

1

The ⁶Li ground state within the Hyperpsherical Harmonics basis

Alex Gnech

TNPI2019 Cortona, Italy, October 24-26, 2019

- The Hyperspherical Harmonic(HH) method
- The ⁶Li ground state
 - Convergence properties
 - Electromagnetic structure
 - $\alpha + d$ structure
- Conclusions and future prospective

$$H = \sum_{i} \frac{p_i^2}{2M} + \sum_{i < j} V(i, j) + \sum_{i < j < k} W(i, j, k) + \dots$$

Search for accurate solution of $H\Psi = E\Psi$

- Variational approach
- Expansion of Ψ on the basis of Hyperspherical Harmonics functions
- [A. Kievsky, S. Rosati, M. Viviani, L.E. Marcucci, and L. Girlanda J. Phys. G, **35**, 063101 (2008)]
- Applied for A = 3, 4 and now also for A = 6

- Jacobi vectors \Rightarrow CoM decoupling
- HH functions

$$L^{2}(\Omega)\mathcal{Y}_{[K]}(\Omega) = K(K + D - 2)\mathcal{Y}_{[K]}(\Omega)$$

- Transformation Coefficients
 - $\mathcal{Y}_{[K]}(\Omega') = \sum_{[K']}^{K=K'} a_{[K],[K']} \mathcal{Y}_{[K']}(\Omega)$
 - antisymmetrization
 - overcomplete basis \Rightarrow orthogonalization

$$\langle \Phi_{\alpha} | V(1,2) | \Phi_{\beta} \rangle = \sum_{[\alpha'], [\beta']} a_{[\alpha], [\alpha']} a_{[\beta], [\beta']} V_{[\alpha'], [\beta']}(1,2)$$

All correlations generated by the potential are constructed through the TC

- the coupling of quantum number are the same for any potential
- No need to save the matrix elements only the combination of the transformation coefficients
- $\bullet~\sim$ 3 hours for constructing and diagonalize the Hamiltonian

Warning!

- We will use SRG evolved N³LO500 NN interaction [1-2]
 - The Coulomb interaction is included as "bare" (not SRG evolved)
 - SRG evolution parameter $\Lambda = 1.2, 1.5, 1.8 \text{ fm}^{-1}$
- Explorative study with NNLO_{sat} [3]
- No 3-body forces (for now)
- We compute the mean values of "bare" operators

S.K. Bogner, R.J. Furnstahl, and R.J. Perry, PRC **75**, 061001(R) (2007)
 D.R. Entem and R. Machleidt, PRC **68**, 041001(R) (2003)
 A. Ekström, *et al.*, PRC **91**,051301 (2015)

- Include all the states up to a $K_{max} \Rightarrow FAIL!!$
- NOT all the states gives the same contribution ⇒ division by class [1]
 - Centrifugal barrier $\Rightarrow \ell_1 + \dots + \ell_5 \leq 2$
 - · two-body correlations are more important
- The ⁶Li ground state is a $J^{\pi} = 1^+$ state

wave	class	int.	K _{max}
S	C1	two-body	14
	C3	many-body	10
D	C2	two-body	12
	C4	many-body	10
Ρ	C5	all	8

[1] M. Viviani, et al., PRC 71,024006 (2005)

• For each channel we define

$$\Delta E_{ch}(K) = E_{ch}(K) - E_{ch}(K+2)$$

• Fit the quantity ΔE_{ch} with [1]

$$\Delta E_{ch}(K) = A_{ch} e^{-b_{ch}K} (1 - e^{-2b_{ch}})$$

Missing energy for channel

$$\Delta E_{ch}(\infty) = \sum_{K=\overline{K}}^{\infty} \Delta E(K) = A_{ch} e^{-b_{ch}\overline{K}}$$

- \overline{K} maximum K used for the channel
- Extrapolated energy

$$\mathsf{E}(\infty) = \mathsf{E}(\overline{K}) - \sum_{ch} \Delta \mathsf{E}_{ch}(\infty)$$

[1] S.K. Bogner et al., NPA 801, 21 (2008)

Λ [fm ⁻¹]	$E(\overline{K})$ [MeV]	$E(\infty)$ [MeV]	Ref. [1]	Exp.
SRG1.2	-31.735	-31.767(7)	-31.85(5)	-31.99
SRG1.5	-32.699	-32.789(15)	-33.00(5)	-31.99
SRG1.8	-32.093	-32.305(25)	-32.8(1)	-31.99
NNLO _{sat}	-29.77	-30.71(15)	_	-31.99

- The errors come form the fit
- Results of Ref. [1] extrapolated from $N_{max} = 10$

[1] E.D Jungerson, P. Navrátil and R.J. Furnstahl, PRC 83, 034301 (2011)

Charge radius

[1] CDB2k-SRG1.5 C. Forssén, E. Caurier, P. Navrátil, PRC 71, 021303 (2009)

$${}^{6}\text{Li} \simeq \alpha + d \Rightarrow \mu_{z}({}^{6}\text{Li}) \simeq \mu_{z}(d)$$

Experiment tell us $\mu_z(^6\text{Li}) < \mu_z(d)$

	$\mu_z(d)$	μ_z (⁶ Li)
SRG1.2	0.872	0.865
SRG1.5	0.868	0.860
SRG1.8	0.865	0.856
NNLO _{sat}	0.860	0.850
Exp.	0.857	0.822

- Negative contribution only from the *L* = 2 *S* = 1 component ⇒ NOT SUFFICIENT
- We need two body currents contribution!! [1]

[1] R. Schiavilla, et al., PRC 99, 034005 (2019)

Electric quadrupole moment

• Large cancellations between different K

[1] CDB2k-SRG1.5 C. Forssén, E. Caurier, P. Navrátil, PRC 71, 021303 (2009)

Contribution of the various waves

	S-D	D - D	P - P	P - D
SRG1.2	-0.173	-0.022	0.009	0.009
SRG1.5	-0.080	-0.021	0.012	0.010
SRG1.8	-0.028	-0.020	0.012	0.010
NNLO _{sat}	0.058	-0.016	0.015	0.011

- Direct connection with the strength of the tensor term in the potential
- Two-body currents contribution could be necessary!!

$\alpha + d$ form factor

$$\frac{f_{L}(r)}{r} = \langle \left[(\Psi_{\alpha} \otimes \Psi_{d})_{S} Y_{L}(\hat{r}) \right]_{J} | \Psi_{6_{Li}} \rangle$$

N³LO500-SRG1.5

$\alpha + d$ form factor

$$\frac{f_{L}(r)}{r} = \langle \left[(\Psi_{\alpha} \otimes \Psi_{d})_{S} Y_{L}(\hat{r}) \right]_{J} | \Psi_{^{6}\text{Li}} \rangle$$

$\alpha + d$ form factor

$$\frac{f_{L}(r)}{r} = \langle \left[(\Psi_{\alpha} \otimes \Psi_{d})_{S} Y_{L}(\hat{r}) \right]_{J} | \Psi_{6_{Li}} \rangle$$

ANC and spectroscopic factor (preliminary)

$$C_L = rac{f_L(r)}{W_{-\eta,L+1/2}(2kr)}$$
 $S_L = \int_0^\infty dr \, |f_L(r)|^2$

	B _c [MeV]	$C_0 [\text{fm}^{-1/2}]$	C_2 [fm ^{-1/2}]	$\mathcal{S}_0 + \mathcal{S}_2$
SRG1.2	2.985(7)	-3.96(2)	0.101(1)	0.914
SRG1.5	2.385(15)	-3.05(3)	0.056(1)	0.871
SRG1.8	1.684(7)	-2.34(6)	0.030(1)	0.841
Exp.	1.4743	-2.91(9)	0.077(18)	0.85(4)

- The ANCs depend on the binding energy B_c and only
- The spectroscopic factor represents the percentage of $\alpha + d$ clusterizzation of ⁶Li

$$B_c=B_{6_{
m Li}}-B_lpha-B_d,\,k=\sqrt{2\mu B_c/\hbar^2}$$
 and $\eta=2.88\mu/k$

Conclusions and future prospective

- Extension of the HH method to A > 4 is possible
 - Time consumption for coupling the TC $\sim 30.000 h$

 \Rightarrow technically possible to increase the basis

 $\bullet~\sim$ 3 human hours for building and solving the ^{6}Li Hamiltonian

 \Rightarrow easy to test various potentials

- Ground state of ⁶Li within the HH approach
 - Nicely coverged for SRG potentials
 - Magnetic dipole moment and electric quadrupole moment
 - strongly depend on tensor forces
 - need two-body currents!!
 - Towards scattering: the $\alpha + d$ clusterizzation
 - ANCs and spectroscpic factors

Pisa group

- A.G. GSSI, L'Aquila (Italy)
- <u>M. Viviani</u>, <u>L.E. Marcucci</u>, and A. Kievsky *INFN & Pisa University*, *Pisa* (*Italy*)
- L. Girlanda Lecce University, Lecce (Italy)
- J. Dohet-Eraly ULB, Bruxelles (Belgium)

Calculations supported by

CINECA

• Exponential behavior [1]

$$E(K) = E(\infty) + Ae^{-bK}$$

[1] S.K. Bogner et al., NPA 801, 21 (2008)