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Density Functional Theory

* A successful approach in facing the problem of many interacting fermions is
based on Density Functional Theory (DFT)

 Hohenberg — Kohn theorems

— The basic variable for describing ground state properties is not the full many- p(r) = (¥|p(r)|¥)

body g.s. wave function |W¥), but the much simpler density p(r) _
Elp] = (¥|H|¥)

- The energy is a functional of the density E[p] and the exact g.s. density Pgs
minimizes E
Gy = D lo(r)] = E[p = pys]

* The exact energy functional is not known - approximated or phenomenological functionals

R. G. Parr and W. Yang, Density-functional theory of atoms and molecules



Nuclear Energy Density Functionals (EDF)

» A successful strategy in nuclear physics is based on building phenomenological EDF E[p]
 They depend on different types of density (humber, spin, isoscalar/isovector...)
* They include =10 free parameters fitted to experimental data

 Examples: Skyrme (local) and Gogny (finite range) interactions

e Limitations - no clear way for systematic improvement of the EDF

N. Schunck, Energy Density Functional Methods for Atomic Nuclei



Exploring a different strategy

Hohenberg-Kohn theorems establish a biunivocal correspondence between the ground state density p(7) and
effective single-particle potential U(1)

Direct problem Inverse problem

Given an expression for the energy E[p], Given the ground state density p(7),
determine the ground state density p(r) determine the potential U|[p]

Inverse

V (MeV)

e Direct



Kohn — Sham method

* K.-S. hypothesis: for every interacting system, 3 a system of independent
particles with the same g.s. density as the interacting one

e The problem can be restated in terms of single-particle orbitals {qu (r)} Eslp] = Tslp] + Flp]
SE : : 1
. ok 0 yields self-consistent Schrodinger egs.
J

hZ
[__VZ + —] ¢] r) = E]¢](r)

2m
p@) = ) |6y
J

2

- — aF[p] 9 o H .| = * ——h 2 :

Ulp] = 55 1S the effective Kohn-Sham potential Ts| 9] Z j dr ¢; (T)( oV > ¢;(r)
]

* The potential is unique given the g.s. density (and viceversa)



Assumptions

e We employ proton and neutron densities only. The KS potential is a function of only the spatial
coordinates: U[p]| = U(7).

* Assume spherical symmetry for simplicity - study doubly magic nuclei

SF[p]

* The method gives the KS potential U[p] = R

Outline of the calculations

* We have applied two methods (vLB and CV) to the solution of inverse Kohn-Sham (IKS) problem

* We have tested on Hartree-Fock and experimental densities for 4°Ca and 2%%Pb

G. Accorto et al., arxiv: 1908.03068 (2019)



Constrained Variational (CV) method

Minimize the kinetic energy functional T, [gbj(r)] where the orbitals ¢;(r) are subject to:
1. Orthonormality constraints Gij[gbj(r)] = [ dr ¢ (r)p;(r) = 6;;

2. Density constraint p(r) =p(r) vr « p(r): input density

» p(r): theoretical density

p() = X,|6;)|°

Introduce Lagrange multipliers €;; and U(r). The problem is equivalent
to the free minimization of the objective functional][{gbj}]:

* U(r) has the meaning of

J [¢] (r)] = Ts[¢ )i (7‘)] + f dr p(r) U(r) — Y€ jGi j[¢j (7')] single particle potential
9 [(e)]
5y (r)

D. S. Jensen and A. Wasserman, International Journal of Quantum Chemistry 118, e25425 (2018) 7



Constrained Variational (CV) method

Spherically symmetric systems - one dimensional problem in r, radial wave
functions u; (r)
Target density p(r)
The constrained minimization of T [uj (r)] is carried out numerically using the IPOPT l
library - u;(r)

L , , Eigenfunctions u;(r)
Convergence criteria = relative tolerance on constraints; tolerance on the value of

the objective function l

8] /8¢x = 0 - linear egs in the multipliers U(r) Vr and €;; Multipliers U(r) and €;;

No assumption on form of the potential is needed. The only input is the density p(7)



Reduced radial

Van Leeuwen - Baerends (vLB) method peredine on

/
g

h? d? R21(1+ 1
i+ 1) r) = egiu;(r)

KS equation in spherical symmetry: [——— + + U(r)] U;

2m, dr? 2mr?

orb

4777“2 Z it

1=0

Theoretical density (KS ansatz): p(r)

Manipulating these expressions we can write

1 e 2 d? )
= i Wi ——— — Ui Ju; +einu;
Ul(r) T2 () ZZ:% [n u (r)<2m 7 l)u +ein uz}

And then, defining the iterative procedure

1

Norb 2 2 (k)
(k) h? d k) o (2] PT)
T30 > [n (7’)( Ul) +eini(u; ) ] = ———=2UW(r)

U(k—l—l) _
(r) = — om dr? p(r)

R. van Leeuwen and E. J. Baerends, Phys. Rev. A 49, 2421 (1994)



Van Leeuwen - Baerends (vLB) method

We used a slightly different equation for the inverse algorithm, obtained by a
manipultation on the previous one':

p)(r) = p(r)
p(r)

UFED (1) = UR) (r) +

e Correct behaviour for the nuclear case (negative potentials)
 There is not dependence of the algorithm on a shift of the potential

The iterative procedure requires a convergence condition to stop. We chose

max|UFD (r) — UP ()| < a

r

with a < 5keV,

D. S. Jensen and A. Wasserman, International Journal of Quantum Chemistry 118, e25425 (2018)
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Van Leeuwen - Baerends (vLB) method

Iterative scheme:

Inverse problem:

THEORETICAL

DENSITY

The algorithm is strong
enough to be independent
from the starting potential

-

Direct problem:

(starting WSW

POTENTIAL

h2 d? N RAL(1+1)
2m, dr? 2mr?

+ U(r)] wi(r) = equs(r)
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Hartree-Fock densities

* Test the inversion methods on Hartree-Fock densities for 2°Pb and 4°Ca obtained
from SkX interactions.

*

* Skyrme interactions - very mild non-localities (Tn

~ 1) m”*: effective mass
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40Ca potential from HF density
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208ph potential from HF density
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Van Leeuwen - Baerends (vLB) method

Evolution of the vLB potential from a constant potential
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Van Leeuwen - Baerends (vLB) method

Evolution of the vLB potential from a constant potential
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Van Leeuwen - Baerends (vLB) method

Evolution of the vLB potential from a constant potential
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Van Leeuwen - Baerends (vLB) method

Evolution of the vLB potential from a constant potential
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Van Leeuwen - Baerends (vLB) method

Evolution of the vLB potential from a constant potential
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Van Leeuwen - Baerends (vLB) method

Evolution of the vLB potential from a constant potential
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Van Leeuwen - Baerends (vLB) method

Evolution of the vLB potential from a constant potential
20 &

U(r)(MeV)

—20

—40

—60

——vLB

10

\ 4

Ilteration: 1100

21



Van Leeuwen - Baerends (vLB) method

Evolution of the vLB potential from a constant potential
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Van Leeuwen - Baerends (vLB) method

Evolution of the vLB potential from a constant potential
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Van Leeuwen - Baerends (vLB) method

Evolution of the vLB potential from a constant potential
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Experimental densities

Apply the inversion methods to experimental densities parametrized as Sum of Gaussians (SOG)

. ) r—R; 2 r+R; 2
* Proton density (?°®Pb, 4°Ca) > deconvolution of Do ) = zAf’Wge ( e‘( Y ) + e‘( Y ) )
experimental charge density 7
pcharge(r) = fdr'f(T')Pp (r— T’)
* Neutron density (*°®Pb) - data from proton

scattering R;: center of i-th Gaussian
f: proton form factor

PROS CONS

Model independent parametrization

o The Gaussian behaviour is not realistic in
The nuclear surface density is well the tail of the distribution

reproduced

J. Zenihiro et al., Phys. Rev. C 82, 044611 (2010)
H. D. Vries, C. D. Jager, and C. D. Vries, Atomic Data and Nuclear Data Tables 36, 495 (1987) 25



40Ca potential from SOG density
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Left: SoG, vLB and CV proton
densities for #°Ca in linear (top) and
logarithmic scale (bottom)

Right: vLB and CV potentials from 4°Ca
proton SOG density (lower panel);
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208pp potential from SOG density
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Conclusions and further developments

* We have used two different methods (CV and vLB) for the solution of the Inverse Kohn-
Sham (IKS) problem in magic nuclei

— Using a known neutron or proton density p(7) as the only input, the effective single-particle
potential U(7) has been calculated

— The two methods are in good agreement with each other and have been benchmarked with
HF potentials

 This is a first step. Possible further steps are:

— Use systematically ab initio densities as input

— Find a way to introduce spin and gradient terms

28
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