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Introduction
Motivation: relevance of α particles

α= 4He

α= 4He

8Be

α

12C˜ Hoyle state

12C + ‚

Issues in α interactions

Rigorously QCD needed
System consisting of 12
nucleons

Properties of α particles

Relatively high binding
energy
Relatively high excitation
energy

Technique used: low-energy theory

α particles like point particles
Systems consisting of \core"
α-α and \halo" N

9Be system (α-α-N)
Hoyle state (3-α)

Purpose of this work

Building an \halo" e¸ective theory for the α-α interaction and test it in
3-α and N-α interactions
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Why e¸ective theories?

r?
?

V (r)

Vl(r)

Vs(r) =??

?
?

Issue

Short-distance (high-energy) theory is
unknown or complicated

Purpose

Predicting with an arbitrary accuracy the low-energy observables regardless
of the short-range behavior of the \fundamental" theory

Technique used

Establishing the relevant degrees of freedom of the system
Establishing the relevant scale ratios of the system
Building a series expansion in powers of the scale ratios
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E¸ective theories
Cuto¸ regularization

1 Regularization of the theory by a cuto¸ ˜

The e¸ective theory is valid only for
p < ˜

The e¸ective theory is more simple
than the fundamental one

2 The error due to the cuto¸ is corrected by introducing contact terms
multiplied by some coupling constants

E¸ective theory is
non-renormalizable

Since the cuto¸ is taken ˛nite the
e¸ective theory is well-de˛ned

3 Setting the accuracy (the power in p=˜ we stop)
4 Establishing only the relevant operators for the accuracy required
5 Considering the operators satisfying the underlying symmetries

Only a ˛nite numbers of coupling constants needed
The high-energy e¸ects are absorbed into these coupling constants
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’(x) =

Z
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(2ı)3
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’y(x) =
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E¸ective potential for α-α interaction
NLO and N2LO

NLO operators

r1;2 = r(’y’)1;2

O1 = r1 ´ r2

O2 =
 !
r 1 ´

 !
r 2

O3 =
 !
r 1 ´

 !
r 1

O4 = ir1 ´
 !
r 2

N2LO operators

r12 = r2 `r1 ;
 !
r = ’y

 !
r’

U1 = r4
1 ; U2 = r2

1

 !
r

2

12 ; U3 =
 !
r

4

12

U4 = ir3
1

 !
r 12 ; U5 = ir1

 !
r

3

12

U6 = (r1 ´
 !
r 12)(r1 ´

 !
r 12)

SYMMETRIES

E¸ective potential up to N2LO (momentum space)

V
strong (N2LO)

e¸ (K;Q) = A+ BK2 + C1K
4 + C2K

2Q2 + C3(K ˆ Q)2

with

Q =
p′ + p

2

K = p′ ` p:

p = p2 ` p1

p0 = p2 ` p01
The coupling constants are
dimensionful
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E¸ective potential for α-α interaction
Regularization of the e¸ective potential

Dimensionless coupling constants

V
strong

e¸ (K;Q) =
~A

˜2
+

~B

˜4
K2+

+
1

˜6
[ ~C1K

4 + ~C2K
2Q2 + ~C3(K ˆ Q)2]

Regularization

V
reg

e¸, strong = f˜(K2)V
strong

e¸ (K;Q)

Gaussian regulator f˜(K2) = e
`K2

2˜2

Regularization of the Coulomb potential

Vcoul(r) =
4¸

r

F:T:!̀ 16ı¸

K2

cuto¸!̀ 16ı¸

K2
f˜(K)

Full e¸ective potential (coordinate space)

Ve¸(r) =
4¸

r
erf

„
r

a
p

2

«
+a2 ~A‹

(3)
a (r) + a4 ~Br2‹

(3)
a (r) + a6

»
~C1r4‹

(3)
a (r)

` ~C2r2‹
(3)
a (r)

„
1

2

 !
r
«2

+ ~C3

„
l(l+ 1)

a4
+

2

a2

„
1

2

 !
r
«2«

‹
(3)
a (r)

–

The Schrodinger equation with potential Ve¸ has been solved

Numerov’s method for seeking the resonance condition of 8Be
Kohn’s variational method for ˛tting data with L = 0; 2 and energies
lower than 6 MeV
Study cuto¸ in the range [130 MeV; 150 MeV]
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1 normal ordered
2 parity invariant
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E¸ective potential up to NLO

V
strong (NLO)

e¸ (K;Q;σ) = A+ B1K
2 + B2Q

2 + B3iσ ´ QˆK

Phaseshifts analysis

Only n-α phaseshifts data to test strong interaction
Study cuto¸ in the range [130 MeV; 150 MeV]
Fit of experimental data with L = 0; 1 and energies lower than 8 MeV
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