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Predicting with an arbitrary accuracy the Low-energy observables regardless
of the short-range behavior of the “fundamental” theory

Technique used

@ Establishing the relevant degrees of freedom of the system
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Effective theory is Since the cutoff is taken finite the
non-renormalizable J effective theory is well-defined

@ Setting the accuracy (the power in /A we stop)
© Establishing only the relevant operators for the accuracy required
© Considering the operators satisfying the underlying symmetries

@ Only a finite numbers of coupling constants needed
@ The high-energy effects are absorbed into these coupling constants
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Fields and gradients get combined in order to have operators
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Effective potential for a-« interaction

Regularization of the effective potential
Dimensionless coupling constants

A, B
VAT (K, Q) = 45 + o K Vet strong. = FACK)Vir ™" (K, Q)

= - P 2
+ ﬁ[ClK4 + &K?Q% + G3(K X Q)] Gaussian regulator fa(K?2) = e

4a r7 16T cutoff 167roz
K2

VcouL(T) f/\(K)

Full effective potential (coordinate space)

Verr(r) = —erf( >+a2A5‘3’(r) +a*Bv?6 (r) +a® [C1V46(3)( )

e (%) v (B (7))
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Regularization of the effective potential

Dimensionless coupling constants

A é
Vi (KL Q) = 4 + oKt Vi rong = FAKVE(K, Q)

= - P 2
+ ﬁ[ClK4 = C2K2Q2 + G3(K x Q)?] Gaussian regulator fa(K?2) = e

4o 16ma cutoff 167roz
Veou(r) = == =5 — 2= FA(K)

Full effective potential (coordinate space)
Verr(r) = —erf( >+a2A5‘3’(r) + a*BV262(r) + a [C1V46(3)( )
(41 e
e (39) re (2 + 2 (7))o

The Schrédinger equation with potential Ve has been solved
o Numerov's method for seeking the resonance condition of ®Be
@ Kohn's variational method for fitting data with L = 0, 2 and energies

Lower than 6 MeV
@ Study cutoff in the range [130 MeV, 150 MeV]
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Data analysis o-«
LO

D-wave phase shifts
S-wave phase shifts b

x%}\{ | < w
AN
AB =~ 0.12 AB =~ 0.74
Up to LO the effective theory predict S-wave phase shifts better than
D-wave ones J
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The NLO's coupling constant has been fitted to lLow-energy data J
S-wave phase shifts D-wave phase shifts

150 ‘
100
1

Ry
T T\T'\,\\R\‘
AB = 0.03 AB =~ 0.08
4 times less than LO 9 times less than LO
@ The NLO predicts the D-wave phase shifts better than the LO J
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Data analysis o-«

NLO
The NLO's coupling constant has been fitted to lLow-energy data J
S-wave phase shifts D-wave phase shifts

150 ‘
100
1

AB =~ 0.03 AB =~ 0.08
4 times less than LO 9 times less than LO

@ The NLO predicts the D-wave phase shifts better than the LO
@ Theory with cutoff 130 MeV provides best predictions J
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S-wave phase shifts D-wave phase shifts
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@ Th NLO and N2LO coupling constants has been sought by fitting

Low-energy data

S-wave phase shifts

D-wave phase shifts

AB =~ 0.04
comparable with NLO

AB =~ 0.01
4 times less than NLO

@ N2LO doesn't improve the accuracy for S-wave phase shifts
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@ Only central term acting on states with [ # 0
@ Th NLO and N2LO coupling constants has been sought by fitting
Low-energy data

S-wave phase shifts D-wave phase shifts

W gl
" ‘\ ;//
0 \\ 4
7 T /
— .
P
T Torope - . /
AB = 0.04 AB =~ 0.01
comparable with NLO 4 times less than NLO

@ N2LO doesn't improve the accuracy for S-wave phase shifts
@ N2LO improve the accuracy for D-wave phase shifts
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Data analysis o-«
(o] J

Data analysis

G-wave

Theory up to NLO Theory up to N2LO

@ The theoretical predictions follow the experimental trend
@ The theoretical error is greater than the cases of S-wave and D-wave

The -« effective potential which we have used carries only central terms )

Paolo Recchia (INPHYNI)
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Data analysis 3-a [Francesco Alemanno, Laurea Triennale in Fisica 2016,

Universita del Salento]
Ground state L=0

@ Only two-body a-a potential up to NLO by fitting data with energy
less than 1 MeV
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Data analysis 3-a [Francesco Alemanno, Laurea Triennale in Fisica 2016,

Universita del Salento]
Ground state L=0

@ Only two-body a-a potential up to NLO by fitting data with energy
less than 1 MeV

@ The Ritz variational method for bound state searching

A(MeV)  Ep(MeV)

100 —1.17820
120 —1.06630
140 —1.16920
160 —1.20128
180 —1.12625
200 —1.30226
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Data analysis 3-a [Francesco Alemanno, Laurea Triennale in Fisica 2016,

Universita del Salento]
Ground state L=0

@ Only two-body a-a potential up to NLO by fitting data with energy
less than 1 MeV

@ The Ritz variational method for bound state searching

A(MeV)  Eo(MeV)

100 —1.17820
120 —1.06630
140 —1.16920
160 —1.20128
180 —1.12625
200 —1.30226

Drawback Borromean system

Wrong binding energy f:
(—=7.26 MeV)
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L=2 state

@ A LO hyper-central three body term has been added

02
\/3body (p) = CAe2a?
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Data analysis 3-a [Francesco Alemanno, Laurea Triennale in Fisica 2016,

Universita del Salento]
L=2 state

@ A LO hyper-central three body term has been added

02
\/3body (p) = CAe2?

@ Its coupling constant has been fitted to get the binding energy of the
12C ground state

@ -« potential has been built

Drawback at very low energy
The 2t state hasn't never been (< 1MeV)
found for each cutoff @ Only hyper-central terms

have been considered
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N-o effective potential [Sara Murciano, Laurea Triennale in Fisica 2016,

Universita del Salento]
Symmetries and potential

Symmetries
Fields and gradients get combined in order to have operators

@ normal ordered

@ parity invariant

© time-reversal invariant

@ invariant under Galilean transformation
@ internal rotation (isospin)

4
Effective potential up to NLO
\/esfﬁrong (NLO)(K,Q,U) — A+ 81K2 + BQQz + B3'LO’ . Q X K

@ Only n-x phaseshifts data to test strong interaction
@ Study cutoff in the range [130 MeV, 150 MeV]
@ Fit of experimental data with L = 0, 1 and energies Lower than 8 MeV
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N-o effective potential [Sara Murciano, Laurea Triennale in Fisica 2016,

Universita del Salento]
LO: Si/2 phase shifts

n-« phase shifts p-« phase shifts

AB =~ 0.22 AB =~ 0.18
The data trend is well reproduced J
Relatively high cutoff dependent theory as a-a )

Paolo Recchia (INPHYNI) October 9, 2019 17 /21



N- o effective potential
o

N-o effective potential [Sara Murciano, Laurea Triennale in Fisica 2016,

Universita del Salento]
NLO: Si/2 phase shifts

n-« phase shifts p-a« phase shifts

150
r
o0 LN 1 . exper
1
1
I

Paolo Recchia (INPHYNI) October 9, 2019 18 /21



N- o effective potential
o

N-o effective potential [Sara Murciano, Laurea Triennale in Fisica 2016,

Universita del Salento]
NLO: Si/2 phase shifts

n-« phase shifts p-a« phase shifts

1
r
I
1% . 160
1
I

AB = 0.01 AB = 0.004

@ The NLO greatly improve the "goodness” of the theory J

Paolo Recchia (INPHYNI) October 9, 2019 18 /21



N- o effective potential
o

N-o effective potential [Sara Murciano, Laurea Triennale in Fisica 2016,

Universita del Salento]
NLO: Si/2 phase shifts

n-« phase shifts p-a« phase shifts

1
r
I
1% . 160
1
I

AB = 0.01 AB =~ 0.004
@ The NLO greatly improve the "goodness” of the theory
@ Theory with cutoff around 130 MeV provides good predictions as a-« J

Paolo Recchia (INPHYNI) October 9, 2019 18 /21



N- o effective potential
o

N-o effective potential [Sara Murciano, Laurea Triennale in Fisica 2016,

Universita del Salento]
NLO: Si/2 phase shifts

n-« phase shifts p-a« phase shifts

1
r
I
1% . 160
1
I

AB = 0.01 AB =~ 0.004
@ The NLO greatly improve the "goodness” of the theory
@ Theory with cutoff around 130 MeV provides good predictions as a-« J

Paolo Recchia (INPHYNI) October 9, 2019 18 /21



N- o effective potential
o

N-o effective potential [Sara Murciano, Laurea Triennale in Fisica 2016,

Universita del Salento]
NLO: Si/2 phase shifts

n-o phase shifts p-a phase shifts
AB = 0.01 AB =~ 0.004
@ The NLO greatly improve the "goodness” of the theory
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NLO: Si/2 phase shifts

n-« phase shifts p-a« phase shifts

1
17
160
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1

I

100

AB = 0.01 AB = 0.004

@ The NLO greatly improve the "goodness” of the theory
@ Theory with cutoff around 130 MeV provides good predictions as a-« J

@ Theory up to NLO
@ Only central potential terms J
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N-o effective potential [Sara Murciano, Laurea Triennale in Fisica 2016,

Universita del Salento]
NLO: Pi/2, P3/2 phase shifts

n-oc phase shifts: Py o p-oc phase shifts: Py o

n-oc phase shifts: Ps/» p-o phase shifts: Ps/»

Energy (MeV Encrey (MeV
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Conclusions

Comparison with a phenomenological potential

S-wave
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@ The phenomenological

@ The building of an

@ An effective theory allows
us to formally justify the
Gaussian shape of a
phenomenological
potential

potentials are built by
fitting a Large range of
data, while the effective
theory uses only the
Low-energy ones

effective theory isn’t
equal to fit a
Fundamental theory
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Conclusions

Developments
@ Inserting non-central terms

» improves the predictions in higher L channel

> improves the accuracy at high energies
@ System consisting of “core” «-« and “halo” N: °Be
@ 3-x system

@ Studying the Hoyle state in a Low-energy effective theory
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