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Neutron Stars

An exceptional laboratory for fundamental physics.

The densest stars in the universe,
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~ 10 g/cm?® ~ (200 MeV)*

The strongest magnetic fields in the universe.
Very precise measurements of their spin (pulsars).

Observed 1n merger events via gravitational waves.

Excellent experimental prospects in the next decade.



Neutron Stars

We can learn about how matter behaves at such extreme densities.
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Neutron Stars

We can learn about how matter behaves at such extreme densities.
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Neutron Stars

Probe of QCD at high densities (low temperatures) — extremely important to understand.
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Such an environment serves also as probe of physics beyond the Standard Model.



New Physics in Neutron Stars

There are many good reasons to expect physics beyond the SIM.
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Neutron stars can offer valuable clues on many of these problems.



Cosmological Constant
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Infamous constant term in Einstein’s equations,
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quantum fields = oscillators

Vacuum energy shows largest disagreement between natural expectation and experiment.
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© environmental selection (anthropics)
o relaxation mechanism
o UV-IR connection (swampland)
o modified/composite gravity
© acausal dynamics



(Bellazzini, Csaki, Hubisz, JS, Terning '15)

Varying Vacuum Energy

One should try to test the problem experimentally.
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Vacuum energy changes at phase transitions.
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(Bellazzini, Csaki, Hubisz, JS, Terning '15)

Varying Vacuum Energy

Evolution during expansion/cooling of the universe.
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O(1) contribution to pressure/energy close to phase transitions.



(Bellazzini, Csaki, Hubisz, JS, Terning '15)

Vacuum Energy in Neutron Stars

Vacuum energy can be O(1) fraction of total energy.
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Study how vacuum energy changes the properties of the neutron star, e.g. mass-radius relation.

Possibly test cosmological constant relaxation mechanism vs anthropics.



sphericaﬂy symmetric metric
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Tolman-Oppenheimer-Volkoff equations
m/(r) = 4nrie(r)

p(r) + €(r)
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model dependent equation of state

p = p(e)



Israel junction conditions
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(unexplored) additional model dependence — customarily, continuous pressure and energy



Toy Model I (+6 months)

1 layer, polytropic outside, polytropic + adjustable vacuum energy inside, discontinuous €.
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Toy Model II (+3 years)

7 layers, polytropics, polytropic + vacuum energy in core, continuous pg, discontinuous € in core.

(Csaki, Eroncel, Hubisz, Rigo, Terning "18)

- Modelling clearly important.

O — T ——— Main message remains: vacuum energy important.
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Vacuum energy relevant also for tidal deformability.
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Strong CP-problem and Axion Solution

The puzzling absence of CP violation in the interactions of hadrons.
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Vacuum Axion Potential

Low-energy chiral Lagrangian plus axion.
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Axion 1in Neutron Stars

Properties of the axion change at finite baryon chemical potential.
80 — (90 + i,u T

(expectation value, mass, self-coupling, couplings to matter)

® Axion background and neutron star EOS:

won(a) 7 0

® Axion force in merger events:

Fq
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® Axion/photon emissivity: (Hook, Huang '17)



Small Density Axion Potential

p/Aqep < 1

® Decreasing chiral condensate:
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Predictivity 1s lost at relatively low nuclear densities.
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Large Density Axion Potential
n/Aqep > 1
New vacuum of QCD: Color-Flavor-Locked (CFL) phase.
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and massive gluons

mg = g

Instantons are suppressed and calculable at such high densities.
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Large Density Axion Potential

n/Aqep > 1
(e.g. Kaplan '05)
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[t 1s plausible that the QCD-axion 1s sourced inside neutron stars.
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Summary

Neutron stars offer an unexplored playground to look for physics beyond the SM.
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To test the Validity of the current cosmologieal constant paradigm.

To gain clues on axion solution to the strong CP-problem.

Needless to say, theoretical input on the nuclear/QCD phase diagram 1s crucial.



Thank you.






