Magnetic Susceptibility of neutron stars from QMC

Luca Riz

In collaboration with:

✦ Francesco Pederiva

✦ Stefano Gandolfi @LANL

XVII Conference on Theoretical Nuclear Physics in Italy (TNPI) Cortona - October 9th, 2019

(i) Overview.

(ii) Introduction.

(iii) Previous results on the magnetic susceptibility.

(iv) Magnetic susceptibility.

(v) Conclusions.

Overview

- Neutron star physics and presence of strong magnetic fields (magnetars) => spin polarization could play a role.
- We focus on densities typical of the outer core of the neutron stars.
- Use *ab initio* calculations to sudy ground state properties and compute magnetic susceptibility.

Implications in the study of supernovae and protoneutrons stars.

Why are we doing this?

 Magnetars ~ 10% of young NS, with high magnetic field observed on the surface (~10¹⁴/10¹⁵G) => huge inferred internal magnetic field.

K. Fujisawa et al., Mon. Not. 445, 2777–2793 (2014)

• Calculate magnetic susceptibility to include in simulation of NS mergers and supernovae explosions.

Why are we doing this?

Nuclear Hamiltonian

$$H = T + \sum_{i < j} v_{ij} + \sum_{i < j < k} v_{ijk} + \cdots$$

non-relativistic system with effective nucleon-nucleon (NN) force and three nucleon interaction (NNN).

Infinite matter <=> N particles in a box with PBC

Approximation: only neutrons.

$$H = H_0 - \sum_i \vec{\sigma}_i \cdot \vec{b}$$

7

where we applied an external magnetic field $\vec{b} = \mu \vec{B}$ to the system.

$$\chi = -\rho\mu^2 \left. \frac{\partial^2 E_0(b)}{\partial b^2} \right|_{b=0}$$

Following approximation on S. Fantoni *et al.*, PRL **87**, 181101 (2001).

Using Pauli expansion in spin polarization: $\xi = -\frac{\partial E_0(b)}{\partial b}\Big|_{b=0}$ $E(\xi) = E(0) - b\xi + \frac{1}{2}\xi^2 E''(0)$ 8

Minimizing the energy with respect to the spin polarization we obtain:

$$\chi = \mu^2 \rho \frac{1}{E''(0)}$$

How to compute E''(0)? Using chain rule (J_z is the spin asymmetry, i.e. $N_{\uparrow} - N_{\downarrow}$):

$$E''(0) = \left[\frac{\partial\xi}{\partial J_z}\right]^{-2} \left\{\frac{\partial^2 E_0}{\partial J_z^2} - \frac{\partial E_0}{\partial J_z} \left[\frac{\partial\xi}{\partial J_z}\right]^{-1} \frac{\partial^2\xi}{\partial J_z^2}\right\}$$

How to compute E''(0)? Using chain rule (J_z is the spin asymmetry, i.e. $N_{\uparrow} - N_{\downarrow}$):

$$E''(0) = \left[\frac{\partial\xi}{\partial J_z}\right]^{-2} \left\{\frac{\partial^2 E_0}{\partial J_z^2} - \frac{\partial E_0}{\partial J_z} \left[\frac{\partial\xi}{\partial J_z}\right]^{-1} \frac{\partial^2\xi}{\partial J_z^2}\right\}$$

How to compute E''(0)? Using chain rule (J_z is the spin asymmetry, i.e. $N_{\uparrow} - N_{\downarrow}$):

$$E''(0) = \left[\frac{\partial\xi}{\partial J_z}\right]^{-2} \left\{\frac{\partial^2 E_0}{\partial J_z^2} - \frac{\partial E_0}{\partial J_z} \left[\frac{\partial\xi}{\partial J_z}\right]^{-1} \frac{\partial^2\xi}{\partial J_z^2}\right\}$$

$$E''(0) = \left[\frac{\partial\xi}{\partial J_z}\right]^{-2} \frac{\partial^2 E_0}{\partial J_z^2}$$

Approximate expressions (exact for infinite system with low b and J_z):

10

$$\frac{\partial \xi}{\partial J_z} \approx \frac{E_0 \left(J_z = J_{z0}, b = 0 \right) - E_0 \left(J_z = J_{z0}, b = b_0 \right)}{J_{z0} b_0}$$

$$\frac{\partial^2 E_0}{\partial J_z^2} \approx 2 \frac{E_0 \left(J_z = J_{z0}, b = 0 \right) - E_0 \left(J_z = 0, b = 0 \right)}{J_{z0}^2}$$

Compute energies with AFDMC.

S. Fantoni *et al.*, PRL **87**, 181101 (2001) (PBC)

This approximation is reasonable under these assumptions:

(i) for
$$b = 0$$
, $E_0(J_z, b)$ is quadratic in J_z

(ii) for a fixed J_z , $E_0(J_z, b)$ is linear in b

(iii) the polarization is linear in J_z

Beyond PBC: TABC In collaboration with: 13

✦ Diego Lonardoni @MSU/LANL

Beyond PBC: TABC In collaboration with: 13

✦ Diego Lonardoni @MSU/LANL

Beyond PBC: TABC In collaboration with: 13

✦ Diego Lonardoni @MSU/LANL

Beyond PBC: TABC

C. Lin *et al.*, Phys. Rev. E **64**, 016702 (2001)

10 particles

Beyond PBC: TABC

C. Lin *et al.*, Phys. Rev. E **64**, 016702 (2001)

16 particles

Beyond PBC: TABC

What can we do with TABC?

What can we do with TABC?

Results using approximation

Results using approximation

We can do better

Magnetic susceptibility ratio

Nuclear Potentials

Two kinds of potential:

- Phenomenological AV8'+UIX.
- Local Chiral Effective Field Theory at N2LO [Lynn et al. PRL 116, 062501 (2016)].

Ground State energies computed by means of Auxiliary Field Diffusion Monte Carlo (AFDMC).

Assuming an energy-density function of the kind:

$$E(\rho,\xi) = E_0(\rho) + \xi^2 \left(E_1(\rho) - E_0(\rho) \right)$$

And recalling that the magnetic susceptibility can be computed as:

$$\chi = \mu^2 \rho \frac{1}{E''(0)}$$

Assuming an energy-density function of the kind:

$$E(\rho,\xi) = E_0(\rho) + \xi^2 \underbrace{\left(E_1(\rho) - E_0(\rho)\right)}_{SSE(\rho)}$$

And recalling that the magnetic susceptibility can be computed as:

$$\chi = \mu^2 \rho \frac{1}{E''(0)}$$

Simple model

Simple model

Simple model

 Using TABC to study partially polarized systems reducing finite-size effects and arbitrary particle numbers.

- Magnetic susceptibility computed 'correctly' with *ab initio* methods.
- Phenomenological and Chiral interactions give similar results, some differences at high densities.