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Density Functional Theory

• A successful approach in facing the problem of many interacting fermions is
based on Density Functional Theory (DFT) 

• Hohenberg – Kohn theorems

→ The basic variable for describing ground state properties is not the full many-
body g.s. wave function |Ψ⟩, but the much simpler density 𝜌 𝒓

→ The energy is a functional of the density 𝐸 𝜌 and the exact g.s. density 𝜌𝑔𝑠
minimizes E

𝐸𝑔𝑠 = min
𝜌(𝒓)

𝐸 𝜌 𝒓 = 𝐸[𝜌 = 𝜌𝑔𝑠]

𝜌 𝒓 = ⟨Ψ ො𝜌 𝒓 Ψ⟩

𝐸 𝜌 = Ψ ෡𝐻 Ψ

R. G. Parr and W. Yang, Density‐functional theory of atoms and molecules

• The exact energy functional is not known → approximated or phenomenological functionals
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N. Schunck, Energy Density Functional Methods for Atomic Nuclei

Nuclear Energy Density Functionals (EDF)

• A successful strategy in nuclear physics is based on building phenomenological EDF 𝐸 𝜌

• They depend on different types of density (number, spin, isoscalar/isovector…)

• They include ≈10 free parameters fitted to experimental data

• Examples: Skyrme (local) and Gogny (finite range) interactions

• Limitations → no clear way for systematic improvement of the EDF
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Exploring a different strategy

Direct problem

Given an expression for the energy 𝐸 𝜌 , 
determine the ground state density 𝜌 𝒓

Inverse problem

Given the ground state density ෥𝝆(𝒓), 
determine the potential 𝑈 𝜌

Inverse

Direct

Hohenberg-Kohn theorems establish a biunivocal correspondence between the ground state density 𝝆(𝒓) and 
effective single-particle potential 𝑼(𝒓)
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Kohn – Sham method

• K.-S. hypothesis: for every interacting system, ∃ a system of independent
particles with the same g.s. density as the interacting one

• The problem can be restated in terms of single-particle orbitals 𝜙𝑗(𝒓)

• The variational eq. 
𝛿𝐸

𝛿𝜙𝑗
∗ = 0 yields self-consistent Schrödinger eqs.

−
ℏ2

2𝑚
∇2 +

𝛿𝐹 𝜌

𝛿𝜌
𝜙𝑗 𝒓 = 𝜖𝑗𝜙𝑗 𝒓

𝜌 𝒓 =෍

𝑗

𝜙𝑗 𝒓
2

• 𝑈 𝜌 ≡
𝛿𝐹 𝜌

𝛿𝜌
is the effective Kohn-Sham potential

• The potential is unique given the g.s. density (and viceversa)

𝐸𝑠 𝜌 = 𝑇𝑠 𝜌 + 𝐹 𝜌

𝑇𝑠 𝜙𝑗 =෍

𝑗

න𝑑𝒓 𝜙𝑗
∗ 𝒓 −

ℏ2

2𝑚
∇2 𝜙𝑗(𝒓)
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Assumptions

• We employ proton and neutron densities only. The KS potential is a function of only the spatial
coordinates: 𝑈[𝜌] = 𝑈(𝒓).

• Assume spherical symmetry for simplicity → study doubly magic nuclei

• The method gives the KS potential 𝑈 𝜌 =
𝛿𝐹 𝜌

𝛿𝜌
.

• We have applied two methods (vLB and CV) to the solution of inverse Kohn-Sham (IKS) problem

• We have tested on Hartree-Fock and experimental densities for 40Ca and 208Pb

G. Accorto et al., arxiv: 1908.03068 (2019)

Outline of the calculations
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Minimize the kinetic energy functional 𝑇𝑠 𝜙𝑗 𝒓 where the orbitals 𝜙𝑗 𝒓 are subject to:

1. Orthonormality constraints 𝐺𝑖𝑗 𝜙𝑗 𝒓 ≡ ∫ 𝑑𝒓 𝜙𝑖
∗ 𝒓 𝜙𝑗 𝒓 = 𝛿𝑖𝑗

2. Density constraint 𝜌 𝒓 = ෤𝜌 𝒓 ∀𝒓

D. S. Jensen and A. Wasserman, International Journal of Quantum Chemistry 118, e25425 (2018)

𝐽 𝜙𝑗 𝒓 ≡ 𝑇𝑠 𝜙𝑗 𝒓 + ∫ 𝑑𝒓 𝜌 𝒓 𝑈 𝒓 − ∑𝜖𝑖𝑗𝐺𝑖𝑗 𝜙𝑗 𝒓

𝛿𝐽 𝜙𝑗

𝛿𝜙𝑘 𝒓
= 0

Introduce Lagrange multipliers 𝜖𝑖𝑗 and 𝑈 𝒓 . The problem is equivalent

to the free minimization of the objective functional 𝐽 𝜙𝑗 :

• 𝑈 𝒓 has the meaning of 
single particle potential

Constrained Variational (CV) method

• ෤𝜌 𝒓 : input density

• 𝜌 𝒓 : theoretical density

𝜌 𝒓 = ∑𝑗 𝜙𝑗 𝒓
2
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Constrained Variational (CV) method

• Spherically symmetric systems → one dimensional problem in r, radial wave
functions 𝑢𝑗(𝑟)

• The constrained minimization of 𝑇𝑠 𝑢𝑗(𝑟) is carried out numerically using the IPOPT

library → 𝑢𝑗 𝑟

• Convergence criteria → relative tolerance on constraints; tolerance on the value of 
the objective function

• Τ𝛿𝐽 𝛿𝜙𝑘 = 0 → linear eqs in the multipliers 𝑼 𝒓 ∀r  and 𝝐𝒊𝒋

• No assumption on form of the potential is needed. The only input is the density ෤𝜌 𝒓

Target density ෤𝜌 𝒓

Eigenfunctions 𝑢𝑗 𝑟

Multipliers 𝑈(𝑟) and 𝜖𝑖𝑗
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R. van Leeuwen and E. J. Baerends, Phys. Rev. A 49, 2421 (1994)

Van Leeuwen - Baerends (vLB) method

KS equation in spherical symmetry:

Theoretical density (KS ansatz):

Manipulating these expressions we can write

And then, defining the iterative procedure

Reduced radial
wave-function
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Van Leeuwen - Baerends (vLB) method

We used a slightly different equation for the inverse algorithm, obtained by a 
manipultation on the previous one†:

• Correct behaviour for the nuclear case (negative potentials)
• There is not dependence of the algorithm on a shift of the potential

The iterative procedure requires a convergence condition to stop. We chose

with                    .

D. S. Jensen and A. Wasserman, International Journal of Quantum Chemistry 118, e25425 (2018)
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Van Leeuwen - Baerends (vLB) method
Iterative scheme:

(starting WS+C)

POTENTIAL

EIGENFUNCTIONSTHEORETICAL 
DENSITY

Direct problem:

Inverse problem:

The algorithm is strong 
enough to be independent
from the starting potential
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• Test the inversion methods on Hartree-Fock densities for 208Pb and 40Ca obtained
from SkX interactions.

• Skyrme interactions → very mild non-localities (
𝑚∗

𝑚
≈ 1)

Neutrons Protons

Target densities (neutrons and 
protons) from HF, vLB and CV
calculations for 40Ca as a 
function of the radial coordinate

Upper panel: linear scale
Lower panel: logarithmic scale

𝜌 𝑟 =
1

4𝜋𝑟2
෍

𝑖=1

𝑁𝑜𝑟𝑏

𝑛𝑖𝑢𝑖
2(𝑟)

𝑛𝑖: 𝑜𝑐𝑐𝑢𝑝𝑎𝑡𝑖𝑜𝑛 𝑛𝑢𝑚𝑏𝑒𝑟
𝑢𝑖: 𝑟𝑎𝑑𝑖𝑎𝑙 𝑤𝑎𝑣𝑒 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

Hartree-Fock densities

𝒎∗: effective mass
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40Ca potential from HF density

Lower panel: vLB and CV potentials
from 40Ca density corresponding to 
SkX HF potential.

Upper panel: differences UvLB - UHF

and UCV - UHF

Neutrons Protons
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208Pb potential from HF density

Lower panel: vLB and CV potentials
from 208Pb density corresponding to 
SkX HF potential.

Upper panel: differences UvLB - UHF

and UCV - UHF

Neutrons Protons
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Van Leeuwen - Baerends (vLB) method
Evolution of the vLB potential from a constant potential Iteration: 0
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Van Leeuwen - Baerends (vLB) method

Iteration: 5Evolution of the vLB potential from a constant potential
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Van Leeuwen - Baerends (vLB) method

Iteration: 100Evolution of the vLB potential from a constant potential
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Van Leeuwen - Baerends (vLB) method

Iteration: 300Evolution of the vLB potential from a constant potential
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Van Leeuwen - Baerends (vLB) method

Iteration: 500Evolution of the vLB potential from a constant potential



20

Van Leeuwen - Baerends (vLB) method

Iteration: 800Evolution of the vLB potential from a constant potential
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Van Leeuwen - Baerends (vLB) method

Iteration: 1100Evolution of the vLB potential from a constant potential
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Van Leeuwen - Baerends (vLB) method

Iteration: 1500Evolution of the vLB potential from a constant potential
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Van Leeuwen - Baerends (vLB) method

Iteration: 2000Evolution of the vLB potential from a constant potential
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Van Leeuwen - Baerends (vLB) method

Iteration: 2500Evolution of the vLB potential from a constant potential
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Apply the inversion methods to experimental densities parametrized as Sum of Gaussians (SOG)

J. Zenihiro et al., Phys. Rev. C 82, 044611 (2010)
H. D. Vries, C. D. Jager, and C. D. Vries, Atomic Data and Nuclear Data Tables 36, 495 (1987)

Experimental densities

𝜌𝑐ℎ𝑎𝑟𝑔𝑒 𝑟 =෍

𝑖

𝐴𝑖
𝑐ℎ𝑎𝑟𝑔𝑒

𝑒
−

𝑟−𝑅𝑖
𝛾

2

+ 𝑒
−

𝑟+𝑅𝑖
𝛾

2

𝜌𝑐ℎ𝑎𝑟𝑔𝑒 𝒓 = ∫ 𝑑𝒓′𝑓 𝒓′ 𝜌𝑝(𝒓 − 𝒓′)

• Proton density (208Pb, 40Ca) →  deconvolution of 
experimental charge density

• Neutron density (208Pb) → data from proton
scattering 𝑅𝑖: center of i-th Gaussian

𝑓: proton form factor

PROS CONS

Model independent parametrization
The Gaussian behaviour is not realistic in 
the tail of the distributionThe nuclear surface density is well

reproduced
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40Ca potential from SOG density

Left:  SoG, vLB and CV proton
densities for 40Ca in linear (top) and 
logarithmic scale (bottom)

Right: vLB and CV potentials from 40Ca 
proton SOG density (lower panel); 
difference 𝑼𝑪𝑽 − 𝑼𝒗𝑳𝑩 (upper panel)

Shadowed: regions corresponding to r 
larger than the radius of the 
outermost (second outermost) 
Gaussian
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208Pb potential from SOG density

Lower panel: vLB and CV potentials
from SOG densities for 208Pb.

Upper panel: differences UvLB– UCV

Shadowed: regions corresponding to r 
larger than the radius of the outermost 
Gaussian

Neutrons Protons



28

Conclusions and further developments

• We have used two different methods (CV and vLB) for the solution of the Inverse Kohn-
Sham (IKS) problem in magic nuclei

→  Using a known neutron or proton density ෤𝜌 𝑟 as the only input, the effective single-particle
potential 𝑈(𝑟) has been calculated

→ The two methods are in good agreement with each other and have been benchmarked with 
HF potentials

• This is a first step. Possible further steps are:

→ Use systematically ab initio densities as input

→ Find a way to introduce spin and gradient terms
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