Realistic shell-model calculations for neutrinoless double-beta decay: Where do we stand ?

Nunzio Itaco

Università della Campania "Luigi Vanvitelli" Istituto Nazionale di Fisica Nucleare - Sezione di Napoli

XVII Conference on Theoretical Nuclear Physics in Italy

Double β -decay

Double β -decay (2 ν ECEC) is the rarest process yet observed in nature.

Maria Goeppert-Mayer (1935) suggested the possibility to detect $(A, Z) \rightarrow (A, Z+2) + e^- + e^- + \overline{\nu}_e + \overline{\nu}_e$

• Historically, G. Racah (1937) and W. Furry (1939) were the first ones, to suggest to test the neutrino as a Majorana particle, considering the process: $(A, Z) \rightarrow (A, Z + 2) + e^- + e^-$

Double β -decay (2 ν ECEC) is the rarest process yet observed in nature.

- Maria Goeppert-Mayer (1935) suggested the possibility to detect $(A, Z) \rightarrow (A, Z+2)+e^-+e^-+\overline{\nu}_e+\overline{\nu}_e$
- Historically, G. Racah (1937) and W. Furry (1939) were the first ones, to suggest to test the neutrino as a Majorana particle, considering the process: (A, Z) → (A, Z + 2) + e⁻ + e⁻

Double β -decay (2 ν ECEC) is the rarest process yet observed in nature.

- Maria Goeppert-Mayer (1935) suggested the possibility to detect $(A, Z) \rightarrow (A, Z+2)+e^-+e^-+\overline{\nu}_e+\overline{\nu}_e$
- Historically, G. Racah (1937) and W. Furry (1939) were the first ones, to suggest to test the neutrino as a Majorana particle, considering the process:

 $(A,Z) \rightarrow (A,Z+2) + e^- + e^-$

The detection of the $0\nu\beta\beta$ decay is nowadays one of the main targets in many laboratories all around the world, triggered by the search of "new physics" beyond the Standard Model.

Its detection \Rightarrow

- would correspond to a violation of the conservation of the leptonic number
- may provide more informations on the nature of neutrinos (neutrino as a Majorana particle, determination of its effective mass, ..).

The inverse of the $0\nu\beta\beta$ -decay half-life is proportional to the squared nuclear matrix element (NME). This evidences the relevance to calculate the NME

$$\left[T_{1/2}^{0\nu}\right]^{-1} = G^{0\nu} \left|M^{0\nu}\right|^2 \langle m_\nu \rangle^2$$

- $G^{0\nu} \rightarrow$ phase-space factor
- $\langle m_{\nu} \rangle = |\sum_{k} m_{k} U_{ek}^{2}|$ effective mass of the Majorana neutrino, U_{ek} being the lepton mixing matrix

The inverse of the $0\nu\beta\beta$ -decay half-life is proportional to the squared nuclear matrix element (NME). This evidences the relevance to calculate the NME

$$\left[T_{1/2}^{0\nu}\right]^{-1} = G^{0\nu} \left| M^{0\nu} \right|^2 \langle m_{\nu} \rangle^2$$

 constraints from oscillation data

• to exclude IH \Rightarrow m_{ν} = 8meV

The inverse of the $0\nu\beta\beta$ -decay half-life is proportional to the squared nuclear matrix element (NME). This evidences the relevance to calculate the NME

$$\left[T_{1/2}^{0\nu}\right]^{-1} = G^{0\nu} \left|M^{0\nu}\right|^2 \langle m_{\nu} \rangle^2$$

- constraints from oscillation data
- to exclude IH \Rightarrow m_{ν} = 8meV

The calculation of the NME

The nuclear matrix element (NME) is expressed as

$$M^{0
u} = M^{0
u}_{GT} - \left(rac{g_V}{g_A}
ight)^2 M^{0
u}_F + M^{0
u}_T \; ,$$

where

$$M_{GT}^{0\nu} = <0_{f}^{+} \mid \sum_{m,n} \tau_{m}^{-} \tau_{n}^{-} H_{GT}(r_{mn}) \vec{\sigma}_{m} \cdot \vec{\sigma}_{n} \mid 0_{i}^{+} >$$

$$M_{F}^{0\nu} = <0_{f}^{+} \mid \sum_{m,n} \tau_{m}^{-} \tau_{n}^{-} H_{F}(r_{mn}) \mid 0_{i}^{+} >$$

$$M_T^{0\nu} = <0_f^+ \mid \sum_{m,n} \tau_n^- \tau_n^- H_T(r_{mn}) \left[\Im \left(\vec{\sigma}_m \cdot \hat{r}_{mn} \right) \left(\vec{\sigma}_n \cdot \hat{r}_{mn} \right) - \vec{\sigma}_m \cdot \vec{\sigma}_n \right] \mid 0_i^+ >$$

The calculation of the NME

 \Rightarrow make use of nuclear structure models

The calculation of the NME

models

 \Rightarrow make use of nuclear structure models

Engel & Menendez Reports on Progress in Physics 80, 046301 (2017)

• The spread of nuclear structure calculations evidences inconsistencies among results obtained with different

Nunzio Itaco TNPI2019 - Cortona, 9-11 October 2019

Shell model \Rightarrow well-established approach to obtain a microscopic description of both collective and single-particle properties of nuclei

STRENGTH project: Napoli-Caserta unit

- L. Coraggio (INFN-NA)
- G. De Gregorio (Università "Vanvitelli" and INFN-NA)
- T. Fukui (INFN-NA)
- A. Gargano (INFN-NA)
- N. I. (Università "Vanvitelli" and INFN-NA)
- R. Mancino (Università "Vanvitelli" and INFN-NA)
- F. Nowacki (IPHC-CNRS Strasbourg)

Two alternative approaches

 $V_{NN}~~(+V_{NNN}) \Rightarrow$ many-body theory $\Rightarrow H_{
m eff}$

The eigenvalues of *H_{eff}* belong to the set of eigenvalues of the full nuclear hamiltonian

Two alternative approaches

- phenomenological
- microscopic

V_{NN} (+ V_{NNN}) \Rightarrow many-body theory \Rightarrow $H_{\rm eff}$

Definition

The eigenvalues of $H_{
m eff}$ belong to the set of eigenvalues of the full nuclear hamiltonian

Two alternative approaches

- phenomenological
- microscopic

V_{NN} (+ V_{NNN}) \Rightarrow many-body theory \Rightarrow $H_{\rm eff}$

Definition

The eigenvalues of $H_{
m eff}$ belong to the set of eigenvalues of the full nuclear hamiltonian

Two alternative approaches

- phenomenological
- microscopic

V_{NN} (+ V_{NNN}) \Rightarrow many-body theory \Rightarrow $H_{\rm eff}$

Definition

The eigenvalues of $H_{
m eff}$ belong to the set of eigenvalues of the full nuclear hamiltonian

Two alternative approaches

- o phenomenological
- microscopic

 V_{NN} (+ V_{NNN}) \Rightarrow many-body theory \Rightarrow $H_{\rm eff}$

Definition

The eigenvalues of $H_{\rm eff}$ belong to the set of eigenvalues of the full nuclear hamiltonian

degli Studi
 della Campania
 Luigi Vanvitelli

Workflow for a realistic shell-model calculation

- Choose a realistic NN potential (NNN)
- 2 Determine the model space better tailored to study the system under investigation
- Oerive the effective shell-model hamiltonian and operators by way of a many-body theory
- Calculate the physical observables (energies, e.m. transition probabilities, ...)

The shell-model effective hamiltonian

We start from the many-body hamiltonian H defined in the full Hilbert space:

$$H = H_0 + H_1 = \sum_{i=1}^{A} (T_i + U_i) + \sum_{i < j} (V_{ij}^{NN} - U_i)$$
$$\begin{pmatrix} PHP & PHQ \\ \hline QHP & QHQ \end{pmatrix} \xrightarrow{\mathcal{H}} X^{-1}HX \begin{pmatrix} PHP & PHQ \\ \hline 0 & QHQ \end{pmatrix}$$

$$H_{\text{eff}} = P\mathcal{H}P$$

Suzuki & Lee $\Rightarrow X = e^{\omega}$ with $\omega = \left(\begin{array}{c|c} 0 & 0 \\ \hline Q\omega P & 0 \end{array} \right)$

$$H_{1}^{\text{eff}}(\omega) = PH_{1}P + PH_{1}Q \frac{1}{\epsilon - QHQ}QH_{1}P - PH_{1}Q \frac{1}{\epsilon - QHQ}\omega H_{1}^{\text{eff}}(\omega)$$

Università degli Studi della Campani Luigi Vanvitelli

The perturbative approach to the shell-model H^{eff}

The \hat{Q} -box vertex function $\hat{Q}(\epsilon) = PH_1P + PH_1Q \frac{1}{\epsilon - QHQ}QH_1P$

Exact calculation of the \hat{Q} -box is computationally prohibitive for many-body system \Rightarrow we perform a perturbative expansion

$$\frac{1}{\epsilon - QHQ} = \sum_{n=0}^{\infty} \frac{(QH_1Q)^n}{(\epsilon - QH_0Q)^{n+1}}$$

The diagrammatic expansion of the \hat{Q} -box

Nunzio Itaco

TNPI2019 - Cortona, 9-11 October 2019

Effective operators

 $\Phi_{\alpha} =$ eigenvectors obtained diagonalizing H_{eff} in the reduced model space $\Rightarrow |\Phi_{\alpha}\rangle = P|\Psi_{\alpha}\rangle$

$$\langle \Phi_{\alpha} | \hat{\Theta} | \Phi_{\beta} \rangle \neq \langle \Psi_{\alpha} | \hat{\Theta} | \Psi_{\beta} \rangle$$

Effective operators

 $\Phi_{\alpha} = \text{eigenvectors obtained diagonalizing } H_{\text{eff}}$ in the reduced model space $\Rightarrow |\Phi_{\alpha}\rangle = P|\Psi_{\alpha}\rangle$

$$\langle \Phi_{\alpha} | \hat{\Theta} | \Phi_{\beta}
angle
eq \langle \Psi_{\alpha} | \hat{\Theta} | \Psi_{\beta}
angle$$

Effective operator $\hat{\Theta}_{eff}$: definition

$$\hat{\Theta}_{\rm eff} = \sum_{\alpha\beta} |\Phi_{\alpha}\rangle \langle \Psi_{\alpha} |\hat{\Theta} |\Psi_{\beta}\rangle \langle \Phi_{\beta} |$$
$$\langle \Phi_{\alpha} |\hat{\Theta}_{\rm off} |\Phi_{\beta}\rangle = \langle \Psi_{\alpha} |\hat{\Theta} |\Psi_{\beta}\rangle$$

Effective operators

 $\Phi_{\alpha} = \text{eigenvectors obtained diagonalizing } H_{\text{eff}}$ in the reduced model space $\Rightarrow |\Phi_{\alpha}\rangle = P|\Psi_{\alpha}\rangle$

$$\langle \Phi_{\alpha} | \hat{\Theta} | \Phi_{\beta} \rangle \neq \langle \Psi_{\alpha} | \hat{\Theta} | \Psi_{\beta} \rangle$$

Effective operator $\hat{\Theta}_{eff}$: definition

$$\begin{split} \hat{\Theta}_{\rm eff} &= \sum_{\alpha\beta} |\Phi_{\alpha}\rangle \langle \Psi_{\alpha} |\hat{\Theta} |\Psi_{\beta}\rangle \langle \Phi_{\beta} | \\ \\ \langle \Phi_{\alpha} |\hat{\Theta}_{\rm eff} |\Phi_{\beta}\rangle &= \langle \Psi_{\alpha} |\hat{\Theta} |\Psi_{\beta}\rangle \end{split}$$

 $\hat{\Theta}_{eff}$ can be derived consistently in the MBPT framework

K. Suzuki and R. Okamoto, Prog. Theor. Phys. 93, 905 (1995)

The shell-model effective operators

Università degli Studi

Nuclear models and predictive power

- ⁷⁶Ge,⁸²Se: four proton and neutron orbitals outside double-closed ⁵⁶Ni → 0f_{5/2}, 1p_{3/2}, 1p_{1/2}, 0g_{9/2}
- ¹³⁰Te, ¹³⁶Xe: five proton and neutron orbitals outside double-closed ¹⁰⁰Sn → 0g_{7/2}, 1d_{5/2}, 1d_{3/2}, 2s_{1/2}, 0h_{11/2}

- ⁷⁶Ge,⁸²Se: four proton and neutron orbitals outside double-closed ⁵⁶Ni → 0f_{5/2}, 1p_{3/2}, 1p_{1/2}, 0g_{9/2}
- ¹³⁰Te, ¹³⁶Xe: five proton and neutron orbitals outside double-closed ¹⁰⁰Sn → 0g_{7/2}, 1d_{5/2}, 1d_{3/2}, 2s_{1/2}, 0h_{11/2}
- Input V_{NN} : V_{low-k} derived from the high-precision *NN* CD-Bonn potential with a cutoff: $\Lambda = 2.6 \text{ fm}^{-1}$.
- *H*_{eff} obtained calculating the *Q*-box up to the 3rd order in *V*_{low-k}
- Effective operators are consistently derived by way of the MBPT

Spectroscopic properties (B(E2)s in e²fm⁴)

GT⁻ strength distribution

Charge-exchange experiments

$$\left[rac{d\sigma}{d\Omega}(q=0)
ight]=\hat{\sigma}B_{exp}(GT)$$

Theory

$$\mathcal{B}_{th}(ext{GT}) = rac{\left|\langle \Phi_f | \sum_j ec{\sigma}_j ec{ au}_j | \Phi_i
angle
ight|^2}{2J_i + 1}$$

GT⁻ strength distribution

Istituto Nazional di Fisica Naciaar

$2\nu\beta\beta$ nuclear matrix elements

Blue dots: bare GT operator

$2\nu\beta\beta$ nuclear matrix elements

Blue dots: bare GT operator Black triangles: effective GT operator

$2\nu\beta\beta$ nuclear matrix elements perturbative properties

- RSM calculations provide a satisfactory description of observed GT-strength distributions and 2ν2β NME
- what about perturbative properties ?

$2\nu\beta\beta$ nuclear matrix elements perturbative properties

- RSM calculations provide a satisfactory description of observed GT-strength distributions and 2ν2β NME
- what about perturbative properties ?

$2\nu\beta\beta$ nuclear matrix elements perturbative properties

- RSM calculations provide a satisfactory description of observed GT-strength distributions and 2ν2β NME
- what about perturbative properties ?

The calculation of the $0\nu\beta\beta$ NME

The NME is given by

$$M^{0
u} = M^{0
u}_{GT} - \left(rac{g_V}{g_A}
ight)^2 M^{0
u}_F + M^{0
u}_T ~,$$

The matrix elements $M_{\alpha}^{0\nu}$ are defined, for a SM calculation, as follows:

$$\begin{split} M_{\alpha}^{0\nu} &= \sum_{j_{\rho}j_{\rho'}j_{n}j_{n'}J_{\pi}} TBTD\left(j_{\rho}j_{\rho'}, j_{n}j_{n'}; J_{\pi}\right) \left\langle j_{\rho}j_{\rho'}; J^{\pi}T \mid \tau_{1}^{-}\tau_{2}^{-}O_{12}^{\alpha} \mid j_{n}j_{n'}; J^{\pi}T \right\rangle \\ &\text{with } \alpha = (GT, \ F, \ T) \end{split}$$

The *TBTD* are the two-body transition-density matrix elements, and the Gamow-Teller (GT), Fermi (F), and tensor (T) operators:

$$\begin{aligned} O_{12}^{GT} &= \vec{\sigma}_1 \cdot \vec{\sigma}_2 H_{GT}(r) \\ O_{12}^F &= H_F(r) \\ O_{12}^T &= [3 \, (\vec{\sigma}_1 \cdot \hat{r}) \, (\vec{\sigma}_1 \cdot \hat{r}) - \vec{\sigma}_1 \cdot \vec{\sigma}_2] \, H_T(r) \end{aligned}$$

Light Majorana neutrino exchange

The neutrino potentials H_{α} are defined using the closure approximation

$$H_{lpha}(r)=rac{2R}{\pi}\int_{0}^{\infty}f_{lpha}(qr)rac{h_{lpha}(q^2)}{q+\langle E
angle}qdq$$

where $f_{F,GT}(qr) = j_0(qr)$ and $f_T(qr) = j_2(qr)$, $\langle E \rangle$ is the average energy used in the closure approximation.

- closure approximation
- higher order corrections (HOC)
- finite nucleon size corrections (FNS)

Short-range correlations

Empirical approach

$$\psi_{nl} \to [1 + f(r)] \psi_{nl}$$
 $f(r) = -ce^{-ar^2}(1 - br^2)$

Short-range correlations

Empirical approach

$$\psi_{nl} \to [1 + f(r)] \psi_{nl}$$
 $f(r) = -ce^{-ar^2}(1 - br^2)$

 $V_{\text{low}-k}$: the configurations of $V_{NN}(k, k')$ are restricted to those with $k, k' < k_{\text{cutoff}} = \Lambda$

$$V_{NN}(k,k') \rightarrow V_{\text{low}-k}(k,k') = \Omega^{-1} V_{NN}(k,k') \Omega$$

Short-range correlations

Empirical approach

$$\psi_{nl} \to [1 + f(r)] \psi_{nl}$$
 $f(r) = -ce^{-ar^2}(1 - br^2)$

 $V_{\text{low}-k}$: the configurations of $V_{NN}(k, k')$ are restricted to those with $k, k' < k_{\text{cutoff}} = \Lambda$

$$V_{NN}(k,k') \rightarrow V_{\text{low}-k}(k,k') = \Omega^{-1} V_{NN}(k,k') \Omega_{k}$$

Consistently, we transform the $0\nu\beta\beta$ operator Θ by way of the same similarity transformation Ω

$$\Theta(k,k')
ightarrow \Theta_{\mathrm{low}-k}(k,k') = \Omega^{-1} \Theta(k,k') \Omega$$

Shell model calculations of $M^{0\nu}$

- Blue dots: Madrid-Strasbourg group, 0νββ operator
- Red dots: Horoi *et al.*, $0\nu\beta\beta$ operator
- Black dots: RSM, bare 0νββ operator

Shell model calculations of $M^{0\nu}$

Shell model calculations of $M^{0\nu}$

It is possible to decouple $M^{0\nu}$ in terms of the angular momentum J^{π} of the neutron and proton pairs

$$\begin{aligned} \mathcal{M}_{\alpha}^{0\nu} &= \sum_{j_{\rho}j_{\rho'}j_{n}j_{n'}J^{\pi}} TBTD\left(j_{\rho}j_{\rho'}, j_{n}j_{n'}; J^{\pi}\right) \left\langle j_{\rho}j_{\rho'}; J^{\pi} \mid \tau_{1}^{-}\tau_{2}^{-}O_{12}^{\alpha} \mid j_{n}j_{n'}; J^{\pi} \right\rangle \\ &= \sum_{J^{\pi}} \mathcal{M}_{\alpha}^{0\nu}(J^{\pi}) \end{aligned}$$

J-pair decomposition

Nunzio Itaco TNPI2019 - Cortona, 9-11 October 2019

Experimental upper bounds & Sensitivity

Experimental upper bounds & Sensitivity

Experimental upper bounds & Sensitivity

Perspectives

- H_{eff} derived from chiral two- and three-body potentials: effects of chiral two-body currents (for both $2\nu\beta\beta$ and $0\nu\beta\beta$ decays)
- Beyond closure approximation

$$\mathcal{M}_{\alpha}^{0\nu} = \sum_{j_{\rho}j_{\rho'}j_{j}j_{n'}J_{k}^{\pi}} \left\langle 0_{f} | a_{j_{\rho'}}^{\dagger} a_{j_{n'}} | J_{k}^{\pi} \right\rangle \left\langle J_{k}^{\pi} | a_{j_{\rho}}^{\dagger} a_{j_{n}} | 0_{i} \right\rangle \left\langle j_{\rho} j_{\rho'} | \tau_{1}^{-} \tau_{2}^{-} O^{\alpha}(E_{k}) | j_{n} j_{n'} \right\rangle$$

• Università degli Studi della Campania Luigi Vanvitelli Realistic shell-model calculations for neutrinoless double-beta decay: Where do we stand ?

Nunzio Itaco

Università della Campania "Luigi Vanvitelli" Istituto Nazionale di Fisica Nucleare - Sezione di Napoli

XVII Conference on Theoretical Nuclear Physics in Italy

The shell-model effective operators

$$\Theta_{\rm eff} = (P + \hat{Q}_1 + \hat{Q}_1 \hat{Q}_1 + \hat{Q}_2 \hat{Q} + \hat{Q} \hat{Q}_2 + \cdots)(\chi_0 + \chi_1 + \chi_2 + \cdots) ,$$

We arrest the χ series at χ_0

$$\chi_0 = (\hat{\Theta}_0 + h.c.) + \Theta_{00}$$

$$\hat{\Theta}_{0} = P\Theta P + P\Theta Q \frac{1}{\epsilon_{0} - QHQ} QH_{1}P ,$$

$$\hat{\Theta}_{00} = PH_{1}Q \frac{1}{\epsilon_{0} - QHQ} Q\Theta Q \frac{1}{\epsilon_{0} - QHQ} QH_{1}P$$

and expand it perturbatively.

The choice of the cutoff $\Lambda = 2.6 \text{ fm}^{-1}$

Università degli Studi della Campania

L. C., A. Gargano, and N. Itaco, JPS Conf. Proc. 6, 020046 (2015)

$2\nu\beta\beta$ nuclear matrix elements

Università

Red dots: bare GT operator

Decay	Expt.	Bare				
	$\begin{array}{c} 0.038 \pm 0.003 \\ 0.113 \pm 0.006 \\ 0.083 \pm 0.004 \\ 0.031 \pm 0.004 \end{array}$	0.030 0.304 0.347 0.131				
136 Xe \rightarrow 136 Ba 0.0181 \pm 0.0007 0.0910 xperimental data from A. S. Barabash, Nucl. Phys. 935, 52 (2015)						

Perturbative properties of the GT effective operator

Convergence with respect the number of intermediate states

Selection rules of the GT operator make the convergence of the effective one with respect to N_{max} very fast.

The third decimal digit value of $M_{GT}^{2\nu}$, calculated with effective operator at third order, does not change from $N_{max} = 12$ on.

Order-by-order convergence						
_	Decay	1st ord $M_{ m GT}^{2 u}$	2nd ord $M_{ m GT}^{2 u}$	3rd ord $M_{ m GT}^{2 u}$	Expt.	
	$^{130}\text{Te} ightarrow ^{130} \text{Xe}$	0.142	0.058	0.061	0.031 ± 0.004	
	136 Xe \rightarrow 136 Ba	0.0975	0.0325	0.0341	0.0181 ± 0.0007	
More than 60% from 1st \rightarrow 2nd order						
Less than 5% from 2nd \rightarrow 3rd order						

L.C., L. De Angelis, T. Fukui, A. Gargano, and N. Itaco, Phys. Rev. C **95**, 064324 (2017)

Perturbative behavior with respect $N_{\rm max}$

- χ₀ contribution is not enough to obtain convergence with respect the number of intermediate states.
- <u>\chi_1</u> and <u>\chi_2</u>
 contributions are
 needed to obtain
 convergent results.

Order-by-order perturbative behavior

Decay		$M_{ m GT}^{0 u}$	$M_{ m F}^{0 u}$	$M^{0\nu}$
⁴⁸ C₂ → ⁴⁸ Ti				
	1 at ardar	0.00	0.10	0.41
	TSt order	0.32	-0.13	0.41
	2nd order	0.53	-0.16	0.63
	3rd order	0.25	-0.13	0.33
$^{76}\text{Ge} \rightarrow ^{76}\text{Se}$				
	1st order	2.76	-0.52	3.09
	2nd order	2.30	-0.62	2.70
	3rd order	2 91	-0.69	3 35
82 Se \rightarrow 82 Kr		2.01	0.00	0.00
	1st order	2.72	-0.51	3.04
	2nd order	2 25	-0.61	2 64
	2rd ordor	2.20	0.69	2.04
130 Te \rightarrow 130 Xe	Siu oluei	2.05	-0.00	5.20
	1st order	2.51	-0.57	2.87
	2nd order	1.83	-0.72	2.29
	3rd order	2.65	-0.72	3 1 1
136 136	Sid Older	2.05	-0.72	0.11
$^{100}Xe \rightarrow ^{100}Ba$				
	1st order	1.82	-0.41	2.08
	2nd order	1.33	-0.52	1.66
	3rd order	1.93	-0.53	2.26

degli Studi della Campania The perturbative behavior is not satisfactory as for the single- β decay operator: third-order contribution is rather large compared to the second order one

The blocking effect

Gamow-Teller two-body matrix elements					
Decay	$j_a j_b j_c j_d; J = 0^+$	ladder	3b (a)	3p-1h	3b (b)
⁴⁸ Ca → ⁴⁸ Ti					
76	$0f_{7/2}0f_{7/2}0f_{7/2}0f_{7/2}$	-0.334	0.004	0.260	-0.017
$^{70}\text{Ge} \rightarrow ^{70}\text{Se}$	0g _{9/2} 0g _{9/2} 0f _{5/2} 0f _{5/2}	0.154	-0.241	-1.078	0.234
8250 82 Vr	$0g_{9/2}0g_{9/2}1p_{3/2}1p_{3/2}$	0.185	-0.246	-0.214	0.048
$5e \rightarrow Kl$	0g _{9/2} 0g _{9/2} 0f _{5/2} 0f _{5/2}	0.157	-0.337	-1.096	0.335
$130 \text{Te} \rightarrow 130 \text{Xe}$	$0g_{9/2}0g_{9/2}1p_{3/2}1p_{3/2}$	0.189	-0.263	-0.219	0.058
400 400	$0h_{11/2}0h_{11/2}0g_{7/2}0g_{7/2}$	0.171	-0.202	-0.948	0.297
$^{136}Xe \rightarrow ^{136}Ba$	$0h_{11/2}0h_{11/2}0g_{7/2}0g_{7/2}$	0.178	-0.264	-0.997	0.381

As we expect:

- 3-body (a) diagram reduces the contribution of the 2-body ladder diagram
- 3-body (b) diagram reduces the contribution of the 2-body 3p-1h (core polarization) diagram

The blocking effect

Decay		$M_{ m GT}^{0 u}$	$M_{ m F}^{0 u}$	$M^{0 u}$	
⁴⁸ Ca → ⁴⁸ Ti					
Cu / II	3rd order	0.25	-0.13	0.33	
	3rd order + blocking	0.27	-0.12	0.35	0%
$^{76}\text{Ge} \rightarrow ^{76}\text{Se}$					
	3rd order	2.91	-0.69	3.35	
	3rd order + blocking	2.55	-0.70	3.00	10%
82 Se \rightarrow 82 Kr					
	3rd order	2.85	-0.68	3.28	
	3rd order + blocking	2.60	-0.71	3.05	7%
$^{130}\text{Te} \rightarrow ^{130}\text{Xe}$					
	3rd order	2.65	-0.72	3.11	
	3rd order + blocking	2.83	-0.79	3.33	7%
136 Xe \rightarrow 136 Ba					
	3rd order	1.93	-0.53	2.26	
	3rd order + blocking	2.06	-0.58	2.43	8%

Obviously, the blocking effect is stronger for decays involving nuclei with a larger number of valence nucleons

Summing intermediate states

Lanczos strength function method

E. Caurier, et al, Rev Mod. Phys. 77, 427 (2005)

Shell model calculations of $M^{0\nu}$: no SRC

 Blue dots: Madrid-Strasbourg group, bare 0νββ operator

- Red dots: Horoi *et al.*, bare $0\nu\beta\beta$ operator
- Black dots: RSM, bare $0\nu\beta\beta$ operator

The Neutrinoless Double Beta Decay Matrix Element

The form factors $h_{\alpha}(q^2)$ are

$$\begin{split} h_F(q^2) &= g_V^2(q^2) \\ h_{GT}(q^2) &= \frac{g_A^2(q^2)}{g_A^2} \left[1 - \frac{2}{3} \frac{q^2}{q^2 + m_\pi^2} + \frac{1}{3} \left(\frac{q^2}{q^2 + m_\pi^2} \right)^2 \right] \\ &\quad + \frac{2}{3} \frac{g_A^2(q^2)}{g_A^2} \frac{q^2}{4m_p^2} \,, \\ h_T(q^2) &= \frac{g_A^2(q^2)}{g_A^2} \left[\frac{2}{3} \frac{q^2}{q^2 + m_\pi^2} - \frac{1}{3} \left(\frac{q^2}{q^2 + m_\pi^2} \right)^2 \right] \\ &\quad + \frac{1}{3} \frac{g_M^2(q^2)}{g_A^2} \frac{q^2}{4m_p^2} \,. \end{split}$$

(2)

The $g_{V,A,M}$ form factors can include nucleon finite size effects, which in the dipole approximation are given by

$$g_{V}(q^{2}) = \frac{g_{V}}{\left(1 + q^{2}/\Lambda_{V}^{2}\right)^{2}},$$

$$g_{M}(q^{2}) = (\mu_{p} - \mu_{n})g_{V}(q^{2}),$$

$$g_{A}(q^{2}) = \frac{g_{A}}{\left(1 + q^{2}/\Lambda_{A}^{2}\right)^{2}}.$$
(3)

Here $g_V = 1$, $g_A = 1.25$, $(\mu_p - \mu_n) = 3.7$, $\Lambda_V = 850$ MeV, and $\Lambda_A = 1086$ MeV.

