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Heavy lon Double Charge Exchange

In heavy-ion DCE reactions two protons (neutrons) are converted into two

neutrons (protons) in the target, and two neutrons (protons) are converted

into two protons (neutrons) in the projectile, while the mass number of the
target, A, and of the projectile, a, both remain unchanged.

(2'Ne,?Ne)
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Double Charge Exchange Experiment

INFN Laboratori Nazionali del Sud — Catania

@ Canditates isotopes: *®Ca, %2Se, 1°°Mo, *2*Sn, 28Te, 3°Te, 13°Xe, *Nd, °°Nd,
154sm 160Gd 198Pt
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Heavy ion double charge exchange

The theory of the Heavy lons Double Charge Exchange has never been
developed before. J

© We provide a simple theoretical description of DCE processes,

@ We investigate the possibility of a factorization of the cross section
into a reaction part and nuclear matrix element part, at least within
some limits.

© Without the factorization proof, the experimentalists cannot extract
the nuclear matrix elements from the cross section.
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Heavy ion double charge exchange

The nucleon-nucleon charge-exchange effective potential we consider,
Vee(q) = Vore(q) + Vzr

is the sum of a long- and medium-range one-pion-exchange (OPE) part
and an effective zero-range (ZR) contact interaction. As from

Bertsch and H. Esbensen, Rep. Prog. Phys. 50, 607 (1987).

The latter, due to many body correlations, is written in coordinate space as
follows

Vzr(F) = [er(7i - ) + car(d1 - 32)(71 - 72)] 63(F)
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Heavy ion double charge exchange

The OPE and ZR interactions provide the expressions for the vertices which
we need in the computation of the following diagrams:

S S Double-pion-exchange interaction

Contact Term

/\ One-pion-exchange plus contact term
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We derived DCE effective potential that describes both long- and
short-range interactions,
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Low-momentum-transfer limit.
We can extract a simple and more compact form for the transition

amplitude
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in the eikonal approximation:

Tif:<w;?_/¢f"/‘w;¢i> (2 3/2 [ dR et TR Mg (1)

Mig(m) = (®¢| VPCE |9;)
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Nuclear matrix elements for DCE

The transition amplitude within the low-momentum-transfer limit,
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We study the case of a target O;FT — O?,_T transitions,

DGT DGT DF DF
Mie(m)——2| [ PTap Zeorr ) ¢ ( Mrog Heoe
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Nuclear matrix elements for DCE

DCE-Double-Gamow-Teller (DGT) and DCE-Double-Fermi (DF) matrix
elements, respectively, for a given nuclear transition of the projectile/target
(A =P, T), defined as
(A)
o),

o),

A’ - -
/\/[quj;, = cqT <<D(J, )’ Z[U,, X Un/](O)T;T;/

n,n’

and
A/
MRE = er (00 i)
n,n’

where the sum is over the nucleons (n, n’) involved in the process.
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Nuclear matrix elements for 0v33-decay

The transition operator for Ov33-decay is divided into three contributions:

ov _ r(0v) (0v) (ov)

™ =T + Ter +T17,
where each contribution can be written in compact form as:
T, = Lo oo (—1)/1+ (—1)75,;
51,52 20j1j2 O-J]/__jéo--l ( ) ( ) 'j1J2

%\ J 1+ (=1)76;, G (jaipai )
X(”}l X ”}2)(” (W % ‘7j{2)(J)
The Gs({\,)sz(jl,jg,jll,jzf; J) are the two-body matrix elements of Ts(l)‘s)2

between two fermion states.
lachello Phys. Rev. C 91 (2015)
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Two body matrix element in 0v3j3

The general two-body matrix element for Ov30 in the closure approximation is given by
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Double Gamow Teller and Double Fermi

DCE-DGT and DCE-DF matrix elements MDCE calculated in the Microscopic IBM2

Table: Our calculated DCE-DGT (second column) and DCE-DF (third column)
matrix elements for the target are compared with the Ov538-DGT (fourth
column), Ov33-DF (fifth column) and Ovg33-total (sixth column) (with ga = 1).

The matrix elements are in fm~!.

Reaction MDI ’CE: My Mo;ﬂ[é MoJss Maosss
eCd — 1185y 0.20 0.05 0.21 —0.02 0.25
82G6e — 82Ky 0.28 0.08 0.31 —0.21 0.50
128Tg 5 128xe 0.27 0.07 0.28 —0.16 0.43
6Ge — "0Se 0.34 0.10 0.40 —0.25 0.63

With the value of the constants ct = 151 MeV fm3 and cgt = 217 MeV fm3 from G.F
Bertsch et al, Rep. Prog. Phys. 50 607 (1987). We can observe that the dominant
contribution is the Double Gamow-Teller.
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DCE in the low-momentum transfer limit

@ The cross-section in the eikonal approximation and low-momentum transfer limit is
given as follows

DGT DGT
MT—>T’ MP—>P’

d k
quz|[<§—>o] = & (s4m)" [2F(0)( EGT+E7(5T
MPE . mP 2
+ T_EI‘F/ﬁ»EFP_)P/)”

where
F(O) o= 27r/ dz/ db e ¥ pJo(kbsin6) e

with @ = (Qr, Q) in cylindrical coordinates, and |@;| ~ k sinf and F(6) is
evaluated in the sharp-cutoff limit.

@ The nuclear part of the differential cross-section is the sum of DGT and DF
amplitudes, which are both factorized in terms of target and projectile NMEs.

@ This will open the possibility of extracting neatly DGT and DF NMEs from DCE
experimental data at 6§ = 0°.
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Gamow Teller Linear Correlation

There is linear correlation between DGT nuclear matrix elements of DCX
and nuclear matrix elements of the DGT for Ov33-decay.

0vBB-DGT vs DCE-DGT
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Gamow Teller Linear Correlation

There is linear correlation between total nuclear matrix elements of
Ov33-decay and Double Gamow Teller in DCX.

0vBB vs DCE-DGT

18Cd-"1%sn M 12T 58X A °Ge-"°Se X *Se 5"Kr @

0.7 |- B

06 - ]
05} * _- ]
f”

04f Pl ]

MI)C\)/};p (fm'1)

0.3 -7 ]

-
0.2 f

I I I I I I I
0.20 0.22 0.24 0.26 0.28 0.30 0.32 0.34

Me&E (fm™")

Ruslan Magana (INFN-Genova ) TNPI2019 - Cortona 17 /20



Results for *°Ca(180, 8Ne)*0Ar

@ We computed the 40Ca(180, 18Ne)40Ar DCE cross-section at § = 0.

@ The results for 6 different from zero are preliminary. at § = 0 we obtain a value of
8.9ub/sr inside the experimental range, (8.0 - 10.5)ub/sr (Eur. Phys J.A (2015)
51 145).
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Conclusions and outlooks

@ We have presented the formalism for calculating the differential heavy-ion DCE
cross-sections in the eikonal approximation at very forward angles.

@ The DCE differential cross-section can be factorized into a nuclear part and a
reaction factor, where the latter is computed by means low momentum transfer.

@ The factorizing at very forward differential DCE-cross-section, and the existence of
a linear correlation between the DCE-DGT and Ov3 NMEs, opens the possibility
to place constraints on neutrinoless double-beta-decay NMEs in terms of the DCE
experimental data at § = 0°.
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Current progress

@ The nuclear reaction part can be improved by using a more general DWBA for
double charge exchange without eikonal approximation developed by
Colonna-Lenske.

@ Currently we are collaborating with them on transfer reactions and form factors.
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