

Single- and double- Λ hypernuclei in EFT(π)

THE HEBREW UNIVERSITY OF JERUSALEM

 $^{3}_{\Lambda}$ H $^{4}_{\Lambda}$ H(S=1) $^{5}_{\Lambda}$ He Experimentally **known**

Theoretically hard to be described all together

New experiments are planned

Abundant open queries

- **Description** of few-body hypernuclei
- **Double** Λ hypernuclei description
- Life time of ${}^3_{\Lambda}H$ and ${}^3_{\Lambda}n$

- Charge symmetry breaking $\begin{pmatrix} 4 \\ \Lambda H \end{pmatrix}$ $\begin{pmatrix} 4 \\ \Lambda H \end{pmatrix}$
- Λ^{*}(1405) **matter**
- Neutron star equation of state

Pionless powercounting

5

Pionless powercounting

S. K'onig, H. W. Grießhammer, H. W. Hammer, and U. van Kolck J. Phys. G43, 055106 (2016)

Pionless powercounting

Cortona 2019 - Lorenzo Contessi

Regularization / Renormalization required

Fitting input

Cortona 2019 - Lorenzo Contessi

N-Λ scattering length

A. Gal et al. - Strangeness in nuclear physics - Rev.Mod.Phys. 88 (2016) no.3, 035004

AA Scattering data

Results

14

- $\circ \lambda \gg M \sim 2 m_{\pi}$ Is the **standard choice** for a renormalizable EFT.
- $\circ 2 < \lambda < 4 \text{ fm}^{-1}$ is between $\mathbf{M} \sim 2 m_{\pi}$ and the closest **not-included vector meson**.
- \circ λ ~ 1 fm⁻¹ → Many similarities with models that overbind ⁵_ΛHe.
- $\circ \lambda \sim 1.5 \text{ fm}^{-1}$ describes r_0 and effectively takes into account sub-leading orders.

Dashed lines represent cut-off that fit the experimental values

$$\lambda \left(r_0^{(20)} \right) = 1.11 \text{ fm}^{-1}, \qquad \lambda \left(r_0^{(\Lambda 0)} \right) = 1.47 \text{ fm}^{-1}, \\\lambda \left(r_0^{(02)} \right) = 1.30 \text{ fm}^{-1}, \qquad \lambda \left(r_0^{(\Lambda 2)} \right) = 1.48 \text{ fm}^{-1}.$$

 $^{5}_{\Lambda\Lambda}H$

Cortona 2019 - Lorenzo Contessi

Cortona 2019 - Lorenzo Contessi

 $^4_{\Lambda\Lambda} H$

$$\Delta B_{\Lambda\Lambda} \left({}^{6}_{\Lambda\Lambda} \mathrm{He} \right) = B_{\Lambda\Lambda} \left({}^{6}_{\Lambda\Lambda} \mathrm{He} \right) - 2 B_{\Lambda} \left({}^{5}_{\Lambda} \mathrm{He} \right)$$

4 Δ

$^{4}_{\Lambda\Lambda}$ H is bound/unbound depending to the theory input

TABLE I: Λ separation energies $B_{\Lambda}({}_{\Lambda\Lambda}{}^{A}Z)$ for A=3-6, calculated using $a_{\Lambda\Lambda}=-0.8$ fm, cutoff $\lambda=4$ fm⁻¹ and the Alexander[B] ΛN interaction model [18]. In each row a $\Lambda\Lambda N$ LEC was fitted to the underlined binding energy constraint.

 ${}^{4}_{\Lambda\Lambda}$ H

Constraint (MeV)	$^{3}_{\Lambda\Lambda}$ n	$^{4}_{\Lambda\Lambda}$ n	${}_{\Lambda\Lambda}{}^{4}\mathrm{H}$	${}_{\Lambda\Lambda}{}^{5}\mathrm{H}$	$^{6}_{\Lambda\Lambda}$ He
$\Delta B_{\Lambda\Lambda}({}^{6}_{\Lambda\Lambda}\text{He}) = \underline{0.67}$	—	_	_	1.21	3.28
$B_{\Lambda}({}_{\Lambda\Lambda}{}^{4}\mathrm{H}) = \underline{0.05}$	_	_	0.05	2.28	4.76
$B(\Lambda\Lambda n) = 0.10$	—	0.10	0.86	4.89	7.89
$B(\Lambda\Lambda n) = 0.10$	0.10	15.15	18.40	22.13	25.66
	Cortona-2019 Lorenzo-Contessi				

Not bound $nn\Lambda$ $n\Lambda\Lambda$ $nn\Lambda\Lambda$

It is possible to describe them all together. (No overbinding problem!)

- π -EFT can be applied successfully to Λ hypernuclei: (no catastrophic failure, truncation error of ~ 10% at LO).
- 7 new input data that can be fix on experimental data!
- **Overcomes overbinding** problem (comprehensive description of $A \leq 5 \Lambda$ -hyperons)
- No boundstate in $nn\Lambda$, $np\Lambda\left(S=\frac{3}{2}\right)$, $n\Lambda\Lambda$ or $nn\Lambda\Lambda$
- \circ *np* Λ **A** might be bound for large $a_{\Lambda\Lambda} < -1.5$ fm
- \circ ${}^{5}_{\Lambda\Lambda}$ He bound ($B({}^{5}_{\Lambda\Lambda}$ He) = 1.14(1){}^{+(44)}_{-(26)} MeV)

- **Extend** this approach to **A > 6** systems.
- Nuclear NLO.

General

Predictions

Prospective

• Include subleading contributions

(explicit Ξ mixing, effective range, ..).

${}^{5}_{\Lambda}$ He: Overbinding problem

	$B_{\Lambda}({}^{3}_{\Lambda}H)$	$B_{\Lambda}({}^{4}_{\Lambda}H_{g.s.})$	$B_{\Lambda}({}^{4}_{\Lambda}H_{exc.})$	$B_{\Lambda}({}^{5}_{\Lambda}He)$
Exp.	0.13(5) [4]	2.16(8) [5]	1.09(2) [6]	3.12(2) [4]
DHT [7]	0.10	2.24	0.36	≥ 5.16
AFDMCa	-	1.97(11) [8]	-	5.1(1) [9]
AFDMCb'	0.23(9) [13]	1.95(9) [13]	-	2.60(6) [13]
χEFTa	0.11 [10]	2.31 (3) [11]	0.95(15) [11]	5.82(2) [12]
χEFTb	-	2.13 (3) [11]	1.39(15) [11]	4.43(2) [12]

All the energies are in MeV.

- [7] R.H. Dalitz, R.C. Herndon, and Y.C. Tang, Nucl. Phys. B 47, 109 (1972).
- [8] D. Lonardoni, F. Pederiva, and S. Gandolfi, Phys. Rev. C 89, 014314 (2014).
- [9] D. Lonardoni, S. Gandolfi, and F. Pederiva, Phys. Rev. C 87, 041303(R) (2013).
- [10] R. Wirth et al., Phys. Rev. Lett. 113, 192502 (2014).
- [11] D. Gazda and A. Gal, Phys. Rev. Lett. 116, 122501 (2016); D. Gazda and A. Gal, Nucl. Phys. A 954, 161 (2016).
- [12] R. Wirth and R. Roth, Phys. Lett. B 779, 336 (2018). We thank Roland Wirth for providing us with these values.
- [13] D. Lonardoni arXiv:1711.07521v2 & Private comunication.
- [15] H. Nemura, Y. Akaishi, and Y. Suzuki, Phys. Rev. Lett. 89, 142504 (2002); see also Y. Akaishi, T. Harada.

$N-\Lambda$ scattering data

 $a_s = -1.8 \, \text{fm}$ Alexander et al. :

 $a_t = -1.6 \, \text{fm}$

 $0 > a_s > -9 \text{ fm}$ Sechi-Zorn et al. : $-0.8 > a_t > -3.2$ fm

G. Alexander, U. Karshon, A. Shapira, et al. Phys. Rev. 173, 1452 (1968)

Sechi-Zorn, B., B. Kehoe, J. Twitty, and R. A. Burnstein, 1968, Phys. Rev. 175, 1735.

TABLE VII ΛN scattering lengths and effective ranges (in fm) for several YN interaction models. For the EFT models, these refer to Λp and to cutoff parameter of 600 MeV.

Model	Reference	a^s	r_0^s	a^t	r_0^t
NSC89	Maessen, Rijken, and de Swart (1989)	-2.79	2.89	-1.36	3.18
NSC97e	Rijken, Stoks, and Yamamoto (1999)	-2.17	3.22	-1.84	3.17
NSC97f	Rijken, Stoks, and Yamamoto (1999)	-2.60	3.05	-1.71	3.33
ESC08c	Nagels, Rijken, and Yamamoto (2015b)	-2.54	3.15	-1.72	3.52
Jülich '04	Haidenbauer and Meißner (2005)	-2.56	2.75	-1.66	2.93
EFT (LO)	Polinder, Haidenbauer, and Meißner (2006)	-1.91	1.40	-1.23	2.20
EFT (NLO)	Haidenbauer <i>et al.</i> (2013)	-2.91	2.78	-1.54	2.72

A. Gal et al. - Strangeness in nuclear physics - Rev.Mod.Phys. 88 (2016) no.3, 035004

LEC	State	Fitting		2	
<i>C</i> ₀₂	S = 1 , $I = 0$	² H	Boundstate	Two body	
C ₂₀	S = 0 , I = 1	N – N			
<i>C</i> ₀₁	$S = 1, I = \frac{1}{2}$	$\Lambda - N \sim$	Scattering		
<i>C</i> ₂₁	$S = 0$, $I = \frac{1}{2}$	$\Lambda - N \sim$		↓ ↓	
<i>C</i> ₀₀	S = 0 , $I = 0$	Λ-Λ ~			
		LEC	State	Fitting	
Three body		D ₁₁	$S = \frac{1}{2} , \qquad I = \frac{1}{2}$	³ Н	
^		D ₀₁	$S = \frac{1}{2}, \qquad I = 0$	³ _Λ Η	
Ţ	Boundstates –	<i>D</i> ₀₃	$S = \frac{1}{2}, \qquad I = 1$	${}^{4}_{\Lambda}H_{S=0,I=\frac{1}{2}}$	
		D ₂₁	$S = \frac{3}{2}, \qquad I = 0$	${}^{4}_{\Lambda}H_{S=1,I=\frac{1}{2}}$	
		$D_{11}^{\Lambda\Lambda N}$	$S = \frac{1}{2}$, $I = \frac{1}{2}$	⁶ _{ΛΛ} He	
<u>Predic</u>	tions B(⁴ He)	$B(\Lambda^{5}He)$	$B(\frac{5}{\Lambda\Lambda}H)$	le)	

 π -EFT (N)

M = Theory break-scale

Q = Typical exchanged momentum

30

B = Typical binding per particle

 π -EFT (Λ)

M = Theory break-scale

Q = Typical exchanged momentum

31

B = Typical binding per particle

$$V_{2b}^{\lambda} = \sum_{ij} e^{-\left(\frac{r_{ij}\lambda}{2}\right)^2} \left[C_{10}^{\lambda} P_{[S=1,I=0]}^{NN} + C_{01}^{\lambda} P_{[S=0,I=1]}^{NN} \right]$$

