Equation of state of hadronic matter and application to merging of neutron stars

Domenico Logoteta

University of Pisa

TNPI2019 - XVII Conference on Theoretical Nuclear Physics in Italy

10 ottobre 2019

Many of the results I will show today from the collaboration with:

- Ignazio Bombaci (University of Pisa)
- Alejandro Kievsky (INFN Pisa)
- Isaac Vidaña (INFN Catania)
- Albino Perego (University of Trento)

- Bruno Giacomazzo (University of Milan)
- Andrea Endrizzi (University of Jena)
- Riccardo Ciolfi (INAF Padova)
- Wolfgang Kastaun (Max Planck Institute)

A (10) A (10) A (10)

- The nuclear many-body problem
- Interactions from ChEFT and nuclear matter calculations
- EOS for cold and hot nucleonic matter
- Hyperon-puzzle in neutron stars
- Application to neutron star merging

- System of A = N + Z + Y hadrons in a volume V
- Thermodynamical limit: $A \to +\infty$ and $V \to +\infty$ with $\frac{A}{V} = \rho = const$.
- Asymmetry between number of *N* and number of $Z \Rightarrow \beta = \frac{N-Z}{N+Z}$, strangeness fraction y = Y/A

Several ways for studying this system...

- Relativistic mean field (Hartree) ⇒ L (QFT) ⇒ Eulero-Lagrange equations solved in mean field approximation.
- Relativistic mean field (Hartree-Fock) ⇒ L (QFT) ⇒ Eulero-Lagrange equations solved in mean field approximation.
- Skyrme models \Rightarrow effective nuclear interaction
- Ab initio approaches ⇒ Brueckner-Hartree-Fock, Quantum-Monte-Carlo, Self-consistent Green function ⇒ start from microscopic potentials explicitly including many-body forces.

伺 ト イヨ ト イヨ ト・

Goldstone expansion up to three-hole-lines

$$H = \sum_{i=1}^{A} T_i + \sum_{i < j}^{A} V_{ij} = H_0 + H_1;$$

$$H_0 = \sum_{i=1}^{A} T_i + \sum_{i=1}^{A} U_i$$
 $H_1 = \sum_{i< j}^{A} V_{ij} - \sum_{i=1}^{A} U_i$

1st-order, 2nd-order and 3rd-order contributions:

Domenico Logoteta Equation of state of hadronic matter and application to merging of neutron star

Bethe-Goldstone expansion up to three-hole-lines

Ladder diagrams summation:

$$\stackrel{i}{\bigcirc} - - - - \bigcirc \stackrel{j}{\frown} + \stackrel{i}{\bigcirc} \stackrel{\overline{k}}{\overset{\overline{k}}{\frown}} \stackrel{\overline{l}}{\overset{\overline{l}}{\frown}} \stackrel{\overline{l}}{\overset{\overline{l}}{\frown}} \stackrel{j}{\overset{\overline{l}}{\downarrow}} + \stackrel{i}{\bigcirc} \stackrel{\overline{m}}{\overset{\overline{m}}{\frown}} \stackrel{\overline{n}}{\overset{\overline{l}}{\frown}} \stackrel{j}{\overset{\overline{l}}{\downarrow}} + \stackrel{i}{\overset{\overline{l}}{\overset{\overline{m}}{\frown}} \stackrel{\overline{m}}{\overset{\overline{l}}{\frown}} \stackrel{\overline{n}}{\overset{\overline{l}}{\downarrow}} \stackrel{j}{\overset{\overline{l}}{\downarrow}} + \dots = \stackrel{i}{\bigcirc} \stackrel{j}{\overset{\overline{l}}{\overset{\overline{l}}{\frown}} \stackrel{\overline{l}}{\overset{\overline{l}}{\downarrow}} \stackrel{j}{\overset{\overline{l}}{\overset{\overline{l}}{\frown}} \stackrel{j}{\overset{\overline{l}}{\overset{\overline{l}}{\downarrow}}} + \dots = \stackrel{j}{\overset{\overline{l}}{\overset{\overline{l}}{\overset{\overline{l}}{\downarrow}}} \stackrel{j}{\overset{\overline{l}}{\overset{\overline{l}}{\downarrow}} + \dots = \stackrel{j}{\overset{\overline{l}}{\overset{\overline{l}}{\overset{\overline{l}}{\downarrow}}} \stackrel{j}{\overset{\overline{l}}{\overset{\overline{l}}{\downarrow}}} + \dots = \stackrel{j}{\overset{\overline{l}}{\overset{\overline{l}}{\overset{\overline{l}}{\downarrow}}} + \dots = \stackrel{j}{\overset{\overline{l}}{\overset{\overline{l}}{\overset{\overline{l}}{\overset{\overline{l}}{\downarrow}}} + \dots = \stackrel{j}{\overset{\overline{l}}{\overset{\overline{l}}{\overset{\overline{l}}{\downarrow}}} + \dots = \stackrel{j}{\overset{\overline{l}}{\overset{\overline{l}}{\overset{\overline{l}}{\overset{\overline{l}}{\downarrow}}} + \dots = \stackrel{j}{\overset{\overline{l}}}{\overset{\overline{l}}{\overset{\overline{l}}{\overset{\overline{l}}{\overset{\overline{l}}}{\overset{\overline{l}}{\overset{\overline{l}}{\overset{\overline{l}}{\overset{\overline{l}}}{\overset{\overline{l}}{\overset{\overline{l}}}{\overset{\overline{l}}{\overset{\overline{l}}{\overset{\overline{l}}{\overset{\overline{l}}}{\overset{\overline{l}}{\overset{\overline{l}}}{\overset{\overline{l}}{\overset{\overline{l}}}{\overset{\overline{l}}{\overset{\overline{l}}}{\overset{\overline{l}}}{\overset{\overline{l}}{\overset{\overline{l}}}{\overset{\overline{l}}}{\overset{\overline{l}}}{\overset{\overline{l}}{\overset{\overline{l}}}{\overset{\overline{l}$$

1st-order, 2nd-order and 3rd-order contributions:

(e)

(f)

ΛX

• Starting point: the Bethe-Goldstone equation

$$G(\omega)_{B_1B_2,B_3B_4} = V_{B_1B_2,B_3B_4} + \sum_{B_iB_j} V_{B_1B_2,B_iB_j} imes rac{Q_{B_iB_j}}{\omega - E_{B_i} - E_{B_j} + i\eta} G(\omega)_{B_iB_j,B_3B_4}$$

$$U_{B_i}(k) = \sum_{B_j} \sum_{\vec{k'}} n_{B_j}(|\vec{k'}|) \times \langle \vec{k}\vec{k'}| G(E_{B_i}(\vec{k}) + E_{B_j}(\vec{k'}))_{B_iB_j,B_iB_j} |\vec{k}\vec{k'}\rangle_{\mathcal{A}}$$

$$E_{B_i}(k) = M_{B_i} + \frac{\hbar^2 k^2}{2M_{B_i}} + U_{B_i}(k)$$

$$\epsilon_{\mathcal{BHF}} = rac{1}{V}\sum_{B_i}\sum_{k\leq k_{F_i}}\left[M_{\mathcal{B}_i}+rac{\hbar^2k^2}{2M_{\mathcal{B}_i}}+rac{1}{2}U_{\mathcal{B}_i}(k)
ight]$$

< (17) × <

∃ → < ∃</p>

Chiral 2N Force

æ

Logoteta et al. Phys. Rev. C 94, 064001 (2016)

Domenico Logoteta

Symmetry energy N3LO+N2LO

Domenico Logoteta

• Asymmetric matter \Rightarrow parabolic approximation:

$$E/A(\beta,\rho) = (E/A(\rho))_{snm} + (E/A(\rho))_{sym}\beta^2 \qquad \beta = \frac{\rho_n - \rho_p}{\rho_n + \rho_p}$$

$$\mu_i = \frac{\partial(\rho E / A(\beta, \rho))}{\partial \rho_i}$$

$$\rho = \rho_{\rm n} + \rho_{\rm p}$$

• Chemical equilibrium:

$$\mu_n - \mu_p = \mu_e \qquad \quad \mu_e = \mu_\mu.$$

• Charge neutrality:

$$n_p-n_\mu-n_e=0$$
 .

Domenico Logoteta Equation of state of hadronic matter and application to merging of neutron star

< ロ > < 同 > < 回 > < 回 >

EOS β -stable matter N3LO Δ +N2LO Δ

I. Bombaci and D. Logoteta A&A 609, A128 (2018)

Domenico Logoteta

• For NS: $\frac{GM}{Rc^2} \sim 10^{-1} \Rightarrow \text{GR}$ is required!

• For a fixed equation of state (EOS): $P = P(\epsilon)$ and $P = P(\rho)$

∜

Neutron stars structure ⇒ TOV equations Equations of hydrostatic equilibrium in general relativity Tolman-Oppenheimer-Volkoff (TOV):

$$\begin{aligned} \frac{dP}{dr} &= -\frac{G\epsilon m}{r^2} \left(1 + \frac{P}{\epsilon c^2}\right) \left(1 + \frac{4\pi P r^3}{mc^2}\right) \left(1 - \frac{2Gm}{rc^2}\right)^{-1} ,\\ \frac{dm(r)}{dr} &= 4\pi r^2 \epsilon . \end{aligned}$$

Neutron stars based on N3LOA+N2LOA

I. Bombaci and D. Logoteta A&A 609, A128 (2018)

Domenico Logoteta

Extension to finite temperature

- Starting point: the Bethe-Goldstone equation at finite T
- Note $Q_{B_iB_j} \Rightarrow Q_{B_iB_j}(T) = (1 f_{B_i}) \times (1 f_{B_j})$

$$G(\omega)_{B_1B_2,B_3B_4} = V_{B_1B_2,B_3B_4} + \sum_{B_iB_j} V_{B_1B_2,B_iB_j} imes rac{Q_{B_iB_j}}{\omega - E_{B_j} - E_{B_j} + i\eta} G(\omega)_{B_iB_j,B_3B_4}$$

$$U_{B_i}(k) = \sum_{B_j} \sum_{\vec{k'}} \times \langle \vec{k} \vec{k'} | G(E_{B_i}(\vec{k}) + E_{B_j}(\vec{k'}))_{B_i B_j, B_i B_j} | \vec{k} \vec{k'} \rangle_{\mathcal{A}} f_{B_j}(\vec{k'}, T)$$

$$E_{B_i}(k) = M_{B_i} + \frac{\hbar^2 k^2}{2M_{B_i}} + U_{B_i}(k)$$

$$\epsilon_{BHF} = \frac{1}{V} \sum_{B_i} \sum_{k} \left[M_{B_i} + \frac{\hbar^2 k^2}{2M_{B_i}} + \frac{1}{2} U_{B_i}(k) \right] f_{B_i}(\vec{k}, T)$$

Analytic fit of $F/A(T,\rho)$ for SNM

Low density part: EOSs from RMF and/or skyrme models < -> < -> < -> < -> < -> < ->

Analytic fit of $F/A(T,\rho)$ for PNM

Domenico Logoteta

• $n + n \rightarrow n + \Lambda$

•
$$n + n \rightarrow p + \Sigma^-$$

•
$$p$$
 + $e^- \rightarrow \Lambda$ + ν_{e^-}

•
$$n$$
 + $e^- \rightarrow \Sigma^-$ + ν_{e^-}

 Appearance of Hyperons ⇒ Fermi pressure relieves

•
$$M_{max} < 1.44 \ M_{\odot}$$

Domenico Logoteta

Domenico Logoteta

Domenico Logoteta

Domenico Logoteta

• Up to N2LO just 1 LEC \Rightarrow fixed to $U_{\Lambda}(k = 0) = (-28, -30)$ MeV

- Following Petschauer (2013)
- Baryonic three-body forces from chiral effective field theory
- Nonvanishing leading order contributions at order NLO and N2LO
- Same strategy used for nuclear matter
- Effective NA interaction from bare NNA force
- Low energy constants estimated from decuplet saturation

NNΛ force from ChPT

- Up to N2LO just 1 LEC \Rightarrow fixed to $U_{\Lambda}(k = 0) = (-28, -30)$ MeV
- Note: NNA-force strongly improve heavy hypernuclei (²⁰⁸ Pb, ⁸⁹ Zr, ...) description!

- Following Petschauer (2013)
- Baryonic three-body forces from chiral effective field theory
- Nonvanishing leading order contributions at order NLO and N2LO
- Same strategy used for nuclear matter
- Effective NA interaction from bare NNA force
- Low energy constants estimated from decuplet saturation

Improvement in the separation energies of Λ-hypernuclei

	⁴¹ Ca	$^{91}_{\Lambda}$ Zr	²⁰⁹ Pb
NSC97a	23.0	31.3	38.8
NSC97a+NNΛ ₁	14.9	21.1	26.8
NSC97a+NNΛ ₂	13.3	19.3	24.7
NSC97e	24.2	32.3	39.5
NSC97e+NNΛ ₁	16.1	22.3	27.9
NSC97e+NNΛ ₂	14.7	20.7	26.1
Exp.	20.0	23.0	27.0

• • • • • • •

• Improvement in the separation energies of Λ-hypernuclei

	⁴¹ Ca	$^{91}_{\Lambda}$ Zr	²⁰⁹ Pb
NSC97a	23.0	31.3	38.8
NSC97a+NNΛ ₁	14.9	21.1	26.8
NSC97a+NNA ₂	13.3	19.3	24.7
NSC97e	24.2	32.3	39.5
NSC97e+NNΛ ₁	16.1	22.3	27.9
NSC97e+NN Λ_2	14.7	20.7	26.1
Exp.	20.0	23.0	27.0

NOTE: experimental SE relative to: ${}^{40}_{\Lambda}$ Ca, ${}^{89}_{\Lambda}$ Y and ${}^{208}_{\Lambda}$ Pb

Composition of hyperonic matter

D. Logoteta, I. Vidaña and I. Bombaci accepted for publication in EPJA Lett.

Neutron stars structure including Λ-hyperon

Domenico Logoteta Equation of state of hadron

• Numerical simulation of NS(1.35 M_{\odot})-NS(1.35 M_{\odot}) merging

- T=0 microscopic EOS + Thermal component added via gamma law
- Evolved with Whisky Thermal + Einstein Toolkit
- A new similation with a full T consistent EOS is under consideration
- Comparison: microscopic BL EOS vs EOS from RMF model (GM3) ⇒ same M_{max} for both models

BL(1.35*M*_☉)

GM3(1.31*M*_☉)

GM3(1.35*M*_☉)

A. Endrizzi, D. Logoteta, B. Giacomazzo, I. Bombaci, W. Kastaun and R. Ciolfi, Phys. Rev. D 98, 043015 (2018)

Domenico Logoteta Equation of state of hadronic matter and application to merging of neutron star

A. Endrizzi, D. Logoteta, B. Giacomazzo, I. Bombaci, W. Kastaun and R. Ciolfi, Phys. Rev. D 98, 043015 (2018)

イロン イロン イヨン イヨン

- A reasonable description of nuclear matter and NSs based on ChEFT is possible
- A more in deep study of β-stable hyperonic matter based on NY, NNY chiral forces is under development... NOTE: from a microscopic point of view the hyperon puzzle is still far to be solved but we are improving our understanding...
- Future: new simulations with hot EOSs are running (in collaboration also with S. Bernuzzi and D. Radice)
- Future: new simulations with a quark-matter phase transition under considerations