Halo effective theory for α - α , 3- α and N- α interactions

Paolo Recchia

October 9, 2019

э

3 October 9, 2019 2/21

< ∃ >

э October 9, 2019 2/21

.⊒ →

 $3-\alpha$ and N- α interactions

Paolo Recchia (INPHYNI)

October 9, 2019 2 / 21

Purpose of this work

Building an "halo" effective theory for the α - α interaction and test it in 3- α and N- α interactions

Paolo Recchia (INPHYNI)

October 9, 2019 2 / 21

Purpose of this work

Building an "halo" effective theory for the α - α interaction and test it in 3- α and N- α interactions

Purpose of this work

Building an "halo" effective theory for the $\alpha\text{-}\alpha$ interaction and test it ir 3- α and N- α interactions

Paolo Recchia (INPHYNI)

October 9, 2019 2 / 21

Purpose of this work

Building an "halo" effective theory for the α - α interaction and test it in 3- α and N- α interactions

Building an "halo" effective theory for the $\alpha\text{-}\alpha$ interaction and test it in 3- α and N- α interactions

Paolo Recchia (INPHYNI)

October 9, 2019 2 / 21

Building an "halo" effective theory for the $\alpha\text{-}\alpha$ interaction and test it ir 3- α and N- α interactions

Paolo Recchia (INPHYNI)

October 9, 2019 2 / 21

Purpose of this work

Building an "halo" effective theory for the $\alpha\text{-}\alpha$ interaction and test it in 3- α and N- α interactions

Purpose of this work

Building an "halo" effective theory for the α - α interaction and test it in 3- α and N- α interactions

Purpose of this work

Building an "halo" effective theory for the α - α interaction and test it in 3- α and N- α interactions

Purpose of this work

Building an "halo" effective theory for the $\alpha\text{-}\alpha$ interaction and test it in 3- α and N- α interactions

Introo ○●	duction	Effective theories 00	α - α effective potential 0000	Data analysis α-α 0000	Data analysis 3-α 00	N- α effective potential 0000	Conclusions 00
Int Sum	rod	uction					
1	Effec ● W ● Cι	ctive theori hy effective utoff regula	es e theories? nrization				
		effective po cales D _O and N ² l					
					• • • •	⊡ → ∢ ≣ → ∢ ≣ →	₹ <i>•</i> ० ०

Intro ○●	duction	Effective theories 00	α - α effective potential 0000	Data analysis α-α 0000	Data analysis 3-α 00	N- α effective potential 0000	Conclusions 00
Int _{Sun}	t rod nmary	uction					
1	Effect • W • Cu $\alpha - \alpha$ · · • Sc • LC • NL	ctive theori hy effective utoff regula effective po cales D _O and N ² I	es e theories? irization otential				
	 Re Data L0 N1 N² 	egularizatio) analysis a) _O ?LO	n of the effect ←α	uve potentia	L		
			-,		• • • •		E 990

Introc ○●	luction	Effective theories 00	α - α effective potential 0000	Data analysis α-α 0000	Data analysis 3-α 00	N- α effective potential 0000	Conclusions 00
Int Sum	rod	uction					
1	Effec • W • Cι α-α (• Sc • L(• NI • Re	tive theori hy effective itoff regula effective po cales D _O and N ² l egularizatio	es e theories? nrization otential _O n of the effect	ive potentia	L		
3	Data • LC • NL • N ² Data • Gr • L=	a analysis a D LO 1 analysis 3 round state =2 state	-α L=0				
					• • • •		₹ • • • • •

Intro ○●	duction	Effective theories	α - α effective potential 0000	Data analysis α-α 0000	Data analysis 3-α 00	N- α effective potential 0000	Conclusions 00
Int Sun	trod nmary	uction					
1	Effec • W • Cι α-α • • Sc • LC • NL	ctive theorie by effective utoff regula effective po- cales D _O and N ² L O and N ² L	es e theories? rization otential _O	ivo potentia	I		
3	 Data LC NI N² 	a analysis α Ο -Ο ² LO	r of the effect -α		L		
4	Data • Gr • L= N-α • Sy • L0 • NL	a analysis 3 round state =2 state effective po mmetries a D: S _{1/2} pha _O: S _{1/2} pha	-α L=0 Detential and potential se shifts base shifts				
					<pre>< = > <</pre>	₫ ≻ ∢ ≣ ≻ ∢ ≣ ≻	E DQC

Introductio	n Effective theories 00	α - α effective potential 0000	Data analysis α-α 0000	Data analysis 3-α 00	N-α effective potential 0000	Conclusions 00
Intro Summa	duction					
1 Eff • \ • (• (• (• (• (• (• (• (ective theori Why effective Cutoff regula effective po Scales O NLO and N ²	es e theories? arization otential LO				
 F Da¹ L N N 	Regularizatic ta analysis ø LO ILO J ² LO	on of the effect α - α	ive potentia	L		
 4 Da • C • L 	ta analysis 3 Ground state .=2 state	$a = \alpha$ L=0				
 5 N-a 6 S 6 L 6 N 6 N 6 N 	Symmetries a $O: S_{1/2}$ pha $NLO: S_{1/2}$ pha $NLO: S_{1/2}$ pha $NLO: P_{1/2}, P_{1/2}$	otential and potential use shifts nase shifts 3/2 phase shifts	5			
6 Co	nclusions			• • • •		≣ ୬୯୯

Introduction Summary Image: Effective theories Why effective theories? Cutoff regularization $\alpha - \alpha$ effective potential • Scales • LO • NLO and N ² LO • Regularization of the effective potential Data analysis $\alpha - \alpha$ • LO • NLO • L=2 state Image: N- α effective potential • Symmetries and potential • LO: S _{1/2} phase shifts • NLO: S _{1/2} phase shifts • NLO: P _{1/2} , P _{3/2} phase shifts • NLO: P _{1/2} , P _{3/2} phase shifts	Intro ○●	duction	Effective theories	α - α effective potential 0000	Data analysis α-α 0000	Data analysis 3-α 00	N- α effective potential 0000	Conclusions 00
 Effective theories Why effective theories? Cutoff regularization α-α effective potential Scales LO NLO and N²LO Regularization of the effective potential Data analysis α-α LO NLO N²LO Data analysis 3-α Ground state L=0 L=2 state N-α effective potential Symmetries and potential LO: S_{1/2} phase shifts NLO: S_{1/2} phase shifts NLO: S_{1/2} phase shifts NLO: S_{1/2} phase shifts Occusions 	Int Sun	trod nmary	uction					
 Regularization of the effective potential. Data analysis α-α LO NLO N²LO Data analysis 3-α Ground state L=0 L=2 state N-α effective potential Symmetries and potential LO: S_{1/2} phase shifts NLO: S_{1/2} phase shifts NLO: P_{1/2}, P_{3/2} phase shifts 	2	Effec • W • Cι α-α 6 • Sc • LC • NL	ctive theorie hy effective itoff regula effective po cales D _O and N ² L	es e theories? rization otential _O				
 Data analysis 3-α Ground state L=0 L=2 state N-α effective potential Symmetries and potential LO: S_{1/2} phase shifts NLO: S_{1/2} phase shifts NLO: P_{1/2}, P_{3/2} phase shifts Conclusions 	3	 Re Data LC NL N² 	egularizatio a analysis α Ο -Ο ² LΟ	n of the effect -α	ive potentia	L		
 S-α effective potential Symmetries and potential LO: S_{1/2} phase shifts NLO: S_{1/2} phase shifts NLO: P_{1/2}, P_{3/2} phase shifts Conclusions 	4	Data • Gr • L=	a analysis 3 round state =2 state	L=0				
Conclusions (ा > (त) > (२ > ())))))))))	5	N-α • Sy • LC • NL • NL	effective point of the second	otential and potential se shifts nase shifts 3/2 phase shifts	5			
	6	Cond	clusions	-		• • • •		E 996

Effective theories Why effective theories?

Issue

Short-distance (high-energy) theory is unknown or complicated

Purpose

Predicting with an arbitrary accuracy the low-energy observables regardless of the short-range behavior of the "fundamental" theory

Technique used

- Establishing the relevant degrees of freedom of the system
- Establishing the relevant scale ratios of the system
- Building a series expansion in powers of the scale ratio

Purpose

Predicting with an arbitrary accuracy the low-energy observables regardless of the short-range behavior of the "fundamental" theory

Technique used

- Establishing the relevant degrees of freedom of the system
- Establishing the relevant scale ratios of the system
- · Building a series expansion in powers of the scale ro

Effective theories Why effective theories?

Purpose

Predicting with an arbitrary accuracy the low-energy observables regardless of the short-range behavior of the "fundamental" theory

Technique used

• Establishing the relevant degrees of freedom of the system

- Establishing the relevant scale ratios of the system
- Building a series expansion in powers of the scale ratios

Purpose

Predicting with an arbitrary accuracy the low-energy observables regardless of the short-range behavior of the "fundamental" theory

Technique used

- Establishing the relevant degrees of freedom of the system
- Establishing the relevant scale ratios of the system
- Building a series expansion in powers of the scale ratios

Purpose

Predicting with an arbitrary accuracy the low-energy observables regardless of the short-range behavior of the "fundamental" theory

Technique used

- Establishing the relevant degrees of freedom of the system
- Establishing the relevant scale ratios of the system
- Building a series expansion in powers of the scale ratios

The error due to the cutoff is corrected by introducing contact terms multiplied by some coupling constants

- Setting the accuracy (the power in p/A we stop)
 Establishing only the relevant operators for the accuracy required
 Considering the operators satisfying the underlying symmetries
- Concycle infinite manufactor of compling control and interview.
 The high control provide factor and a boothest (providence) researchest (interview).

Cutoff regularization

- Regularization of the theory by a cutoff Λ
- The effective theory is valid only for p. The effective theory is more simple $\sigma < \Lambda$ than the fundamental one
 - The error due to the cutoff is corrected by introducing contact terms multiplied by some coupling constants

- Setting the accuracy (the power in p/A we stop)
 Establishing only the relevant operators for the accuracy required
 Considering the operators satisfying the underlying symmetries

- Regularization of the theory by a cutoff A
- The effective theory is valid only for $p<\Lambda$
 - The error due to the cutoff is corrected by introducing contact terms multiplied by some coupling constants

- Setting the accuracy (the power in p/A we stop)
 Establishing only the relevant operators for the accuracy required
 Considering the operators satisfying the underlying symmetries

Paolo Recchia (INPHYNI

Setting the accuracy (the power in p/A we stop)
 Establishing only the relevant operators for the accuracy required
 Considering the operators satisfying the underlying symmetries

Only a finite numbers of coupling constants needed

α - α effective potential

Formalism

The $\boldsymbol{\alpha}$ particles created and annihilated by the fields

$$arphi(x) = \int rac{\mathrm{d}^3 q}{(2\pi)^3} a_q \mathrm{e}^{-\mathrm{i} q \cdot x}
onumber \ arphi^\dagger(x) = \int rac{\mathrm{d}^3 q}{(2\pi)^3} a_q^\dagger \mathrm{e}^{\mathrm{i} q \cdot x}$$

Symmetries

Fields and gradients get combined in order to have operators

- normal ordered
- parity invariant
- O time-reversal invariant
- O invariant under Galilean transformation

Hamiltonian density:

 $\mathcal{H}^{(LO)} = a \varphi^{\dagger} \varphi \varphi^{\dagger} \varphi$

(except muthemore) O.L. of quilibring potential

α - α effective potential

Formalism

The $\boldsymbol{\alpha}$ particles created and annihilated by the fields

$$arphi(x) = \int rac{\mathrm{d}^3 q}{(2\pi)^3} a_q \mathrm{e}^{-iq\cdot x}
onumber \ \varphi^\dagger(x) = \int rac{\mathrm{d}^3 q}{(2\pi)^3} a_q^\dagger \mathrm{e}^{iq\cdot x}$$

Symmetries

Fields and gradients get combined in order to have operators

normal ordered

- parity invariant
- time-reversal invariant
- invariant under Galilean transformation

Hamiltonian density:

 $\mathcal{H}^{(LO)} = a \varphi^{\dagger} \varphi \varphi^{\dagger} \varphi$

(acade mutation) O.I. of quitalination space)

<ロト <部 > < 2 > < 2 > - 2

α - α effective potential

Formalism

The $\boldsymbol{\alpha}$ particles created and annihilated by the fields

$$arphi(x) = \int rac{\mathrm{d}^3 q}{(2\pi)^3} a_q \mathrm{e}^{-iq\cdot x}
onumber \ \varphi^\dagger(x) = \int rac{\mathrm{d}^3 q}{(2\pi)^3} a_q^\dagger \mathrm{e}^{iq\cdot x}$$

Symmetries

Fields and gradients get combined in order to have operators

- Inormal ordered
- e parity invariant
- 🎱 time-reversal invariant
- invariant under Galilean transformation

systematic consinge

 $\mathcal{H}^{(LO)} = \alpha \varphi^{\dagger} \varphi \varphi^{\dagger} \varphi$

(exage mutation) O.I. of quilibrium space)

 $V_{eff}^{\text{strong}(LO)} = a$

<ロト <部 > < 2 > < 2 > - 2

α - α effective potential

Formalism

The $\boldsymbol{\alpha}$ particles created and annihilated by the fields

$$arphi(x) = \int rac{\mathrm{d}^3 q}{(2\pi)^3} a_q \mathrm{e}^{-iq\cdot x}
onumber \ \varphi^\dagger(x) = \int rac{\mathrm{d}^3 q}{(2\pi)^3} a_q^\dagger \mathrm{e}^{iq\cdot x}$$

Symmetries

Fields and gradients get combined in order to have operators

- normal ordered
- 2 parity invariant
- time-reversal invariant

invariant under Galilean transformation

 $\mathcal{H}^{(0,0)}=aarphi^{\dagger}arphiarphi^{\dagger}arphi$

(exage mutation) OLI of quilibrium space)

 $V_{cr}^{\text{strong}(LO)} = a$

α - α effective potential

Formalism

The $\boldsymbol{\alpha}$ particles created and annihilated by the fields

$$arphi(x) = \int rac{\mathrm{d}^3 q}{(2\pi)^3} a_q \mathrm{e}^{-iq\cdot x}
onumber \ \varphi^\dagger(x) = \int rac{\mathrm{d}^3 q}{(2\pi)^3} a_q^\dagger \mathrm{e}^{iq\cdot x}$$

Symmetries

Fields and gradients get combined in order to have operators

- normal ordered
- parity invariant
- time-reversal invariant
- invariant under Galilean transformation

العمالية: tonian density: ${\cal R}^{(LO)}=a \varphi^{\dagger} \varphi \varphi^{\dagger} \varphi$

(assequence) CLL of qu'ilstradoq avecsalla

<ロト <部 > < 2 > < 2 > - 2

Introduction Effective theories $\alpha - \alpha$ effective potential Data analysis $\alpha - \alpha$ Data analysis $3 - \alpha$ N- α effective potential Conclusions on 0 = 0 = 0 on 0 = 0 = 0 on 0 = 0 = 0

α - α effective potential

Formalism

The $\boldsymbol{\alpha}$ particles created and annihilated by the fields

$$arphi(x) = \int rac{\mathrm{d}^3 q}{(2\pi)^3} a_q \mathrm{e}^{-iq\cdot x}
onumber \ \varphi^\dagger(x) = \int rac{\mathrm{d}^3 q}{(2\pi)^3} a_q^\dagger \mathrm{e}^{iq\cdot x}$$

Symmetries

Fields and gradients get combined in order to have operators

- normal ordered
- parity invariant
- time-reversal invariant
- invariant under Galilean transformation

 $\mathcal{H}^{(ext{LO})} = a arphi^{\dagger} arphi arphi^{\dagger} arphi$

Effective potential up to LO (momentum space)

 $V_{\rm eff}^{\rm strong (LO)} = 0$

<ロト <部 > < 2 > < 2 > - 2

 Introduction
 Effective theories
 $\alpha - \alpha$ effective potential
 Data analysis $\alpha - \alpha$ Data analysis $3 - \alpha$ N- α effective potential
 Conclusions

 00
 00
 000
 000
 000
 000
 000
 000

α - α effective potential

Formalism

The α particles created and annihilated by the fields

$$arphi(x) = \int rac{\mathrm{d}^3 q}{(2\pi)^3} a_q \mathrm{e}^{-iq\cdot x}
onumber \ \varphi^\dagger(x) = \int rac{\mathrm{d}^3 q}{(2\pi)^3} a_q^\dagger \mathrm{e}^{iq\cdot x}$$

Symmetries

Fields and gradients get combined in order to have operators

- Inormal ordered
- parity invariant
- time-reversal invariant
- invariant under Galilean transformation

Hamiltonian density:

 $\mathcal{H}^{(\mathrm{LO})} = a \varphi^{\dagger} \varphi \varphi^{\dagger} \varphi$

Effective potential up to LO (momentum space):

$$V_{\rm eff}^{\rm strong (LO)} = a$$

Paolo Recchia (INPHYNI)

 Introduction
 Effective theories
 $\alpha - \alpha$ effective potential
 Data analysis $\alpha - \alpha$ Data analysis $3 - \alpha$ N- α effective potential
 Conclusions

 00
 00
 000
 000
 000
 000
 000
 000

α - α effective potential

Formalism

The $\boldsymbol{\alpha}$ particles created and annihilated by the fields

$$arphi(x) = \int rac{\mathrm{d}^3 q}{(2\pi)^3} a_q \mathrm{e}^{-iq\cdot x}
onumber \ \varphi^\dagger(x) = \int rac{\mathrm{d}^3 q}{(2\pi)^3} a_q^\dagger \mathrm{e}^{iq\cdot x}$$

Symmetries

Fields and gradients get combined in order to have operators

- Inormal ordered
- parity invariant
- time-reversal invariant
- invariant under Galilean transformation

Hamiltonian density:

$$\mathcal{H}^{(LO)} = a \varphi^{\dagger} \varphi \varphi^{\dagger} \varphi$$

Effective potential up to LO (momentum space):

$$V_{\rm eff}^{\rm strong (LO)} = a$$

Effective potential for α - α interaction NLO and N²LO

Effective potential for α - α interaction NLO and N²LO

NLO operators	N ² LO operators
$\nabla_{1,2} = \nabla(\varphi^{\dagger}\varphi)_{1,2}$ $O_1 = \nabla_1 \cdot \nabla_2$ $O_2 = \overleftarrow{\nabla}_1 \cdot \overleftarrow{\nabla}_2$ $O_3 = \overleftarrow{\nabla}_1 \cdot \overleftarrow{\nabla}_1$ $O_4 = i\nabla_1 \cdot \overleftarrow{\nabla}_2$	$\nabla_{12} = \nabla_2 - \nabla_1 , \overleftarrow{\nabla} = \varphi^{\dagger} \overleftarrow{\nabla} \varphi$ $U_1 = \nabla_1^4 , U_2 = \nabla_1^2 \overleftarrow{\nabla}_{12}^2 , U_3 = \overleftarrow{\nabla}_{12}^4$ $U_4 = i \nabla_1^3 \overleftarrow{\nabla}_{12} , U_5 = i \nabla_1 \overleftarrow{\nabla}_{12}^3$ $U_6 = (\nabla_1 \cdot \overleftarrow{\nabla}_{12}) (\nabla_1 \cdot \overleftarrow{\nabla}_{12})$
	SYMMETRIES ↓

Effective potential for α - α interaction NLO and N²LO

NLO operators	N ² LO operators					
$\nabla_{1,2} = \nabla(\varphi^{\dagger}\varphi)_{1,2}$ $O_1 = \nabla_1 \cdot \nabla_2$ $O_2 = \overleftarrow{\nabla}_1 \cdot \overleftarrow{\nabla}_2$ $O_3 = \overleftarrow{\nabla}_1 \cdot \overleftarrow{\nabla}_1$ $O_4 = i\nabla_1 \cdot \overleftarrow{\nabla}_2$	$\nabla_{12} = \nabla_2 - \nabla_1 , \overleftarrow{\nabla} = \varphi^{\dagger} \overleftarrow{\nabla} \varphi$ $U_1 = \nabla_1^4 , U_2 = \nabla_1^2 \overleftarrow{\nabla}_{12}^2 , U_3 = \overleftarrow{\nabla}_{12}^4$ $U_4 = i \nabla_1^3 \overleftarrow{\nabla}_{12} , U_5 = i \nabla_1 \overleftarrow{\nabla}_{12}^3$ $U_6 = (\nabla_1 \cdot \overleftarrow{\nabla}_{12}) (\nabla_1 \cdot \overleftarrow{\nabla}_{12})$					
SYMMETRIES						
	*					
Effective potential up to N	N ² LO (momentum space)					
_						

$$V_{\rm eff}^{\rm strong (N^2LO)}(K,Q) = A + BK^2 + C_1K^4 + C_2K^2Q^2 + C_3(K \times Q)^2$$

with

 $Q = rac{p'+p}{2}$ $p = p_2 - p_1$ K = p' - p. $p' = p_2 - p'_1$

The coupling constants are dimensionful

Effective potential for α - α interaction NLO and N²LO

NLO operators	N ² LO operators			
$\nabla_{1,2} = \nabla(\varphi^{\dagger}\varphi)_{1,2}$ $O_1 = \nabla_1 \cdot \nabla_2$ $O_2 = \overleftarrow{\nabla}_1 \cdot \overleftarrow{\nabla}_2$ $O_3 = \overleftarrow{\nabla}_1 \cdot \overleftarrow{\nabla}_1$ $O_4 = i\nabla_1 \cdot \overleftarrow{\nabla}_2$	$\nabla_{12} = \nabla_2 - \nabla_1 , \overleftarrow{\nabla} = \varphi^{\dagger} \overleftarrow{\nabla} \varphi$ $U_1 = \nabla_1^4 , U_2 = \nabla_1^2 \overleftarrow{\nabla}_{12}^2 , U_3 = \overleftarrow{\nabla}_{12}^4$ $U_4 = i \nabla_1^3 \overleftarrow{\nabla}_{12} , U_5 = i \nabla_1 \overleftarrow{\nabla}_{12}^3$ $U_6 = (\nabla_1 \cdot \overleftarrow{\nabla}_{12}) (\nabla_1 \cdot \overleftarrow{\nabla}_{12})$			
SYMMETRIES				
	¥			

Effective potential up to N^2LO (momentum space)

$$V_{\rm eff}^{\rm strong~(N^2LO)}(K,Q) = A + BK^2 + C_1K^4 + C_2K^2Q^2 + C_3(K\times Q)^2$$
 with

 $Q = rac{p'+p}{2}$ $p = p_2 - p_1$ The coupling constants are dimensionful

Effective potential for α - α interaction Regularization of the effective potential

Dimensionless coupling constants

$$\begin{split} &\mathcal{V}_{\text{eff}}^{\text{strong}}(K,Q) = \frac{\tilde{A}}{\Lambda^2} + \frac{\tilde{B}}{\Lambda^4}K^2 + \\ &+ \frac{1}{\Lambda^6} [\tilde{C}_1 K^4 + \tilde{C}_2 K^2 Q^2 + \tilde{C}_3 (K \times Q)^2] \end{split}$$

$$V_{
m eff,\ strong}^{
m reg} = f_{\Lambda}(K^2) V_{
m eff}^{
m strong}(K,Q)$$

Gaussian regulator
$$f_{\wedge}(K^2)={
m e}^{-rac{K}{2 \wedge}}$$

$$V_{
m cout}(r) = rac{4lpha}{r} \stackrel{F.T.}{ o} rac{16\pilpha}{K^2} \stackrel{
m cutoff}{ o} rac{16\pilpha}{K^2} f_{\Lambda}(K)$$

$$\begin{split} V_{\rm eff}(r) &= \frac{4\alpha}{r} {\rm erf}\left(\frac{r}{a\sqrt{2}}\right) + a^2 \bar{A} \delta_a^{(3)}(r) + a^4 \bar{B} \nabla^2 \delta_a^{(3)}(r) + a^6 \Big[\bar{\mathcal{C}}_1 \nabla^4 \delta_a^{(3)}(r) \\ &- \bar{\mathcal{C}}_2 \nabla^2 \delta_a^{(3)}(r) \left(\frac{1}{2} \stackrel{\leftarrow}{\nabla}\right)^2 + \bar{\mathcal{C}}_3 \left(\frac{l(l+1)}{a^4} + \frac{2}{a^2} \left(\frac{1}{2} \stackrel{\leftarrow}{\nabla}\right)^2\right) \delta_a^{(3)}(r) \Big] \end{split}$$

ネト イヨト イヨト

Effective potential for α - α interaction Regularization of the effective potential

Dimensionless coupling constants

$$egin{aligned} & \mathcal{M}^{ ext{strong}}(K,Q) = rac{ ilde{A}}{\Lambda^2} + rac{ ilde{B}}{\Lambda^4}K^2 + \ & + rac{1}{\Lambda^6}[ilde{C}_1K^4 + ilde{C}_2K^2Q^2 + ilde{C}_3(K imes Q)^2] \end{aligned}$$

$$V_{\mathrm{eff,\ strong}}^{\mathrm{reg}} = f_{\Lambda}(K^2) V_{\mathrm{eff}}^{\mathrm{strong}}(K,Q)$$

Gaussian regulator
$$f_{\wedge}(K^2) = \mathrm{e}^{-rac{K^2}{2\Lambda^2}}$$

$$V_{
m cout}(r) = rac{4lpha}{r} \stackrel{{\scriptscriptstyle F.T.}}{\longrightarrow} rac{16\pilpha}{K^2} \stackrel{{
m cutoff}}{\longrightarrow} rac{16\pilpha}{K^2} f_{\Lambda}(K)$$

$$\begin{split} V_{\rm eff}(r) &= \frac{4\alpha}{r} {\rm erf}\Big(\frac{r}{a\sqrt{2}}\Big) + a^2 \tilde{A} \delta_a^{(3)}(r) + a^4 \tilde{B} \nabla^2 \delta_a^{(3)}(r) + a^6 \Big[\tilde{C}_1 \nabla^4 \delta_a^{(3)}(r) \\ &- \tilde{C}_2 \nabla^2 \delta_a^{(3)}(r) \Big(\frac{1}{2} \overleftrightarrow{\nabla}\Big)^2 + \tilde{C}_3 \Big(\frac{l(l+1)}{a^4} + \frac{2}{a^2} \Big(\frac{1}{2} \overleftrightarrow{\nabla}\Big)^2 \Big) \delta_a^{(3)}(r) \Big] \end{split}$$

ネト イヨト イヨト

Effective potential for α - α interaction Regularization of the effective potential

Dimensionless coupling constants

$$egin{aligned} & \mathcal{M}^{ ext{strong}}_{ ext{eff}}(K,Q) = rac{ ilde{A}}{\Lambda^2} + rac{ ilde{B}}{\Lambda^4}K^2 + \ & + rac{1}{\Lambda^6}[ilde{C}_1K^4 + ilde{C}_2K^2Q^2 + ilde{C}_3(K imes Q)^2] \end{aligned}$$

$$V_{\mathrm{eff, strong}}^{\mathrm{reg}} = f_{\wedge}(K^2) V_{\mathrm{eff}}^{\mathrm{strong}}(K, Q)$$

Gaussian regulator
$$f_{\wedge}(K^2) = e^{-rac{K^2}{2\Lambda^2}}$$

Regularization of the Coulomb potential

$$V_{\text{coul}}(r) = rac{4lpha}{r} \stackrel{F.T.}{\longrightarrow} rac{16\pilpha}{K^2} \stackrel{ ext{cutoff}}{\longrightarrow} rac{16\pilpha}{K^2} f_{\wedge}(K)$$

$$\begin{split} V_{\rm eff}(r) &= \frac{4\alpha}{r} {\rm erf}\Big(\frac{r}{a\sqrt{2}}\Big) + a^2 \tilde{A} \delta_a^{(3)}(r) + a^4 \tilde{B} \nabla^2 \delta_a^{(3)}(r) + a^6 \Big[\tilde{C}_1 \nabla^4 \delta_a^{(3)}(r) \\ &- \tilde{C}_2 \nabla^2 \delta_a^{(3)}(r) \Big(\frac{1}{2} \overleftrightarrow{\nabla}\Big)^2 + \tilde{C}_3 \Big(\frac{l(l+1)}{a^4} + \frac{2}{a^2} \Big(\frac{1}{2} \overleftrightarrow{\nabla}\Big)^2 \Big) \delta_a^{(3)}(r) \Big] \end{split}$$

R + R = F + R = F

Effective potential for α - α interaction Regularization of the effective potential

Dimensionless coupling constants

$$egin{aligned} & \mathcal{M}^{ ext{strong}}(K,Q) = rac{ ilde{A}}{\Lambda^2} + rac{ ilde{B}}{\Lambda^4}K^2 + \ & + rac{1}{\Lambda^6}[ilde{C}_1K^4 + ilde{C}_2K^2Q^2 + ilde{C}_3(K imes Q)^2] \end{aligned}$$

$$V_{\mathrm{eff,\ strong}}^{\mathrm{reg}} = f_{\wedge}(K^2) V_{\mathrm{eff}}^{\mathrm{strong}}(K,Q)$$

Gaussian regulator
$$f_{\Lambda}(K^2) = e^{-rac{K^2}{2\Lambda^2}}$$

Regularization of the Coulomb potential

$$V_{\text{coul}}(r) = rac{4lpha}{r} \stackrel{\text{F.T.}}{\longrightarrow} rac{16\pilpha}{K^2} \stackrel{ ext{cutoff}}{\longrightarrow} rac{16\pilpha}{K^2} f_{\wedge}(K)$$

Full effective potential (coordinate space)

$$\begin{split} \mathcal{V}_{\text{eff}}(r) &= \frac{4\alpha}{r} \text{erf}\Big(\frac{r}{a\sqrt{2}}\Big) + a^2 \tilde{A} \delta_a^{(3)}(r) + a^4 \tilde{B} \nabla^2 \delta_a^{(3)}(r) + a^6 \Big[\tilde{C}_1 \nabla^4 \delta_a^{(3)}(r) \\ &- \tilde{C}_2 \nabla^2 \delta_a^{(3)}(r) \Big(\frac{1}{2} \overleftrightarrow{\nabla}\Big)^2 + \tilde{C}_3 \Big(\frac{l(l+1)}{a^4} + \frac{2}{a^2} \Big(\frac{1}{2} \overleftrightarrow{\nabla}\Big)^2 \Big) \delta_a^{(3)}(r) \Big] \end{split}$$

R + R = F + R = F

IntroductionEffective theories
00 α - α effective potential
000Data analysis α - α
000Data analysis 3- α
000N- α effective potential
000Conclusions
000

Effective potential for α - α interaction Regularization of the effective potential

Dimensionless coupling constants

Regularizatio

$$\begin{split} & \mathcal{A}^{\text{strong}}_{\text{eff}}(K,Q) = \frac{\tilde{A}}{\Lambda^2} + \frac{\tilde{B}}{\Lambda^4}K^2 + \\ & + \frac{1}{\Lambda^6}[\tilde{C}_1K^4 + \tilde{C}_2K^2Q^2 + \tilde{C}_3(K \times Q)^2] \end{split}$$

$$V_{\mathrm{eff, strong}}^{\mathrm{reg}} = f_{\wedge}(K^2) V_{\mathrm{eff}}^{\mathrm{strong}}(K, Q)$$

Gaussian regulator
$$f_{\Lambda}(K^2) = e^{-rac{K^2}{2\Lambda^2}}$$

Regularization of the Coulomb potential

$$V_{ ext{coul}}(r) = rac{4lpha}{r} \stackrel{\text{F.T.}}{\longrightarrow} rac{16\pilpha}{K^2} \stackrel{ ext{cutoff}}{\longrightarrow} rac{16\pilpha}{K^2} f_{\wedge}(K)$$

Full effective potential (coordinate space)

$$\begin{split} V_{\text{eff}}(r) &= \frac{4\alpha}{r} \text{erf}\Big(\frac{r}{a\sqrt{2}}\Big) + a^2 \tilde{A} \delta_a^{(3)}(r) + a^4 \tilde{B} \nabla^2 \delta_a^{(3)}(r) + a^6 \Big[\tilde{C}_1 \nabla^4 \delta_a^{(3)}(r) \\ &- \tilde{C}_2 \nabla^2 \delta_a^{(3)}(r) \Big(\frac{1}{2} \overleftrightarrow{\nabla}\Big)^2 + \tilde{C}_3 \Big(\frac{l(l+1)}{a^4} + \frac{2}{a^2} \Big(\frac{1}{2} \overleftrightarrow{\nabla}\Big)^2 \Big) \delta_a^{(3)}(r) \Big] \end{split}$$

The Schrödinger equation with potential V_{eff} has been solved

- Numerov's method for seeking the resonance condition of ⁸Be
- Kohn's variational method for fitting data with L = 0, 2 and energies lower than 6 MeV
- Study cutoff in the range [130 MeV, 150 MeV]

$\Delta B \approx 0.12$

$\Delta B \approx 0.74$

Up to LO the effective theory predict S-wave phase shifts better than D-wave ones

S-wave phase shifts

LO

 $\Delta B \approx 0.12$

 $\Delta B \approx 0.74$

D-wave phase shifts

Up to LO the effective theory predict S-wave phase shifts better than D-wave ones

Paolo Recchia	(INPHYNI)
---------------	-----------

3

S-wave phase shifts

LO

 $\Delta B \approx 0.12$

 $\Delta B \approx 0.74$

D-wave phase shifts

Up to LO the effective theory predict S-wave phase shifts better than D-wave ones

Paolo Recchia	(INPHYNI)
---------------	-----------

э

Data	analysis ($\gamma_{-}\alpha$				
00	00	0000	0000	00	0000	00
			Data analysis α - α	Data analysis 3- α		Conclusions

Data analysis α - α

Preliminary observations

The NLO's coupling constant has been fitted to low-energy data

The NLO predicts the D-wave phase shifts better than the LO
 Theory with cutoff 130 MeV provides best predictions

3

Data	analysis ($\gamma_{-}\alpha$				
00	00	0000	0000	00	0000	00
			Data analysis α - α	Data analysis 3- α		Conclusions

Data analysis α - α

Preliminary observations

The NLO's coupling constant has been fitted to low-energy data

The NLO predicts the D-wave phase shifts better than the LO
 Theory with cutoff 130 MeV provides best predictions

3

$\Delta B \approx 0.03$

4 times less than LO

9 times less than LO

イロト イポト イヨト イヨト

 $\Delta B \approx 0.08$

The NLO predicts the D-wave phase shifts better than the LO
 Theory with cutoff 130 MeV provides best predictions

3

$\Delta B \approx 0.03$

4 times less than LO

9 times less than LO

イロト イポト イヨト イヨト

 $\Delta B \approx 0.08$

The NLO predicts the D-wave phase shifts better than the LO
Theory with cutoff 130 MeV provides best predictions

3

Date						
00	00	0000	0000	00	0000	00
			Data analysis α - α	Data analysis 3- α		Conclusions

Data analysis α - α

Preliminary observations

- Only central term acting on states with $l \neq 0$
- Th NLO and N²LO coupling constants has been sought by fitting low-energy data

a NELCO consult forgether the accuracy for Sevene phase shifts a NELCO improve the accuracy for Device phase shifts

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへで
Introduction	Effective theories	α - α effective potential	Data analysis α-α	Data analysis 3-α	N-α effective potential	Conclusions
00		0000	00●0	00	0000	00
Data	analysis (x-α				

N²LO

- Only central term acting on states with $l \neq 0$
- Th NLO and N²LO coupling constants has been sought by fitting low-energy data

N²LO doesn't improve the accuracy for S-wave phase shifts N²LO improve the accuracy for D-wave phase shifts

- Only central term acting on states with $l \neq 0$
- Th NLO and N²LO coupling constants has been sought by fitting low-energy data

S-wave phase shifts

D-wave phase shifts

 $\Delta B \approx 0.04$

comparable with NLO

N*LO doesn't improve the accuracy for S-wave phase shift N*LO improve the accuracy for D-wave phase shifts

- Only central term acting on states with $l \neq 0$
- Th NLO and N²LO coupling constants has been sought by fitting low-energy data

S-wave phase shifts

D-wave phase shifts

 $\Delta B \approx 0.04$

 $\Delta B \approx 0.01$

comparable with NLO

4 times less than NLO

N²LO doesn't improve the accuracy for S-wave phase shifts
 N²LO improve the accuracy for D-wave phase shifts

- Only central term acting on states with $l \neq 0$
- Th NLO and N²LO coupling constants has been sought by fitting low-energy data

S-wave phase shifts

D-wave phase shifts

 $\Delta B \approx 0.04$

$\Delta B \approx 0.01$

comparable with NLO

4 times less than NLO

N²LO doesn't improve the accuracy for S-wave phase shifts
 N²LO improve the accuracy for D-wave phase shifts

Paolo Recchia (INPHYNI

Halo α interactions

Introduction 00	Effective theories	α-α effective potential 0000	Data analysis α-α ○○○●	Data analysis 3-α 00	N-α effective potential	Conclusions 00
Data G-wave	analysis					

The theoretical predictions follow the experimental trend
 The theoretical error is greater than the cases of S-wave and D-wave

The α - α effective potential which we have used carries only central terms

G-wave

Theory up to NLO

Theory up to N^2LO

イロト イポト イヨト イヨト

 $\Delta B \approx 0.24$

 $\Delta B \approx 0.20$

The α - α effective potential which we have used carries only central terms

Theory up to NLO

 $\Delta B \approx 0.24$

 $\Delta B \approx 0.20$

Theory up to N²LO

The theoretical predictions follow the experimental trend
The theoretical error is greater than the cases of S-wave and D-wave

The α - α effective potential which we have used carries only central terms

Theory up to NLO

 $\Delta B \approx 0.24$

 $\Delta B \approx 0.20$

Theory up to N²LO

The theoretical predictions follow the experimental trend
The theoretical error is greater than the cases of S-wave and D-wave

The α - α effective potential which we have used carries only central terms

Theory up to NLO

 $\Delta B \approx 0.24$

 $\Delta B \approx 0.20$

Theory up to N²LO

• The theoretical predictions follow the experimental trend

• The theoretical error is greater than the cases of S-wave and D-wave

The α - α effective potential which we have used carries only central terms

- \bullet Only two-body $\alpha\text{-}\alpha$ potential up to NLO by fitting data with energy less than 1 MeV
- The Ritz variational method for bound state searching

- \bullet Only two-body $\alpha\text{-}\alpha$ potential up to NLO by fitting data with energy less than 1 MeV
- The Ritz variational method for bound state searching

- \bullet Only two-body $\alpha\text{-}\alpha$ potential up to NLO by fitting data with energy less than 1 MeV
- The Ritz variational method for bound state searching

- \bullet Only two-body $\alpha\text{-}\alpha$ potential up to NLO by fitting data with energy less than 1 MeV
- The Ritz variational method for bound state searching

$\Lambda(MeV)$	$E_0(MeV)$
100	-1.17820
120	-1.06630
140	-1.16920
160	-1.20128
180	-1.12625
200	-1.30226

- \bullet Only two-body $\alpha\text{-}\alpha$ potential up to NLO by fitting data with energy less than 1 MeV
- The Ritz variational method for bound state searching

$\Lambda(MeV)$	$E_0(MeV)$
100	-1.17820
120	-1.06630
140	-1.16920
160	-1.20128
180	-1.12625
200	-1.30226

- \bullet Only two-body $\alpha\text{-}\alpha$ potential up to NLO by fitting data with energy less than 1 MeV
- The Ritz variational method for bound state searching

$\Lambda(MeV)$	$E_0(MeV)$
100	-1.17820
120	-1.06630
140	-1.16920
160	-1.20128
180	-1.12625
200	-1.30226

Introduction Effective theories $\alpha - \alpha$ effective potential $\alpha = \alpha$ offective potenti

Preliminarily observations

• A LO hyper-central three body term has been added

 $V_{\rm 3body}(\rho) = C \Lambda e^{rac{
ho^2}{2a^2}}$

• Its coupling constant has been fitted to get the binding energy of the ¹²C ground state

Drawback

The 2 ⁺ state hasn't never been found for each cutoff

Observations

and potential has been built

イロト イポト イヨト イヨト

- Dave been considered

3

Preliminarily observations

• A LO hyper-central three body term has been added

 $V_{\rm 3body}(\rho) = C \Lambda e^{rac{
ho^2}{2a^2}}$

 \bullet Its coupling constant has been fitted to get the binding energy of the $^{12}\mathrm{C}$ ground state

Drawback

The 2 ⁺ state hasn't never been found for each cutoff

Observations

cere proteintial: has been build at wary too amongy (55.1 MeV);

Only hyper-central terms have been considered

Preliminarily observations

• A LO hyper-central three body term has been added

 $V_{\rm 3body}(\rho) = C \Lambda e^{rac{
ho^2}{2a^2}}$

 \bullet Its coupling constant has been fitted to get the binding energy of the $^{12}\mathrm{C}$ ground state

Drawback

The 2 ⁺ state hasn't never been found for each cutoff

Observations

 α-α potential has been built at very low energy (≤ 1 MeV)

イロト イポト イヨト イヨト

 Only hyper-central, terms have been considered

3

Preliminarily observations

• A LO hyper-central three body term has been added

 $V_{\rm 3body}(\rho) = C \Lambda e^{rac{
ho^2}{2a^2}}$

 \bullet Its coupling constant has been fitted to get the binding energy of the $^{12}\mathrm{C}$ ground state

Drawback

The 2⁺ state hasn't never been found for each cutoff

Observations

α-α potential has been built at very low energy (≤ 1 MeV) Only hyper-central terms

<ロト <部 > < 2 > < 2 > - 2

Preliminarily observations

A LO hyper-central three body term has been added

 $V_{\rm 3body}(\rho) = C \Lambda e^{rac{
ho^2}{2a^2}}$

 \bullet Its coupling constant has been fitted to get the binding energy of the $^{12}\mathrm{C}$ ground state

Drawback

The 2⁺ state hasn't never been found for each cutoff

Observations

- α - α potential has been built at very low energy ($\leq 1 \text{ MeV}$)
- Only hyper-central terms have been considered

イロト 不得 とくほと くほと 二日

Preliminarily observations

A LO hyper-central three body term has been added

 $V_{\rm 3body}(\rho) = C \Lambda e^{rac{
ho^2}{2a^2}}$

 \bullet Its coupling constant has been fitted to get the binding energy of the $^{12}\mathrm{C}$ ground state

Drawback

The 2⁺ state hasn't never been found for each cutoff

Observations

- α - α potential has been built at very low energy ($\leq 1 \text{ MeV}$)
- Only hyper-central terms have been considered

Introduction Effective theories $\alpha - \alpha$ effective potential Data analysis $\alpha - \alpha$ Data analysis $3 - \alpha$ N- α effective potential Conclusions 000

Symmetries

Fields and gradients get combined in order to have operators

- normal ordered
- 2 parity invariant
- time-reversal invariant
- invariant under Galilean transformation
- internal rotation (isospin)

ł

Effective potential up to NLO

 $V_{
m eff}^{
m strong (NLO)}(K,Q,\sigma) = A + B_1 K^2 + B_2 Q^2 + B_3 i \sigma \cdot Q imes K$

Phaseshifts analysis

Only n-a phaseshifts data to test strong interaction

hudy cutoff in the range 130 MeV 150 MeV

Paolo Recchia (INPHYNI)

 Introduction
 Effective theories
 α-α effective potential
 Data analysis α-α
 Data analysis 3-α
 N-α effective potential
 Conclusions

 N-α
 effective
 potential
 [Sara
 Murciano, Laurea
 Triennale in Fisica 2016,

 Università
 del Salento]
 Symmetries
 Symmetries

 Fields
 and gradients
 get combined in order to have operators

- Inormal ordered
- Parity invariant
- time-reversal invariant
- Invariant under Galilean transformation
- internal rotation (isospin)

ł

Effective potential up to NLO

 $\mathcal{N}_{ ext{eff}}^{ ext{strong (NLO)}}(K, Q, \sigma) = A + B_1 K^2 + B_2 Q^2 + B_3 i \sigma \cdot Q imes K$

Phaseshifts analysis

- Only nex phaseshifts data to test strong interaction
- shindy cutoff in the range [130 MeV. 150 MeV]

- Inormal ordered
- parity invariant
- time-reversal invariant
- 🌕 invariant under Galilean transformation
- internal rotation (isospin)

÷

Effective potential up to NLO

 $\mathcal{N}_{ ext{eff}}^{ ext{strong (NLO)}}(K, Q, \sigma) = A + B_1 K^2 + B_2 Q^2 + B_3 i \sigma \cdot Q imes K$

Phaseshifts analysis

- Only new phaseshifts data to test strong interaction
- Shudy cotoff in the range [130 MeV. 150 MeV]

Introduction Effective theories $\alpha - \alpha$ effective potential Data analysis $\alpha - \alpha$ Data analysis $3 - \alpha$ **N**- α effective potential Conclusions 0 = 0 = 0

N- α effective potential [Sara Murciano, Laurea Triennale in Fisica 2016,

Università del Salento] Symmetries and potential

Symmetries

Fields and gradients get combined in order to have operators

- Inormal ordered
- parity invariant
- time-reversal invariant
- invariant under Galilean transformation
- internal rotation (isospin)

ł

Effective potential up to NLO

 $\mathcal{N}_{ ext{eff}}^{ ext{strong (NLO)}}(K, Q, \sigma) = A + B_1 K^2 + B_2 Q^2 + B_3 i \sigma \cdot Q imes K$

Phaseshifts analysis

Only n-ic phaseshifts data to test strong interaction

hudy cutoff in the range 130 MeV. 150 MeV

Paolo Recchia (INPHYNI)

 Introduction
 Effective theories
 α - α effective potential
 Data analysis
 α - α **N-\alpha effective potential** Conclusions

 00
 00
 0000
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 0

N- α effective potential [Sara Murciano, Laurea Triennale in Fisica 2016,

Università del Salento] Symmetries and potential

Symmetries

Fields and gradients get combined in order to have operators

- Inormal ordered
- parity invariant
- time-reversal invariant
- invariant under Galilean transformation
- internal rotation (isospin)

Ψ.

Effective potential up to NLO

 $\mathcal{N}_{\mathrm{eff}}^{\mathrm{strong}\ (\mathrm{NLO})}(K,Q,\sigma) = A + B_1 K^2 + B_2 Q^2 + B_3 i \sigma \cdot Q \times K$

Phaseshifts analysis

Only n-a phaseshifts data to test strong interaction

udy cutoff in the range [130 MeV. 150 MeV/H

 Introduction
 Effective theories
 α - α effective potential
 Data analysis
 α - α Bata analysis
 α - α α - α Bata analysis
 α - α α - α Bata analysis
 α - α α - α

N- α effective potential [Sara Murciano, Laurea Triennale in Fisica 2016,

Università del Salento] Symmetries and potential

Symmetries

Fields and gradients get combined in order to have operators

- Inormal ordered
- parity invariant
- time-reversal invariant
- invariant under Galilean transformation
- internal rotation (isospin)

ł

Effective potential up to NLO

 $V_{ ext{eff}}^{ ext{strong (NLO)}}(K,Q,\sigma) = A + B_1 K^2 + B_2 Q^2 + B_3 i \sigma \cdot Q imes K$

Phaseshifts analysis

Only n-α phaseshifts data to test strong interaction

N- α effective potential [Sara Murciano, Laurea Triennale in Fisica 2016,

Università del Salento] Symmetries and potential

Symmetries

Fields and gradients get combined in order to have operators

- Inormal ordered
- parity invariant
- time-reversal invariant
- invariant under Galilean transformation
- internal rotation (isospin)

≁

Effective potential up to NLO

 $V_{\mathrm{eff}}^{\mathrm{strong}\;(\mathrm{NLO})}(K,Q,\sigma) = A + B_1 K^2 + B_2 Q^2 + B_3 i \sigma \cdot Q \times K$

Phaseshifts analysis

Only n- α phaseshifts data to test strong interaction Study cutoff in the range [130 MeV, 150 MeV]

 Introduction
 Effective theories
 α - α effective potential
 Data analysis α - α Data analysis 3- α N- α effective potential
 Conclusions

 00
 000
 0000
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 0

N- α effective potential [Sara Murciano, Laurea Triennale in Fisica 2016,

Università del Salento] Symmetries and potential

Symmetries

Fields and gradients get combined in order to have operators

- Inormal ordered
- parity invariant
- time-reversal invariant
- invariant under Galilean transformation
- internal rotation (isospin)

≁

Effective potential up to NLO

 $V_{\mathrm{eff}}^{\mathrm{strong}\;(\mathrm{NLO})}(K,Q,\sigma) = A + B_1 K^2 + B_2 Q^2 + B_3 i \sigma \cdot Q \times K$

Phaseshifts analysis

- Only $n-\alpha$ phaseshifts data to test strong interaction
- Study cutoff in the range [130 MeV, 150 MeV]
- Fit of experimental data with L = 0, 1 and energies lower than 8 MeV

 Introduction
 Effective theories
 α - α effective potential
 Data analysis α - α Data analysis 3- α N- α effective potential
 Conclusions

 00
 000
 0000
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 0

N- α effective potential [Sara Murciano, Laurea Triennale in Fisica 2016,

Università del Salento] Symmetries and potential

Symmetries

Fields and gradients get combined in order to have operators

- Inormal ordered
- parity invariant
- time-reversal invariant
- invariant under Galilean transformation
- internal rotation (isospin)

≁

Effective potential up to NLO

$$V_{\mathrm{eff}}^{\mathrm{strong}\ (\mathrm{NLO})}(K,Q,\sigma) = A + B_1 K^2 + B_2 Q^2 + B_3 i \sigma \cdot Q \times K$$

Phaseshifts analysis

- Only $n-\alpha$ phaseshifts data to test strong interaction
- Study cutoff in the range [130 MeV, 150 MeV]
- Fit of experimental data with L = 0, 1 and energies lower than 8 MeV

 Introduction
 Effective theories
 $\alpha - \alpha$ effective potential
 Data analysis $\alpha - \alpha$ Data analysis $3 - \alpha$ N- α effective potential
 Conclusions

 00
 00
 0000
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 0
 0

N- α effective potential [Sara Murciano, Laurea Triennale in Fisica 2016,

Università del Salento] Symmetries and potential

Symmetries

Fields and gradients get combined in order to have operators

- Inormal ordered
- parity invariant
- time-reversal invariant
- invariant under Galilean transformation
- internal rotation (isospin)

≁

Effective potential up to NLO

$$V_{\text{eff}}^{\text{strong (NLO)}}(K, Q, \sigma) = A + B_1 K^2 + B_2 Q^2 + B_3 i \sigma \cdot Q \times K$$

Phaseshifts analysis

- Only $n-\alpha$ phaseshifts data to test strong interaction
- Study cutoff in the range [130 MeV, 150 MeV]
- Fit of experimental data with L = 0, 1 and energies lower than 8 MeV

Paolo Recchia (INPHYNI

LO: $S_{1/2}$ phase shifts

$n-\alpha$ phase shifts

$p-\alpha$ phase shifts

 $\Delta B \approx 0.22$

 $\Delta B \approx 0.18$

The data trend is well reproduced
Relatively high cutoff dependent theory as α-α
Paolo Recchia (INPHYNI) Halo α interactions October 9, 2019 17/21

Introduction Effective theories $\alpha \sim \alpha$ effective potential $\Delta \alpha = 0$ analysis $\alpha \sim \alpha$ offective potential $\Delta \alpha = 0$ of $\alpha = 0$ of

$n-\alpha$ phase shifts

$p-\alpha$ phase shifts

 $\Delta B \approx 0.22$

 $\Delta B \approx 0.18$

Introduction Effective theories $\alpha \sim \alpha$ effective potential Data analysis $\alpha \sim \alpha$ Data analysis $3 \sim \alpha$ N- α effective potential Conclusions $0 \sim 0$ N- α effective potential Conclusions $0 \sim 0$ N- α effective potential [Sara Murciano, Laurea Triennale in Fisica 2016, Università del Salento] LO: $S_{1/2}$ phase shifts

$n-\alpha$ phase shifts

$p-\alpha$ phase shifts

 $\Delta B \approx 0.22$

 $\Delta B \approx 0.18$

Introduction Effective theories $\alpha - \alpha$ effective potential 0 = 0 and 0 =

$n-\alpha$ phase shifts

$p-\alpha$ phase shifts

 $\Delta B \approx 0.01$

 $\Delta B \approx 0.004$

The NLO greatly improve the "goodness" of the theory
 Theory with cutoff around 130 MeV provides good predictions as α-α

Introduction Effective theories $\alpha - \alpha$ effective potential 0 = 0 and 0 =

$n-\alpha$ phase shifts

$p-\alpha$ phase shifts

 $\Delta B \approx 0.01$

 $\Delta B \approx 0.004$

• The NLO greatly improve the "goodness" of the theory

Theory with cutoff around 130 MeV provides good predictions as α - α
Introduction Effective theories $\alpha - \alpha$ effective potential 0 = 0 and 0 =

$n-\alpha$ phase shifts

$p-\alpha$ phase shifts

 $\Delta B \approx 0.01$

- The NLO greatly improve the "goodness" of the theory
- \bullet Theory with cutoff around 130 MeV provides good predictions as $\alpha\text{-}\alpha$

Introduction Effective theories $\alpha - \alpha$ effective potential 0 = 0 and 0 =

$n-\alpha$ phase shifts

$p-\alpha$ phase shifts

 $\Delta B \approx 0.01$

• The NLO greatly improve the "goodness" of the theory

 \bullet Theory with cutoff around 130 MeV provides good predictions as $\alpha\text{-}\alpha$

Introduction Effective theories $\alpha - \alpha$ effective potential Data analysis $\alpha - \alpha$ of α of

$n-\alpha$ phase shifts

$p-\alpha$ phase shifts

 $\Delta B \approx 0.01$

- The NLO greatly improve the "goodness" of the theory
- \bullet Theory with cutoff around 130 MeV provides good predictions as $\alpha\text{-}\alpha$
- Theory up to NLO
- Only central potential terms

$n-\alpha$ phase shifts

$p-\alpha$ phase shifts

 $\Delta B \approx 0.01$

- The NLO greatly improve the "goodness" of the theory
- \bullet Theory with cutoff around 130 MeV provides good predictions as $\alpha\text{-}\alpha$
- Theory up to NLO
- Only central potential terms

Introduction Effective theories $\alpha - \alpha$ effective potential 0 = 0 and 0 =

n- α phase shifts: $P_{1/2}$

p- α phase shifts: $P_{1/2}$

n- α phase shifts: $P_{3/2}$

p- α phase shifts: $P_{3/2}$

Introduction Effective theories $\alpha - \alpha$ effective potential Data analysis $\alpha - \alpha$ Data analysis $3 - \alpha$ N- α effective potential Conclusions 00 00 000 000 000 000 000 000

Conclusions Comparison with a phenomenological potential

S-wave

D-wave

- An effective theory allows us to formally justify the Gaussian shape of a phenomenological potential
- The phenomenological potentials are built by fitting a large range of data, while the effective theory uses only the low-energy ones
- The building of an effective theory isn't equal to fit a Fundamental theory

Introduction Effective theories $\alpha - \alpha$ effective potential Data analysis $\alpha - \alpha$ Data analysis $3 - \alpha$ N- α effective potential Conclusions 00 00 000 00 000 000 000 000 000

Conclusions Comparison with a phenomenological potential

S-wave

D-wave

- An effective theory allows us to formally justify the Gaussian shape of a phenomenological potential
- The phenomenological potentials are built by fitting a large range of data, while the effective theory uses only the low-energy ones
- The building of an effective theory isn't equal to fit a Fundamental theory

Introduction Effective theories $\alpha - \alpha$ effective potential Data analysis $\alpha - \alpha$ Data analysis $3 - \alpha$ N- α effective potential Conclusions 00 00 000 00 000 000 000 000 000

Conclusions Comparison with a phenomenological potential

S-wave

D-wave

- An effective theory allows us to formally justify the Gaussian shape of a phenomenological potential
- The phenomenological potentials are built by fitting a large range of data, while the effective theory uses only the low-energy ones
- The building of an effective theory isn't equal to fit a Fundamental theory

Introduction	Effective theories	α - α effective potential	Data analysis α-α	Data analysis 3-α	N-α effective potential	Conclusions
00		0000	0000	00	0000	O●
Concl	usions					

Inserting non-central terms

- improves the predictions in higher L channel
- improves the accuracy at high energies
-) System consisting of "core" α - α and "halo" N: ⁹Be
- 3-α system
- Studying the Hoyle state in a low-energy effective theory

Introduction	Effective theories	α - α effective potential	Data analysis α-α	Data analysis 3-α	N-α effective potential	Conclusions
00		0000	0000	00	0000	O●
Concl	usions					

- Inserting non-central terms
 - improves the predictions in higher L channel
 - improves the accuracy at high energies
- ② System consisting of "core" lpha-lpha and "halo" N: 9 Be
- 3-α system
- Studying the Hoyle state in a low-energy effective theory

Introduction 00	Effective theories	α - α effective potential 0000	Data analysis α-α 0000	Data analysis 3-α 00	N- α effective potential 0000	Conclusions O●
Concl	usions					

- Inserting non-central terms
 - improves the predictions in higher L channel
 - improves the accuracy at high energies
- System consisting of "core" α - α and "halo" N: ⁹Be
- $3-\alpha$ system
- Studying the Hoyle state in a low-energy effective theory

Introduction 00	Effective theories	α - α effective potential 0000	Data analysis α-α 0000	Data analysis 3-α 00	N- α effective potential 0000	Conclusions O●
Concl	usions					

- Inserting non-central terms
 - improves the predictions in higher L channel
 - improves the accuracy at high energies
- **2** System consisting of "core" α - α and "halo" N: ⁹Be
- 3-α system
- Studying the Hoyle state in a low-energy effective theory

Introduction 00	Effective theories	α - α effective potential 0000	Data analysis α-α 0000	Data analysis 3-α 00	N- α effective potential 0000	Conclusions O●
Concl	usions					

- Inserting non-central terms
 - improves the predictions in higher L channel
 - improves the accuracy at high energies
- 2 System consisting of "core" α - α and "halo" N: ⁹Be
- $3-\alpha$ system
- Studying the Hoyle state in a low-energy effective theory

Introduction 00	Effective theories	α - α effective potential 0000	Data analysis α-α 0000	Data analysis 3-α 00	N- α effective potential	Conclusions 00
Concl	usions					

- Inserting non-central terms
 - improves the predictions in higher L channel
 - improves the accuracy at high energies
- **2** System consisting of "core" α - α and "halo" N: ⁹Be
- \bigcirc 3- α system
- Studying the Hoyle state in a low-energy effective theory

3 × × 3 ×