5 mu					
SPCM	Reparto meccanica:		1 mu				
	Metrologia	0.5 mu					
SEM	Piccoli interventi per supporti meccanici	1 mu	1 mu				
SSE	Tecnici gruppo esperti di meccanica		1				
SSE	Tecnici gruppo esperti di elettronica		1 1110				

LHCBRichieste servizi LHCb per il 2019 e 2020

Richieste II semestre 2019								
	CAD	1.0 mu						
SEA	Contingenza	2.0 mu	11.5 mu					
	Staff	8.5 mu						
SPCM	Tecnici officina	0.5 mu	0.5 mu					
DR	Progettazione meccanica	2.0 mu	2.0 mu					
DR	Informatico	3.0 mu	3.0 mu					

Richieste I e II semestre 2020							
	Produzione e test ODE	TBD					
SEA	Sviluppo firmware e software ECS	12 mu	TBD				
	Supporto esperimento	TBD					
DR	Muon + SciFi	4 mu	4 mu				
DR	Informatico	6 mu	6 mu				

- Barbara Sciascia - LNF preventivi 2020 - June 2019 -

PREVISIONE

CONSUNTIVO

Priorità	PROGETTAZIONE	M.U.	mesi =	6	personale =	1	M.U. disponibili*= 5,0	M.U.	
-	GESTIONE UFF. TEC.	1						0	
4	ANET	0,75	progetto e stampa 3I) stru	ittura meccanica	per se	etti in carburo di boro	0	
4	ATLAS PP1 (ITK)	1	stampa 3D compone	nti po	er prototipo PP1	(ITK))	0	
2	BESIII	0,5	progetto e stampa 3I) con	nettori HV e par	ticola	ri vari (spare)	0	
4	CYGNO (LIME / MANGO)	0,25	costruzione particola	ari pe	r prototipo LIMI	E / M/	ANGO	0	
4	GENESIS (Ad. ERC CNRS)	0,75	progettazione spettro	ometr	o neutronico pul	sato		0	
2	PADME	0,25	stampa 3D compone	a 3D componenti per supporto telescopio					
2	SCF_LAB	0,5	stampa 3D compone	nti va	ari			0	
4	SHiP	0,75	progetto e stampa 3I) sup	porti tiles per tes	st con	raggi cosmici e BTF	0	
	PICCOLI LAVORI		piccole richieste di d	lisegr	ni/progetti/protot	ipaz.	non programmati (<15 ore-uomo)	0	
	totale M.U. =	5,75	impegno prog. =	115	%		impegno eff.= 0 %	0	
Priorita	à MECCANICA	M.U.	mesi =	6	personale =	4	M.U. disponibili*= 20,0	M.U.	
-	GESTIONE OFF.	2			1		•	0	
4	ANET	0,75	costruzione struttura	mec	canica per setti i	n carb	ouro di boro	0	
4	ATLAS NSW	3	completamento attre	zzatu	re NSW + taglic	o profi	lati	0	
4	ATLAS PP1 (ITK)	2	costruzione prototipo	o PP1	I (ITK)	-		0	
2	BESIII	2,5	lavorazione supporti	per o	cilindri L1 e L3 -	+ vari	e	0	
4	CYGNO (LIME / MANGO)	1	costruzione particola	ari pe	r prototipo LIMI	E / M/	ANGO	0	
4	GENESIS	0,75	costruzione spettrom	netro	neutronico pulsa	to		0	
4	LHCb	0,5	installazione del bea	m-pl	ug del Muon Sys	tem (CERN)	0	
3	MU2E	3	4 zampe con regolaz	ione	X-Y integrata si	mili a	i prototipi 2016	0	
2	PADME	1,25	sistema di calibrazio	ne pe	er calorimetro ele	ettrom	agentico + Supporto per Monitor	0	
4	RD_FA	1	realizzazione di n.1 '	"tend	i-GEM" (Micro-	-RWE	LL, active area 100x100 mm2)	0	
2	SCF_LAB	6	supp. MPAc x M100) + ca	alotte CORA-mic	cro/n4	/p7 + Anelli Kel-F MoonLIGHT75	0	
4	SHiP	0,75	costruzione supporti	tiles	per test con ragg	gi cosi	nici e BTF	0	
1	SIDDARTHA-2	3	supporti/frame mecc	anici	per shielding e l	lumin	ometro	0	
1	VIP2	0,5	piccoli aggiustament	ti setu	up (Veto e Shield	ling)		0	
	PICCOLI LAVORI		piccole richieste di la	avora	zioni meccanich	e non	programmate (<15 ore-uomo)	0	
	totale M.U. =	28,00	impegno prog. =	140	%		impegno eff.= 0 %	0	

* Ferie: 1,5/12 M.U. Malattia/Permessi: 0,25/12 M.U. Aggiornamento/Manutenzione: 0,25/12 M.U. Totale indisponibilità annuale: 2/12 M.U. fattore di disponibilità: 1 - (2/12) = 0,83

09-07-2019

LNF - CL preventivi 2020 - CSN1

SEA II sem 2019

ESPERIMENTO	Prog. Elettronica	CAD	Automazione	Staff	Contingenza	PRIORITA' CIF
ALICE		0,5	0,5		0,5	A1
ATLAS		3,5	2,5	2,0	8,0	A1
Belle 2		0,5	1,0		0,5	A2
BESHI		0,5	0,5		0,5	A1
CYGNUS-RD		3,0			1,0	A3
FOOT	3,0				1,5	A1
JUNO		1,0	0,5		0,5	A2
KAONNIS/SIDDHARTA-2					2,0	A3
LHCb		1,0		8,5	2,0	A1
MPGD_NEXT	3,0		0,5		1,5	A2
PADME		1,0				A3
PMU2E	1,5	1,0			4,0	A1
QUAX, SIMP (Laboratorio COLD)			0,5		0,5	A1
SCF_LAB		0,5			1,0	A2
Servizio FISMEL		0,5			1,5	A1
Servizio SiDS		1,0			0,5	A3
SHIP	0,5		0,5		0,5	A1
VIP2					0,5	A3
Attività LNF - Monitor fascio	0,5	0,5	0,5		0,5	A3
Attività LNF - sistema sicurezze			2,0		2,0	A2
Varie SEA	3,5	3,5	2,0	1,5	7,0	
contingenza		2,0	2,0			
Tot	21,0	2,0	13,0	12,0	36,0	

JU% JLADIZ

Impegni personale tecnic

NO

Meccanico 100% FOOT

100% FOOT

20% JLADIZ

30% BESIII

50% ALICE

20% CYGNO

	Nome	Competenza	Richieste II semestre 2019	Assegnazioni II semestre 2019		Nome	Competenza	Richieste II semestre 2019	Assegnazioni II semestre 2019
1	Baldini Roberto	Rivelatori			12	Pasquali Luigi	Rivelatori	Mobilità	
2	Capitolo Emilio	Rivelatori progettista meccanico	60% ATLAS 30% PADME 20% XLAB 20% Mu2e	60% ATLAS 20% PADME 10% XLAB 10% Mu2e	13	Passamonti Luciano	Rivelatori	50% ALICE 30% CYGNO 50% CMS	40% ALICE 20% CYGNO 40% CMS
2	Capoccia Cesidio	progettista meccanico	50% SIDDHARTA-VIP 100% MEGANTE	30% SIDDHARTA-VIP 50% MEGANTE	14	Pierluigi Daniele	Rivelatori	30% CYGNO 50% CMS	40% ALICE 20% CYGNO 40% CMS
3	Cerioni Stefano	progettista meccanico	50% BESIII 30% RWELL	50% BESIII	15	Pileggi Giuseppe	Meccanico	25% Mu2e 50% ATLAS 30% QUAX	20% Mu2e 50% ATLAS 30% QUAX
4 5	Fortugno Fabio	Informatico	100% KLOF	100% KLOF	10	Rosatelli Filippo	Progetista	50% ATLAS	50% ATLAS
6	Lobello Marco	Progettista meccanico	30% ATLAS ITK 25% PADME	30% ATLAS ITK 25% PADME 45% RWELL	10	Russo Alessandro	Rivelatori	50% ALICE 30% BELLE2 50% CMS	40% ALICE 20% BELLE2 40% CMS
7	Mengucci Alessandro	Rivelatori e meccanico	70% SIDDHARTA-VIP 50% Mu2e 50% JUNO	40% SIDDHARTA-VIP 30% Mu2e 30% JUNO		Saputi Alessandro	Progettista	30% LHCb 30% PADME 15% ATLAS	30% Shodharta-Vip 30% Raddrie 30% Atimas
8	Orecchini Dario	Progettista meccanico	60% ATLAS 50% JLAB12	50% ATLAS 50% JLAB12	18		meccanico	50% Mu2e 20%SHiP	30% Atulaes 30% Stläb 12
9	Orlandi Aldo	Rivelatori e meccanico	30% BESIII 50% ALICE 20% CYGNO	30% BESIII 50% ALICE 20% CYGNO	19	Sborzacchi Francesco	Informatico Rivelatori	50% KLOE 50% LHCb	50% BEGRI 50% AttRe
		progettista			20	Vassileva Tatiana	Rivelatori		
10	Paoletti Emiliano	Meccanico Rivelatori	100% FOOT 50% ALICE 70% BESIII	100% FOOT 40% ALICE	22	Ventura Maurizio	Rivelatori	50% SIDDHARTA 25% Mu2e 50% JUNO	25% SIDDHARTA 25% Mu2e 50% JUNO
11			50% ATLAS 50% CYGNO	40% BESIII 20% CYGNO			Rivelatori	50% ATLAS 50% CYGNO	40% BESIII 20% CYGNO
		Rivelatori	50% ALICE 30% CYGNO 50% CMS	40% ALICE 20% CYGNO 40% CMS			Rivelatori Rivelatori	Mobilità 50% ALICE 30% CYGNO 50% CMS	40% ALICE 20% CYGNO 40% CMS
		Rivelatori	30% ALICE 30% CYGNO 50% CMS 25% Mu2e	40% ALICE 20% CYGNO 40% CMS 20% Mu2e		0014	Rivelatori	50% ALICE 30% CYGNO 50% CMS	40% ALICE 20% CYGNO 40% CMS
09-07-2019		Meccanico	50% ATLAS	50% ATLAS			Mossaniso	25% Mu2e	20% Mu2e 95

LHCb: towards Run 3

Muon Read Out

(Albicocco, Balla, Carletti, Ciambrone, Gatta):

- New On Detector Electronics (nODE) boards + nSYNC chip
- New Control boards (nPDM and nSB)
- Installation and full commissioning at CERN
- Completely new Electronic Control System ECS

Muon System in the simulation (Palutan, Sarti)

- Improved description of Muon system in Monte Carlo
- Low background simulation (crucial for study background rejection at the Upgrade)

Muon beam plugs: (Palutan, Saputi) Installation of a significantly improved shielding in front on M2: ~60% bkg reduction in the hottest regions.

1.

Development for future detectors:

(Bencivenni, Felici, Matteo Giovannetti (laureando), Morello, Poli Lener)

- High rate muRwell
- working on technology transfer to industries

Copper 5 µm kapton DLC layer (<0.1 µm) p-10+100 MΩ/ Pre-preg Rigid PCB electrode

- Barbara Sciascia - LNF preventivi 2020 - 9 July 2019 -

HV issues: Resistance and Layout

Layout issues now solved by us (was identified by B. Ponzio already in 2012 RD51 technical note)

Problem with low resistivity circuits (some %)

Not able to increase with uniform sanding Form rui:

Our observations are similar to yours , sanding is not changing a lot the value. We have also performed test to change the value with the press , but this will not help for glued panels .

We have tried also Sulphuric acid etching , we can observe a factor of 2 increase in less than 20 sec, but this chemistry is really problematic for safety.

The only simple possibility I see is to increase the value by hiding a part , like you want to do.

Increase R by sanding

masi

NA62 Goal

Design criteria: kaon intensity, signal acceptance, background suppression

Kaons with high momentum. **Decay in flight technique**.

Signal signature: K^+ track + π^+ track

Backgrounds

Decay	BR	Main Rejection Tools
$K^+ o \mu^+ \nu_\mu(\gamma)$	63%	μ -ID + kinematics
$K^+ \to \pi^+ \pi^0(\gamma)$	21%	γ -veto + kinematics
$K^+ \to \pi^+ \pi^+ \pi^-$	6%	multi-track + kinematics
$K^+ \to \pi^+ \pi^0 \pi^0$	2%	γ -veto + kinematics
$K^+ \to \pi^0 e^+ \nu_e$	5%	$e\text{-ID} + \gamma\text{-veto}$
$K^+ \to \pi^0 \mu^+ \nu_\mu$	3%	μ -ID + γ -veto

Key features

- O(100 ps) Timing between sub-detectors
- O(10⁴) Background suppression from kinematics
- O(10⁷) μ -suppression (K⁺ \rightarrow μ ⁺ ν)
- O(10⁷) γ -suppression (from K⁺ $\rightarrow \pi^{+}\pi^{0}$, $\pi^{0}\rightarrow\gamma\gamma$)

Kinematic selection of signal regions

NA62 Timescale

2016: 40% of nominal intensity: 13 x 10¹¹ proton on target $\sim 1 \times 10^{11}$ K⁺ decays useful for $\pi v v$

2017: 60% of nominal intensity: 20×10^{11} proton on target > 3 x 10¹² K⁺ decays collected

In **2018** we had 217 days of data taking, with optimized data quality monitoring.

Conference talks

- 1. Matthew Moulson. GdR-InF Workshop: The Future of the Kaon Physics. Plenary, CERN
- 2. Matthew Moulson. First Forum on Rare Kaon Decays: KLEVER: An experiment to measure BR(KL -> p0 nu nu-bar) at the CERN SPS. Plenary, Edinburgh.
- 3. Silvia Martellotti. La Thuile 2018, Les Rencontres de Physique de la Vallée d'Aoste: K+ $\rightarrow \pi$ +vv decay and NP searches at NA62 Februa...
- 4. Spadaro Tommaso: La Thuile 2018, Les Rencontres de Physique de la Vallée d'Aoste Exotic Decays at NA62
- 5. Lanfranchi Gaia : ALPS 2018, Search for exotics decays with NA62.
- 6. Moulson Matthew: Exotic Hadrons and Flavor Physics Kaon experiments: Status and outlook Stony Brook University NY, US.
- 7. Moulson Matthew: ICHEP 2018 Searches for exotic particles at NA62
- 8. Antonelli Antonella LISHEP 2018 NA62 Ultra-rare decay, results and perspects

9. Moulson Matthew. KLEVER: An experiment to measure BR(KL -> p0 nu nu-bar) at the CERN SPS 10. Kozhuharov Venelin (M) NuPhys2018 Search for heavy neutrinos @ CERN SPS

NA62 potential for A' visible decays(PBC)

Expected sensitivity to dark photons di-lepton decays from the sole contribution of the Be-target: $A' \rightarrow e^+e^-$, $A' \rightarrow \mu^+\mu^-$ in NA62 fiducial volume

Expectation plot:

- account for acceptance/trigger/ selection efficiency
- assumption of complete background rejection
- Evaluate 90% CL exclusion plot

Sensitivity expected to be higher than shown:

- including direct QCD production of A'
- Including A' production in the collimator (here, only target)

Acquired in 2016-2018: ~ 10^{18} POT with $\mu\mu$ -parasitic trigger, ~5 10^{16} POT with *ee*-parasitic trigger

Background rejection has been proven with 4×10^{15} POT statistic for the $\mu^+\mu^-$ final state, polluted by background due to accidental pairing of two muons from the beam halo

NA62 potential for Axion Like Particles

Axion Like Particle (ALP) production via Primakoff effect[1] from interaction onto collimator, assuming a single ALP state "a", and the predominant coupling to photons ⇒ search can be performed only in **beam-dump** mode

Production mechanism

Protons interact with the target

itself

fiducial volume

ALPs with photon

coupling. Current

Analysis of 3x10¹⁶ POT collected in dump mode in 2016-2018 in progress (1 day of run in real^{assump}tion beam-dump mode :~ 1.3 10¹⁶ POT's, enough statistic to put a new upper limit).

Search for $\pi^0 \rightarrow \gamma A'$, $A' \rightarrow invisible$

arXiv:1903.08767 (JHEP)

The analysis has been performed with a fraction of 2016 data, equivalent to ≈ 1% of the total kaon flux collected by NA62 through 2018.

 Search for excess of events in missing mass spectrum:

$$\mathbf{M}_{\mathrm{miss}}^{2} = (\mathbf{P}_{\mathrm{K}} - \mathbf{P}_{\pi} - \mathbf{P}_{\gamma})^{2}$$

No significant statistical excess has been identified and upper limits on the coupling strength ε^2 in the mass range 30–130 MeV/c² have been set, improving on the previous limits over the mass range **60– 110 MeV/c²**

 Limit improved by more than three orders of magnitude:

BR($\pi^0 \rightarrow \gamma \nu \nu$) < 1.9 × 10⁻⁷ at 90% CL

• Improvement on BR($\pi^0 \rightarrow$ invisible) over current limit of 2.7×10⁻⁷ is also possible
$A_{K_L} \rightarrow \pi^0 vv$ experiment at the SPS

400-GeV SPS proton beam incident on Be target at z = 0 m

For 60 SM events, need:

5 × 10¹⁹ pot

e.g. 2×10^{13} ppp/16.8 s \times 5 yrs

 $\langle p_{\rm K} \rangle$ = 40 GeV

Photons from $K_L \rightarrow \pi^0 \pi^0$ boosted in energy for easier vetoing Higher energy than KOTO: Complementary approach

Main detector/veto systems:

UV/AFC Upstream veto/Active final collimator

- LAV1-25 Large-angle vetoes (25 stations)
 - **MEC** Main electromagnetic calorimeter
 - **SAC** Small-angle vetoes
 - **CPV** Charged particle veto
 - **PSD** Pre-shower detector

CSN1 LNF: Richieste 2018, assegnato e SJ 2019

Sigla	Ric	Тес	FTE	<fte></fte>	MISS			CON (^)			AP	P(#)		ALTRO CAP(*)	
LHCb	15	4	13.4	0.71	161	76	-	53	33	11	16 0	160	72	40	32

^ Consumo: 53 kE

- 11 kE [SJ]: SMOG2

Apparati: 160 kE

- 55 kE: Tell40 [PCIe40 per Muon System] 2nd tranche.
- 40 kE: Fibre ottiche per Muon System.
- 20 kE: Meccanica nODE boards
- 20 kE: Tell40 [PCIe40 per Muon System]: richiesta aggiuntiva per coprire l'anticipo fatto (luglio 2018) a Milano per istruire una gara necessaria per l'elettronica UT (ibridi)

* Altri servizi (MOFb LHCb muon): 72 kE

MOF-B Muon System: da CERN-RRB-2019-044, tabella 7, 120kCHF di cui l'Italia paga 70%, cioé 84 kCHF = 72 kE (for ~0.86 eur/CHF)

- Barbara Sciascia - LNF preventivi 2020 - June 2019 -

NA62 potential in exotic searches

PBC: arXiv:1901.09966.

A' $\rightarrow e^+e^-$, A' $\rightarrow \mu^+\mu^-$ visible decays Expected sensitivity to dark photons di-lepton decays in NA62 FV

In 2016-2018 acquired w/ parasitic trigger: ~ 10^{18} POT (µµ), ~5 10^{16} POT with (*ee*)

ALP to visible decays

Expected sensitivity to dark photons di-lepton decays in NA62 FV

Analysis of $3x10^{16}$ POT collected in dump mode in 2016-2018 in progress (1 day of run in real beam-dump mode :~ 1.3 10^{16} POT's, enough statistic to put a new upper limit).

[2]arXiv:1904.02091

CSN1 LNF*: Richieste 2018, assegnato e SJ '19

Sigla	Ric	Тес	FTE	<fte></fte>	MISS		CON		APP		INV	
PADME	14	6	5.2	0.3	10	10	20	13.5	25	0	100.5	<mark>70</mark> 11.5

TimepixQuad detector for test on beam extraction

Y vs X vs COUNTS

Without any object

on the beam

We have used two Timepix guads with 3x3 cm² active area as beam monitor near the crystals for studies on beam extraction

> The effect of crystal on the extracted beam is easily visible in few minutes of acquisition

F.Murtas, A. Natochi, W.Scandale

Y vs X vs COUNTS

Crystal + septum

Goal: build a large area (288 m²) muon detector with ~0(100-150) ps time resolution

Muon system: Module o & Readout Architecture

