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Infrared Universality in cosmology



History of Universe
In cosmology, it is crucially important to under the evolution at large scales,  
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Basic idea of inflation
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Primordial perturbations

Vacuum polarization ≠ 0 

Unique window to explore models of inflation
spin 0 (inflaton) ζ,  spin 2 GWs γij 

ωphys=k/a

H

Adiabatic 

Non-adiabatic 
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Def.

respectively, simply based on the ratio between these wavenumbers, i.e., kL/kS ≪ 1. As

we will discuss in Sec. 4, in the limit k/aH ≪ 1, a perturbative expansion can break down

in computing some quantity and taking this limit requires a careful treatment.

2.1 Large gauge transformations

Likewise in the discussion about the soft photons and gravitons in the asymptotically

flat spacetime, a large gauge transformation plays a crucial role for a clear understanding

about the soft modes of ζ and γij in an inflationary spacetime. In line with Refs. [1, 2], we

define the large gauge transformation as follows. A local symmetry denotes a symmetry

under a transformation which is parametrized by a spacetime dependent function, while a

global symmetry denotes a symmetry under a transformation by a spacetime independent

function.

Among local symmetry transformations, it is important to make a distinction between

small gauge transformation and large gauge transformations. The former becomes the

identity at the infinity and the latter does not. In Refs. [26, 29], it was shown that the

soft theorem for the photons and the gravitons in the asymptotically flat spacetime can be

derived from the Ward-Takahashi identities for large gauge transformations which do not

vanish on J±.

2.1.1 Dilatation as a large gauge transformation

First, let us clarify the prescription we adopt. In this paper, we use the ADM form of the

line element:

ds2 = −N2dt2 + hij(dx
i +N idt)(dxj +N jdt) , (2.1)

where we introduced the lapse function N , the shift vector N i, and the spatial metric hij .

We determine the time slicing, employing the uniform field gauge:

δφ = 0 . (2.2)

We express the spatial metric hij as

hij = a2e2ζ [eγ ]ij , (2.3)

where γij is set to traceless. As spatial gauge conditions, we impose

∂iγij = 0 . (2.4)

To discuss the soft modes of the primordial perturbations in the spatially flat FRW

background, we consider the large gauge transformations, which do not vanish at the spatial

infinity on a time constant surface. This large gauge transformation was first discussed

in the context of cosmology by Weinberg in Ref. [3]. In the unitary gauge, where the

fluctuation of the inflaton vanishes, we consider, in particular, the dilatation:

xi → esxi , (2.5)
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Solving large scale evolution

Planck Collaboration: Constraints on Inflation
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Fig. 8. Marginalized joint 68 % and 95 % CL regions for ns and r at k = 0.002 Mpc�1 from Planck alone and in combination with
BK14 or BK14 plus BAO data, compared to the theoretical predictions of selected inflationary models. Note that the marginalized
joint 68 % and 95 % CL regions assume dns/d ln k = 0.

limits obtained from a ⇤CDM-plus-tensor fit. We refer the inter-
ested reader to PCI15 for a concise description of the inflationary
models studied here and we limit ourselves here to a summary
of the main results of this analysis.

– The inflationary predictions (Mukhanov & Chibisov 1981;
Starobinsky 1983) originally computed for the R2 model
(Starobinsky 1980) to lowest order,

ns � 1 ' �
2
N
, r '

12
N2 , (48)

are in good agreement with Planck 2018 data, confirm-
ing the previous 2013 and 2015 results. The 95 % CL al-
lowed range 49 < N⇤ < 58 is compatible with the R2 ba-
sic predictions N⇤ = 54, corresponding to Treh ⇠ 109 GeV
(Bezrukov & Gorbunov 2012). A higher reheating temper-
ature Treh ⇠ 1013 GeV, as predicted in Higgs inflation
(Bezrukov & Shaposhnikov 2008), is also compatible with
the Planck data.

– Monomial potentials (Linde 1983) V(�) = �M4
Pl (�/MPl)p

with p � 2 are strongly disfavoured with respect to the
R2 model. For these values the Bayesian evidence is worse
than in 2015 because of the smaller level of tensor modes
allowed by BK14. Models with p = 1 or p = 2/3
(Silverstein & Westphal 2008; McAllister et al. 2010, 2014)
are more compatible with the data.

– There are several mechanisms which could lower the pre-
dictions for the tensor-to-scalar ratio for a given potential
V(�) in single-field inflationary models. Important exam-
ples are a subluminal inflaton speed of sound due to a non-
standard kinetic term (Garriga & Mukhanov 1999), a non-
minimal coupling to gravity (Spokoiny 1984; Lucchin et al.

1986; Salopek et al. 1989; Fakir & Unruh 1990), or an ad-
ditional damping term for the inflaton due to dissipation in
other degrees of freedom, as in warm inflation (Berera 1995;
Bastero-Gil et al. 2016). In the following we report on the
constraints for a non-minimal coupling to gravity of the type
F(�)R with F(�) = M2

Pl + ⇠�
2. To be more specific, a quartic

potential, which would be excluded at high statistical signif-
icance for a minimally-coupled scalar inflaton as seen from
Table 5, can be reconciled with Planck and BK14 data for
⇠ > 0: we obtain a 95 % CL lower limit log10 ⇠ > �1.6 with
ln B = �1.6.

– Natural inflation (Freese et al. 1990; Adams et al. 1993) is
disfavoured by the Planck 2018 plus BK14 data with a Bayes
factor ln B = �4.2.

– Within the class of hilltop inflationary models
(Boubekeur & Lyth 2005) we find that a quartic poten-
tial provides a better fit than a quadratic one. In the quartic
case we find the 95 % CL lower limit log10(µ2/MPl) > 1.1.

– D-brane inflationary models (Kachru et al. 2003; Dvali et al.
2001; Garcı́a-Bellido et al. 2002) provide a good fit to
Planck and BK14 data for a large portion of their parame-
ter space.

– For the simple one parameter class of inflationary potentials
with exponential tails (Goncharov & Linde 1984; Stewart
1995; Dvali & Tye 1999; Burgess et al. 2002; Cicoli et al.
2009) we find ln B = �1.0.

– Planck 2018 data strongly disfavour the hybrid model driven
by logarithmic quantum corrections in spontaneously broken
supersymmetric (SUSY) theories (Dvali et al. 1994), with
ln B = �5.0.
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reheating

 Large scale evolution  k/aH << 1
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ns-r plot
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tial provides a better fit than a quadratic one. In the quartic
case we find the 95 % CL lower limit log10(µ2/MPl) > 1.1.

– D-brane inflationary models (Kachru et al. 2003; Dvali et al.
2001; Garcı́a-Bellido et al. 2002) provide a good fit to
Planck and BK14 data for a large portion of their parame-
ter space.

– For the simple one parameter class of inflationary potentials
with exponential tails (Goncharov & Linde 1984; Stewart
1995; Dvali & Tye 1999; Burgess et al. 2002; Cicoli et al.
2009) we find ln B = �1.0.

– Planck 2018 data strongly disfavour the hybrid model driven
by logarithmic quantum corrections in spontaneously broken
supersymmetric (SUSY) theories (Dvali et al. 1994), with
ln B = �5.0.

18

V’’> 0

V’’< 0

PLANCK18

What’s N＊?



Conservation of ζ 

Last scattering surface

Planck Collaboration: Constraints on Inflation

0.94 0.96 0.98 1.00

Primordial tilt (ns)

0.
00

0.
05

0.
10

0.
15

0.
20

T
en

so
r-

to
-s

ca
la

r
ra

ti
o

(r
0
.0

0
2
)

Convex

Concave

TT,TE,EE+lowE+lensing

TT,TE,EE+lowE+lensing
+BK14

TT,TE,EE+lowE+lensing
+BK14+BAO

Natural inflation

Hilltop quartic model

� attractors

Power-law inflation

R2 inflation

V � �2

V � �4/3

V � �

V � �2/3

Low scale SB SUSY
N�=50

N�=60

Fig. 8. Marginalized joint 68 % and 95 % CL regions for ns and r at k = 0.002 Mpc�1 from Planck alone and in combination with
BK14 or BK14 plus BAO data, compared to the theoretical predictions of selected inflationary models. Note that the marginalized
joint 68 % and 95 % CL regions assume dns/d ln k = 0.

limits obtained from a ⇤CDM-plus-tensor fit. We refer the inter-
ested reader to PCI15 for a concise description of the inflationary
models studied here and we limit ourselves here to a summary
of the main results of this analysis.

– The inflationary predictions (Mukhanov & Chibisov 1981;
Starobinsky 1983) originally computed for the R2 model
(Starobinsky 1980) to lowest order,

ns � 1 ' �
2
N
, r '

12
N2 , (48)

are in good agreement with Planck 2018 data, confirm-
ing the previous 2013 and 2015 results. The 95 % CL al-
lowed range 49 < N⇤ < 58 is compatible with the R2 ba-
sic predictions N⇤ = 54, corresponding to Treh ⇠ 109 GeV
(Bezrukov & Gorbunov 2012). A higher reheating temper-
ature Treh ⇠ 1013 GeV, as predicted in Higgs inflation
(Bezrukov & Shaposhnikov 2008), is also compatible with
the Planck data.

– Monomial potentials (Linde 1983) V(�) = �M4
Pl (�/MPl)p

with p � 2 are strongly disfavoured with respect to the
R2 model. For these values the Bayesian evidence is worse
than in 2015 because of the smaller level of tensor modes
allowed by BK14. Models with p = 1 or p = 2/3
(Silverstein & Westphal 2008; McAllister et al. 2010, 2014)
are more compatible with the data.

– There are several mechanisms which could lower the pre-
dictions for the tensor-to-scalar ratio for a given potential
V(�) in single-field inflationary models. Important exam-
ples are a subluminal inflaton speed of sound due to a non-
standard kinetic term (Garriga & Mukhanov 1999), a non-
minimal coupling to gravity (Spokoiny 1984; Lucchin et al.

1986; Salopek et al. 1989; Fakir & Unruh 1990), or an ad-
ditional damping term for the inflaton due to dissipation in
other degrees of freedom, as in warm inflation (Berera 1995;
Bastero-Gil et al. 2016). In the following we report on the
constraints for a non-minimal coupling to gravity of the type
F(�)R with F(�) = M2

Pl + ⇠�
2. To be more specific, a quartic

potential, which would be excluded at high statistical signif-
icance for a minimally-coupled scalar inflaton as seen from
Table 5, can be reconciled with Planck and BK14 data for
⇠ > 0: we obtain a 95 % CL lower limit log10 ⇠ > �1.6 with
ln B = �1.6.

– Natural inflation (Freese et al. 1990; Adams et al. 1993) is
disfavoured by the Planck 2018 plus BK14 data with a Bayes
factor ln B = �4.2.

– Within the class of hilltop inflationary models
(Boubekeur & Lyth 2005) we find that a quartic poten-
tial provides a better fit than a quadratic one. In the quartic
case we find the 95 % CL lower limit log10(µ2/MPl) > 1.1.

– D-brane inflationary models (Kachru et al. 2003; Dvali et al.
2001; Garcı́a-Bellido et al. 2002) provide a good fit to
Planck and BK14 data for a large portion of their parame-
ter space.

– For the simple one parameter class of inflationary potentials
with exponential tails (Goncharov & Linde 1984; Stewart
1995; Dvali & Tye 1999; Burgess et al. 2002; Cicoli et al.
2009) we find ln B = �1.0.

– Planck 2018 data strongly disfavour the hybrid model driven
by logarithmic quantum corrections in spontaneously broken
supersymmetric (SUSY) theories (Dvali et al. 1994), with
ln B = �5.0.

18

P⇣(k)|k/aH⇠1

reheating

 Time conservation      ∂tζ  = O((k/aH)2)

N＊



More on Conservation of ζ 

 Sm = Sm [ gμν, Φ ] Matter action

Lyth, Malik, & Sasali(2004)

0 = �⇠Sm =
�Sm

�gµ⌫
�⇠gµ⌫ +

�Sm

��
�⇠� = �2

Z
dd+1x

p
�g⇠⌫rµT

µ⌫
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(d+1)-dim Diff invariance

=0 (eom)

rµT
µ⌫ = 0

<latexit sha1_base64="WTkKeYMdRgo+uymnu+rU9/XI940=">AAACAXicbVDLSgMxFM34rPU16kZwEyyCqzIjgm6EohuXFfqCzjhk0kwbmmSGPIQy1I2/4saFIm79C3f+jZm2C209cLmHc+4luSfOGFXa876dpeWV1bX10kZ5c2t7Z9fd22+p1EhMmjhlqezESBFGBWlqqhnpZJIgHjPSjoc3hd9+IFLRVDT0KCMhR31BE4qRtlLkHgYCxQxFATewcZ8XLRBmfOVFbsWrehPAReLPSAXMUI/cr6CXYsOJ0Jghpbq+l+kwR1JTzMi4HBhFMoSHqE+6lgrEiQrzyQVjeGKVHkxSaUtoOFF/b+SIKzXisZ3kSA/UvFeI/3ldo5PLMKciM5oIPH0oMQzqFBZxwB6VBGs2sgRhSe1fIR4gibC2oZVtCP78yYukdVb1vap/d16pXc/iKIEjcAxOgQ8uQA3cgjpoAgwewTN4BW/Ok/PivDsf09ElZ7ZzAP7A+fwBuGKWZg==</latexit><latexit sha1_base64="WTkKeYMdRgo+uymnu+rU9/XI940=">AAACAXicbVDLSgMxFM34rPU16kZwEyyCqzIjgm6EohuXFfqCzjhk0kwbmmSGPIQy1I2/4saFIm79C3f+jZm2C209cLmHc+4luSfOGFXa876dpeWV1bX10kZ5c2t7Z9fd22+p1EhMmjhlqezESBFGBWlqqhnpZJIgHjPSjoc3hd9+IFLRVDT0KCMhR31BE4qRtlLkHgYCxQxFATewcZ8XLRBmfOVFbsWrehPAReLPSAXMUI/cr6CXYsOJ0Jghpbq+l+kwR1JTzMi4HBhFMoSHqE+6lgrEiQrzyQVjeGKVHkxSaUtoOFF/b+SIKzXisZ3kSA/UvFeI/3ldo5PLMKciM5oIPH0oMQzqFBZxwB6VBGs2sgRhSe1fIR4gibC2oZVtCP78yYukdVb1vap/d16pXc/iKIEjcAxOgQ8uQA3cgjpoAgwewTN4BW/Ok/PivDsf09ElZ7ZzAP7A+fwBuGKWZg==</latexit><latexit sha1_base64="WTkKeYMdRgo+uymnu+rU9/XI940=">AAACAXicbVDLSgMxFM34rPU16kZwEyyCqzIjgm6EohuXFfqCzjhk0kwbmmSGPIQy1I2/4saFIm79C3f+jZm2C209cLmHc+4luSfOGFXa876dpeWV1bX10kZ5c2t7Z9fd22+p1EhMmjhlqezESBFGBWlqqhnpZJIgHjPSjoc3hd9+IFLRVDT0KCMhR31BE4qRtlLkHgYCxQxFATewcZ8XLRBmfOVFbsWrehPAReLPSAXMUI/cr6CXYsOJ0Jghpbq+l+kwR1JTzMi4HBhFMoSHqE+6lgrEiQrzyQVjeGKVHkxSaUtoOFF/b+SIKzXisZ3kSA/UvFeI/3ldo5PLMKciM5oIPH0oMQzqFBZxwB6VBGs2sgRhSe1fIR4gibC2oZVtCP78yYukdVb1vap/d16pXc/iKIEjcAxOgQ8uQA3cgjpoAgwewTN4BW/Ok/PivDsf09ElZ7ZzAP7A+fwBuGKWZg==</latexit><latexit sha1_base64="WTkKeYMdRgo+uymnu+rU9/XI940=">AAACAXicbVDLSgMxFM34rPU16kZwEyyCqzIjgm6EohuXFfqCzjhk0kwbmmSGPIQy1I2/4saFIm79C3f+jZm2C209cLmHc+4luSfOGFXa876dpeWV1bX10kZ5c2t7Z9fd22+p1EhMmjhlqezESBFGBWlqqhnpZJIgHjPSjoc3hd9+IFLRVDT0KCMhR31BE4qRtlLkHgYCxQxFATewcZ8XLRBmfOVFbsWrehPAReLPSAXMUI/cr6CXYsOJ0Jghpbq+l+kwR1JTzMi4HBhFMoSHqE+6lgrEiQrzyQVjeGKVHkxSaUtoOFF/b+SIKzXisZ3kSA/UvFeI/3ldo5PLMKciM5oIPH0oMQzqFBZxwB6VBGs2sgRhSe1fIR4gibC2oZVtCP78yYukdVb1vap/d16pXc/iKIEjcAxOgQ8uQA3cgjpoAgwewTN4BW/Ok/PivDsf09ElZ7ZzAP7A+fwBuGKWZg==</latexit>

- Energy conservation n⌫rµT
µ⌫ = 0

<latexit sha1_base64="GFcBBt5pnhN+muEODEVutkGTSAs=">AAACB3icbVDLSgMxFM34rPU16lKQYBFclRkRdCMU3bis0Bd0xiGTZtrQJDPkIZShOzf+ihsXirj1F9z5N2baLrT1wOUezrmX5J44Y1Rpz/t2lpZXVtfWSxvlza3tnV13b7+lUiMxaeKUpbITI0UYFaSpqWakk0mCeMxIOx7eFH77gUhFU9HQo4yEHPUFTShG2kqReySiQBgYCBQzFAXcwMZ9XjSrjq+8yK14VW8CuEj8GamAGeqR+xX0Umw4ERozpFTX9zId5khqihkZlwOjSIbwEPVJ11KBOFFhPrljDE+s0oNJKm0JDSfq740ccaVGPLaTHOmBmvcK8T+va3RyGeZUZEYTgacPJYZBncIiFNijkmDNRpYgLKn9K8QDJBHWNrqyDcGfP3mRtM6qvlf1784rtetZHCVwCI7BKfDBBaiBW1AHTYDBI3gGr+DNeXJenHfnYzq65Mx2DsAfOJ8/HMiYzg==</latexit><latexit sha1_base64="GFcBBt5pnhN+muEODEVutkGTSAs=">AAACB3icbVDLSgMxFM34rPU16lKQYBFclRkRdCMU3bis0Bd0xiGTZtrQJDPkIZShOzf+ihsXirj1F9z5N2baLrT1wOUezrmX5J44Y1Rpz/t2lpZXVtfWSxvlza3tnV13b7+lUiMxaeKUpbITI0UYFaSpqWakk0mCeMxIOx7eFH77gUhFU9HQo4yEHPUFTShG2kqReySiQBgYCBQzFAXcwMZ9XjSrjq+8yK14VW8CuEj8GamAGeqR+xX0Umw4ERozpFTX9zId5khqihkZlwOjSIbwEPVJ11KBOFFhPrljDE+s0oNJKm0JDSfq740ccaVGPLaTHOmBmvcK8T+va3RyGeZUZEYTgacPJYZBncIiFNijkmDNRpYgLKn9K8QDJBHWNrqyDcGfP3mRtM6qvlf1784rtetZHCVwCI7BKfDBBaiBW1AHTYDBI3gGr+DNeXJenHfnYzq65Mx2DsAfOJ8/HMiYzg==</latexit><latexit sha1_base64="GFcBBt5pnhN+muEODEVutkGTSAs=">AAACB3icbVDLSgMxFM34rPU16lKQYBFclRkRdCMU3bis0Bd0xiGTZtrQJDPkIZShOzf+ihsXirj1F9z5N2baLrT1wOUezrmX5J44Y1Rpz/t2lpZXVtfWSxvlza3tnV13b7+lUiMxaeKUpbITI0UYFaSpqWakk0mCeMxIOx7eFH77gUhFU9HQo4yEHPUFTShG2kqReySiQBgYCBQzFAXcwMZ9XjSrjq+8yK14VW8CuEj8GamAGeqR+xX0Umw4ERozpFTX9zId5khqihkZlwOjSIbwEPVJ11KBOFFhPrljDE+s0oNJKm0JDSfq740ccaVGPLaTHOmBmvcK8T+va3RyGeZUZEYTgacPJYZBncIiFNijkmDNRpYgLKn9K8QDJBHWNrqyDcGfP3mRtM6qvlf1784rtetZHCVwCI7BKfDBBaiBW1AHTYDBI3gGr+DNeXJenHfnYzq65Mx2DsAfOJ8/HMiYzg==</latexit><latexit sha1_base64="GFcBBt5pnhN+muEODEVutkGTSAs=">AAACB3icbVDLSgMxFM34rPU16lKQYBFclRkRdCMU3bis0Bd0xiGTZtrQJDPkIZShOzf+ihsXirj1F9z5N2baLrT1wOUezrmX5J44Y1Rpz/t2lpZXVtfWSxvlza3tnV13b7+lUiMxaeKUpbITI0UYFaSpqWakk0mCeMxIOx7eFH77gUhFU9HQo4yEHPUFTShG2kqReySiQBgYCBQzFAXcwMZ9XjSrjq+8yK14VW8CuEj8GamAGeqR+xX0Umw4ERozpFTX9zId5khqihkZlwOjSIbwEPVJ11KBOFFhPrljDE+s0oNJKm0JDSfq740ccaVGPLaTHOmBmvcK8T+va3RyGeZUZEYTgacPJYZBncIiFNijkmDNRpYgLKn9K8QDJBHWNrqyDcGfP3mRtM6qvlf1784rtetZHCVwCI7BKfDBBaiBW1AHTYDBI3gGr+DNeXJenHfnYzq65Mx2DsAfOJ8/HMiYzg==</latexit>

- Barotropic p=p(ρ)

- Asymp FLRW
{

<latexit sha1_base64="RG03HEwJX1WBjc+2nWlsTV1XmgQ=">AAAB6XicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8cq9gPaUDbbSbt0swm7G6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvTAXXxvO+ndLa+sbmVnm7srO7t3/gHh61dJIphk2WiER1QqpRcIlNw43ATqqQxqHAdji+nfntJ1SaJ/LRTFIMYjqUPOKMGis99PK+W/Vq3hxklfgFqUKBRt/96g0SlsUoDRNU667vpSbIqTKcCZxWepnGlLIxHWLXUklj1EE+v3RKzqwyIFGibElD5urviZzGWk/i0HbG1Iz0sjcT//O6mYmug5zLNDMo2WJRlAliEjJ7mwy4QmbExBLKFLe3EjaiijJjw6nYEPzll1dJ66LmezX//rJavyniKMMJnMI5+HAFdbiDBjSBQQTP8Apvzth5cd6dj0VrySlmjuEPnM8fm4SNZQ==</latexit><latexit sha1_base64="RG03HEwJX1WBjc+2nWlsTV1XmgQ=">AAAB6XicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8cq9gPaUDbbSbt0swm7G6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvTAXXxvO+ndLa+sbmVnm7srO7t3/gHh61dJIphk2WiER1QqpRcIlNw43ATqqQxqHAdji+nfntJ1SaJ/LRTFIMYjqUPOKMGis99PK+W/Vq3hxklfgFqUKBRt/96g0SlsUoDRNU667vpSbIqTKcCZxWepnGlLIxHWLXUklj1EE+v3RKzqwyIFGibElD5urviZzGWk/i0HbG1Iz0sjcT//O6mYmug5zLNDMo2WJRlAliEjJ7mwy4QmbExBLKFLe3EjaiijJjw6nYEPzll1dJ66LmezX//rJavyniKMMJnMI5+HAFdbiDBjSBQQTP8Apvzth5cd6dj0VrySlmjuEPnM8fm4SNZQ==</latexit><latexit sha1_base64="RG03HEwJX1WBjc+2nWlsTV1XmgQ=">AAAB6XicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8cq9gPaUDbbSbt0swm7G6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvTAXXxvO+ndLa+sbmVnm7srO7t3/gHh61dJIphk2WiER1QqpRcIlNw43ATqqQxqHAdji+nfntJ1SaJ/LRTFIMYjqUPOKMGis99PK+W/Vq3hxklfgFqUKBRt/96g0SlsUoDRNU667vpSbIqTKcCZxWepnGlLIxHWLXUklj1EE+v3RKzqwyIFGibElD5urviZzGWk/i0HbG1Iz0sjcT//O6mYmug5zLNDMo2WJRlAliEjJ7mwy4QmbExBLKFLe3EjaiijJjw6nYEPzll1dJ66LmezX//rJavyniKMMJnMI5+HAFdbiDBjSBQQTP8Apvzth5cd6dj0VrySlmjuEPnM8fm4SNZQ==</latexit><latexit sha1_base64="RG03HEwJX1WBjc+2nWlsTV1XmgQ=">AAAB6XicbVBNS8NAEJ3Ur1q/oh69LBbBU0lE0GPRi8cq9gPaUDbbSbt0swm7G6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvTAXXxvO+ndLa+sbmVnm7srO7t3/gHh61dJIphk2WiER1QqpRcIlNw43ATqqQxqHAdji+nfntJ1SaJ/LRTFIMYjqUPOKMGis99PK+W/Vq3hxklfgFqUKBRt/96g0SlsUoDRNU667vpSbIqTKcCZxWepnGlLIxHWLXUklj1EE+v3RKzqwyIFGibElD5urviZzGWk/i0HbG1Iz0sjcT//O6mYmug5zLNDMo2WJRlAliEjJ7mwy4QmbExBLKFLe3EjaiijJjw6nYEPzll1dJ66LmezX//rJavyniKMMJnMI5+HAFdbiDBjSBQQTP8Apvzth5cd6dj0VrySlmjuEPnM8fm4SNZQ==</latexit>

@t⇢+ 3(⇢+ P )(H + ⇣̇) +O(✏2) = 0
<latexit sha1_base64="mRLAIuXURfCovNBoUtXARzbLV/Q="></latexit><latexit sha1_base64="mRLAIuXURfCovNBoUtXARzbLV/Q="></latexit><latexit sha1_base64="mRLAIuXURfCovNBoUtXARzbLV/Q="></latexit><latexit sha1_base64="mRLAIuXURfCovNBoUtXARzbLV/Q=">AAACM3icbVDLSiNBFK12fGZ8ZGaWbgqDkCCEbhWczYDMbGQ2RjAqpDPhduXGFFZXNVW3BzJN/smNPzKLAXExIm79ByuxF74OFHXq3Efde5JMSUdheB3MfJidm19YXKp8XF5ZXat++nziTG4FtoVRxp4l4FBJjW2SpPAsswhpovA0ufgxiZ/+Ruuk0cc0yrCbwrmWAymAvNSr/owzsCRB9YjHdmj4Ft+pl6TV4PUDf8d9Q0X8BwnGDf8sYgGKH47rMWZOKqN/bTf4t5D3qrWwGU7B35KoJDVWotWr/vWdRZ6iJqHAuU4UZtQtJvMIheNKnDvMQFzAOXY81ZCi6xbTncd80yt9PjDWH018qj6vKCB1bpQmPjMFGrrXsYn4XqyT0+Brt5A6ywm1ePpokCtOhk8M5H1pUZAaeQLCSj8rF0OwIMjbXPEmRK9XfktOtptR2IyOdmv730s7Ftk622B1FrE9ts8OWIu1mWCX7B/7z26Dq+AmuAvun1JngrLmC3uB4OER7SKm0A==</latexit>

slicing  ρ(t, x) = ρ(t)
⇣̇ = O(✏2)

<latexit sha1_base64="XVuOPMwSluUH4ZE/nw3c//WVpcg=">AAACC3icbVA9SwNBEN3zM8avU0ubxSDEJtwFQRshaGNnBKOBXAx7m0myZG/v2J0T4pHexr9iY6GIrX/Azn/jJqbQxAcDj/dmdmdemEhh0PO+nLn5hcWl5dxKfnVtfWPT3dq+NnGqOdR4LGNdD5kBKRTUUKCEeqKBRaGEm7B/NvJv7kAbEasrHCTQjFhXiY7gDK3Ucvdo0I4xC+4B2fCEZgFnkl4MiwEkRshY3ZYPWm7BK3lj0FniT0iBTFBtuZ/2TZ5GoJBLZkzD9xJsZkyj4BKG+SA1kDDeZ11oWKpYBKaZjW8Z0n2rtGkn1rYU0rH6eyJjkTGDKLSdEcOemfZG4n9eI8XOcTMTKkkRFP/5qJNKijEdBUPbQgNHObCEcS3srpT3mGYcbXx5G4I/ffIsuS6XfK/kXx4WKqeTOHJkl+yRIvHJEamQc1IlNcLJA3kiL+TVeXSenTfn/ad1zpnM7JA/cD6+AeznmlE=</latexit><latexit sha1_base64="XVuOPMwSluUH4ZE/nw3c//WVpcg=">AAACC3icbVA9SwNBEN3zM8avU0ubxSDEJtwFQRshaGNnBKOBXAx7m0myZG/v2J0T4pHexr9iY6GIrX/Azn/jJqbQxAcDj/dmdmdemEhh0PO+nLn5hcWl5dxKfnVtfWPT3dq+NnGqOdR4LGNdD5kBKRTUUKCEeqKBRaGEm7B/NvJv7kAbEasrHCTQjFhXiY7gDK3Ucvdo0I4xC+4B2fCEZgFnkl4MiwEkRshY3ZYPWm7BK3lj0FniT0iBTFBtuZ/2TZ5GoJBLZkzD9xJsZkyj4BKG+SA1kDDeZ11oWKpYBKaZjW8Z0n2rtGkn1rYU0rH6eyJjkTGDKLSdEcOemfZG4n9eI8XOcTMTKkkRFP/5qJNKijEdBUPbQgNHObCEcS3srpT3mGYcbXx5G4I/ffIsuS6XfK/kXx4WKqeTOHJkl+yRIvHJEamQc1IlNcLJA3kiL+TVeXSenTfn/ad1zpnM7JA/cD6+AeznmlE=</latexit><latexit sha1_base64="XVuOPMwSluUH4ZE/nw3c//WVpcg=">AAACC3icbVA9SwNBEN3zM8avU0ubxSDEJtwFQRshaGNnBKOBXAx7m0myZG/v2J0T4pHexr9iY6GIrX/Azn/jJqbQxAcDj/dmdmdemEhh0PO+nLn5hcWl5dxKfnVtfWPT3dq+NnGqOdR4LGNdD5kBKRTUUKCEeqKBRaGEm7B/NvJv7kAbEasrHCTQjFhXiY7gDK3Ucvdo0I4xC+4B2fCEZgFnkl4MiwEkRshY3ZYPWm7BK3lj0FniT0iBTFBtuZ/2TZ5GoJBLZkzD9xJsZkyj4BKG+SA1kDDeZ11oWKpYBKaZjW8Z0n2rtGkn1rYU0rH6eyJjkTGDKLSdEcOemfZG4n9eI8XOcTMTKkkRFP/5qJNKijEdBUPbQgNHObCEcS3srpT3mGYcbXx5G4I/ffIsuS6XfK/kXx4WKqeTOHJkl+yRIvHJEamQc1IlNcLJA3kiL+TVeXSenTfn/ad1zpnM7JA/cD6+AeznmlE=</latexit><latexit sha1_base64="XVuOPMwSluUH4ZE/nw3c//WVpcg=">AAACC3icbVA9SwNBEN3zM8avU0ubxSDEJtwFQRshaGNnBKOBXAx7m0myZG/v2J0T4pHexr9iY6GIrX/Azn/jJqbQxAcDj/dmdmdemEhh0PO+nLn5hcWl5dxKfnVtfWPT3dq+NnGqOdR4LGNdD5kBKRTUUKCEeqKBRaGEm7B/NvJv7kAbEasrHCTQjFhXiY7gDK3Ucvdo0I4xC+4B2fCEZgFnkl4MiwEkRshY3ZYPWm7BK3lj0FniT0iBTFBtuZ/2TZ5GoJBLZkzD9xJsZkyj4BKG+SA1kDDeZ11oWKpYBKaZjW8Z0n2rtGkn1rYU0rH6eyJjkTGDKLSdEcOemfZG4n9eI8XOcTMTKkkRFP/5qJNKijEdBUPbQgNHObCEcS3srpT3mGYcbXx5G4I/ffIsuS6XfK/kXx4WKqeTOHJkl+yRIvHJEamQc1IlNcLJA3kiL+TVeXSenTfn/ad1zpnM7JA/cD6+AeznmlE=</latexit>



Weinberg’s adiabatic mode
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Theory Group, Department of Physics, University of Texas
Austin, TX, 78712

Abstract

We show that the field equations for cosmological perturbations in Newtonian
gauge always have an adiabatic solution, for which a quantity R is non-zero
and constant in all eras in the limit of large wavelength, so that it can be
used to connect observed cosmological fluctuations in this mode with those at
very early times. There is also a second adiabatic mode, for which R vanishes
for large wavelength, and in general there may be non-adiabatic modes as
well. These conclusions apply in all eras and whatever the constituents of
the universe, under only a mild technical assumption about the wavelength
dependence of the field equations for large wave length. In the absence of
anisotropic inertia, the perturbations in the adiabatic modes are given for
large wavelength by universal formulas in terms of the Robertson–Walker
scale factor. We discuss an apparent discrepancy between these results and
what appears to be a conservation law in all modes found for large wavelength
in synchronous gauge: it turns out that, although equivalent, synchronous
and Newtonian gauges suggest inequivalent assumptions about the behavior
of the perturbations for large wavelength.

1Electronic address: weinberg@physics.utexas.edu
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     While it may not be the dominant solution in IR,  
     the constant solution exists rather generically. 

⇣̇ 6= 0, ⇣ = ⇣1 + ⇣2
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Consistency relation

Multiplying
Qn

i=1

R
ddxie�iki·xi on Eq. (3.8) and using Eq. (3.24), we express Eq. (3.8)

in the Fourier space as

0 = Ŵ (n)(t;k = 0, {ki}n�1) +

 
n�1X

i=2

ki · @ki � d

!
Ŵ (n�1)(t; {ki}n�1) . (3.9)

where we used

n�1X

i=1

ki · @ki

"
�

 
n�1X

i=1

ki

!
Ŵ (n�1)(t; {ki}n)

#

= �

 
n�1X

i=1

ki

!
⇥

 
n�1X

i=2

ki · @ki � d

!
Ŵ (n�1)

 
t;�

n�1X

i=2

ki, k2, · · · , kn�1

!
(3.10)

and removed the delta function, which appears as a common factor in the two terms.

Here, {ki} denotes (n� 1) momenta ki with i = 1, · · · , n� 1 which satisfies
Pn�1

i=1 ki = 0.

Equation (3.10) can be verified by operating
R
ddk1 on the both sides of Eq. (3.10). Notice

that Eq. (3.9) states that if Ŵ (n�1) does not depend on time, Ŵ (n) with one soft leg neither

depend on time.

Using Eq. (3.9), we can derive the well-known consistency relation for the curvature

perturbation ⇣. Using Eq. (3.9) for n = 3 divided by the square of Ŵ (2)(t; k2), we obtain

Ŵ (3)(t; 0, k2, k2)

{Ŵ (2)(t; k2)}2
� (k2 · @k2 + d)

1

Ŵ (2)(t, k2)
= 0 . (3.11)

Since the power spectrum and the bispectrum are given by Eqs. (2.11) and (2.14), respec-

tively, we find that Eq. (3.11) indeed gives the consistency relation for the bi-spectrum:

lim
k3/k1, k3/k2!0

B(t; k1, k2, k3)

P (t; k3)
= �(k2 · @k2 + d)P (t; k2) . (3.12)

Similarly, using Eq. (3.9) for n = 4 divided by

Ŵ (2)(t; k23)Ŵ
(2)(t; k2)Ŵ

(2)(t; k3)

and using the expression of the tri-spectrum, given by Eqs. (2.17)-(5.1), we obtain the

consistency relation for the tri-spectrum:

lim
k4/k1, k4/k2, k4/k3!0

T (t;k1, k2, k3, k4)

P (t; k4)

= �(k2 · @k2 + k3 · @k3 + 2d)B(t;�k23, k2, k3) . (3.13)

In Refs. **, it was shown that for d = 3 the n-point function of ⇣ with one soft leg is

removed is related to the (n� 1)-point function as

lim
kn!0

C
(n)({ki}n)

P (kn)
= �

 
n�1X

i=2

ki · @ki + 3(n� 2)

!
C
(n�1)({ki}n�1) , (3.14)

– 6 –

correlation fun. with 1 soft ζ / γij  at time const. slicing  

ζ / γij  n-point functions

Maldacena (2002),Creminelli&Zaldarriaga(2004), …

e.g.

{qi}k {qi}

= universal 
 factor x

h⇣(t⇤, k1) · · · ⇣(t⇤, kn)i = �(k1 + · · ·+ kn) C(n)({ki}n)
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Question

- Existence of const. solution in ζ  (a.k.a. WAM)

IR “Universality”

- Consistency relation (~ soft theorem)

- Cancellation of IR divergence Tanaka & Y.U. (09, 10,….), …..

holds rather generically, but not always. 

{
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Then, what is the condition that ensures IR “Universality”?

e.g. WAM does not exist 

- Solid inflation, 3 scalar fields w/ large scale anisotropic pressure
Enlich, Nicholas and Wang (11, 12)
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Infrared triangle

1 Introduction

1.1 The Infrared Triangle

These lectures concern a triangular equivalence relation that governs the infrared (IR)
dynamics of all physical theories with massless particles. Each of the three corners of the
triangle, illustrated in figure 1, represents an old and central subject in physics on which
hundreds or even thousands (in the case of soft theorems) of papers have been written.
Over the past few years we have learned that these three seemingly unrelated subjects are
actually the same subject, arrived at from very di↵erent starting points and expressed in
very di↵erent notations.

Soft
Theorem

Ward
Identity Asymptotic

Symmetry

Vacuum
Transition

Memory
Effect

Fourier
Transform

1

Figure 1: The infrared triangle.

The first corner is the topic of soft theorems. These originated in quantum electrodynam-
ics (QED) in 1937 with the work of Bloch and Nordsieck [1], were significantly developed in
1958 by Low and others [2–6], and were generalized to gravity in 1965 by Weinberg [7]. Soft
theorems characterize universal properties of Feynman diagrams and scattering amplitudes
when a massless external particle becomes soft (i.e., its energy is taken to zero). These
theorems tell us that a surprisingly large — in fact, infinite — number of soft particles are
produced in any physical process, but in a highly controlled manner that is central to the
consistency of quantum field theory.

The second corner is the subject of asymptotic symmetries. This is the study of the
nontrivial exact symmetries or conserved charges of any system with an asymptotic region

1

Strominger+ (13,14, …)

review 1703.05448

Bloch & Nordsieck(1937)

Weinberg(1965)

Christodoulou(1991)

Bondi, Metzner, Sachs(1962)



Soft theorem

Soft photon theorem

Bloch & Nordsieck(1937)

Weinberg(1965)

for QED
for gravitons
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Figure 7: On the left is a Feynman diagram representing n ! m scattering. On the
right the e↵ect of adding an outgoing soft photon (or graviton) with momentum q and
polarization " is illustrated. In the upper diagrams the soft particle attaches to an
external propagator, while in the lower one it attaches to an internal propagator.

The LSZ rule for computing scattering amplitudes starts out by computing the time-
ordered Green’s functions using the Feynman i✏ prescription and then amputating the ex-
ternal legs. The Feynman diagrams have factors for vertices and propagators. What happens
when we attach the extra photon to an external leg is, since external legs are amputated,
we need only add a vertex and propagator for the particle to whose external leg the photon
is added. The di↵erence between the diagram with and without the attached external soft
photon is just the vertex and propagator.

Now I have to say a little bit about the interaction vertex. Let us take the interaction to
be

Lint = �Aµjµ . (2.9.2)

For a scalar field of charge Q, the charge current is

jµ = iQ(�@µ�
⇤ � �⇤@µ�) . (2.9.3)

For a plane wave, this is just
jµ ⇠ 2Qpµ , (2.9.4)

where we have used the normalization for single-particle states

hp|p0i = 2!p(2⇡)3�3(p � p0) . (2.9.5)
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S matrix 
(n→m scattering)
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Figure 7: On the left is a Feynman diagram representing n ! m scattering. On the
right the e↵ect of adding an outgoing soft photon (or graviton) with momentum q and
polarization " is illustrated. In the upper diagrams the soft particle attaches to an
external propagator, while in the lower one it attaches to an internal propagator.

The LSZ rule for computing scattering amplitudes starts out by computing the time-
ordered Green’s functions using the Feynman i✏ prescription and then amputating the ex-
ternal legs. The Feynman diagrams have factors for vertices and propagators. What happens
when we attach the extra photon to an external leg is, since external legs are amputated,
we need only add a vertex and propagator for the particle to whose external leg the photon
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be
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For a scalar field of charge Q, the charge current is
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Similar formulas apply to the soft photon momentum qµ (see (2.8.13)) and outgoing hard
particle momenta pout

k . In other words, knowing that the massless charged particle is going
to land at the point (zk, z̄k) determines what its momentum must be. This enables us to
replace all momenta in equation (2.8.21) with their expressions in terms of energies and
points on a sphere. Summing the contribution from an outgoing positive helicity soft photon
and an incoming negative helicity soft photon then exactly reproduces equation (2.8.20).
The straightforward but somewhat intricate algebra is left to exercise 5. The standard
soft photon formula reduces to the Ward identity following from invariance under large
gauge symmetries, or equivalently, the matrix element of the charge conservation law. This
establishes the central result connecting the soft photon theorem to the large gauge symmetry
of electromagnetism.

The story might have been told backward. Starting with the soft photon theorem, we
could reverse engineer and deduce the fact that abelian gauge theories have an infinite number
of conservation laws associated to antipodally identified large gauge transformations. They
are mathematically equivalent statements.

2.9 Feynman Diagrammatics

In this section, we review the standard field theory derivation of the leading photon and
graviton soft theorems in the form given by Weinberg [7, 151].

2.9.1 Soft Photons

The soft photon theorem states that any S-matrix element with an additional soft (qµ !
0) photon is equal to the original matrix element multiplied by the soft factor plus corrections
of order q0:

hout|aout
+ (~q )S|ini = e

"
mX

k=1

Qout
k pout

k · "+

pout
k · q

�
nX

k=1

Qin
k pin

k · "+

pin
k · q

#
hout|S|ini + O(q0) . (2.9.1)

The leading order term in the soft expansion is a pole.
To derive this formula, let us take any scattering process with n incoming and m outgoing

particles and then consider adding to it one outgoing photon, denoted by a wavy line in figure
7, with momentum q. (The derivation for an incoming photon is similar.) In the soft limit,
we can write the amplitude as a sum of two types of terms, ones in which the soft photon
attaches to an external line and others in which the soft photon attaches to an internal line.
The soft photon can attach to any one of the n + m external lines, so we must include a
sum over all such terms. The full amplitude has a Laurent expansion in q with an infinite
number of terms whose detailed form depends on what theory we are talking about. For the
pole we need not specify what theory we are studying except that it has a photon. That is
one of the beauties of this formula.
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is added. The di↵erence between the diagram with and without the attached external soft
photon is just the vertex and propagator.
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For a scalar field of charge Q, the charge current is
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This is the electromagnetic current associated to a scalar field of charge Q, meaning that
under gauge transformations, it acquires a phase eiQ". Moreover, we take the polarization of
the photon to obey "µqµ = 0, where qµ is the momentum of the photon. The propagator for
a scalar particle of mass m gives a factor

�i

(p + q)2 + m2 =
�i

p2 + 2p · q + q2 + m2 =
�i

2p · q
, (2.9.6)

where we have used the fact that in a scattering amplitude, all the external lines must be
on-shell, so q2 = 0 and p2 = �m2. The vertex factor is, up to O(q) corrections,

ie"µ2Qpµ , (2.9.7)

where "µ comes from Aµ and 2Qpµ comes from jµ. The total contribution is

ie"µ(2Qpµ)
�i

(p + q)2 + m2 ! eQ" · p

q · p
. (2.9.8)

There is one such term for every outgoing particle, while for the incoming particles there is
an additional minus sign. Altogether these give
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pin
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At the end of the day, if we just consider the diagrams in which the photon attaches to
an external leg, we simply multiply the S-matrix element by the factor in equation (2.9.9),
sometimes called the “soft factor”, which you may recognize from equation (2.8.21).

We have not yet considered the terms coming from the photon attaching to an internal
leg. The key point is that the internal propagators are never on-shell (i.e., they never have
p2 = �m2). In the propagator, one then never has the cancellation between p2 and m2, so if
we take qµ ! 0, the di↵erence between p2 and m2 will dominate, and we will not get a pole.
These types of diagrams are most certainly nonzero, but they do not contribute to the pole,
so we can forget about them in the soft limit. This is an extremely simple derivation. Up
to some signs, one finds the same thing for a soft incoming photon.

Now we note an important feature of this formula. The condition "µqµ = 0 defines the
polarization vector only up to shifts of "µ by qµ, because q2 = 0. The physical amplitude
with the soft photon should be invariant if we shift "µ by any multiple of qµ. Now it is
interesting to see what happens to the soft factor (2.9.9). If we shift "µ by qµ, it shifts by

mX

k=1

eQout
k �

nX

k=1

eQin
k = 0 . (2.9.10)

In other words, global charge conservation guarantees that this soft factor is gauge invariant.
This observation was in fact the basis of Low’s derivation of the soft formula in 1958 [4].

We have only worked out the soft theorem for the case of a scalar. For a fermion or some
other kind of charged particle, it is a little more complicated, but it works out to the same
expression [151]. One way of seeing that this must be so is that (2.9.9) is the only formula
with the right dimensions that is invariant under shifts "µ ! "µ + qµ.
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Asymptotic symmetry Bondi, Metzner, Sachs(1962)

at past null infinity I� and pass through spatial infinity i0 to future null infinity I+. The
matching condition (2.3.5) then states that the fields are continuous along the generators of
I, including when they cross i0, even though it is generically a singular point. It is singular,
because, for example, even just one charge in the interior needs an image charge at i0, which
will cause the electric field to diverge there. One certainly cannot demand that the fields be
smooth at spatial infinity. In the presence of multiple moving charges, the singularity can
become very complicated and in general requires arbitrarily many parameters to describe.
However, we are still able to consistently require, without violating Lorentz invariance (which
is a conformal symmetry of the compactified geometry), that the fields are continuous along
the null generators passing through i0 as prescribed by equation (2.3.5).

2.4 Asymptotic Expansions

Before going any further, it is convenient to introduce specific advanced and retarded
coordinates, illustrated in figure 6, and to be more precise about our large-r expansions
around I±.

I+

I�

+1

�1
0

1

u
z, z̄

r

I+

I�

+1
0

1

�1

v

r

z, z̄

Figure 6: In the left diagram, I+ is parametrized by retarded time u and spherical
coordinates (z, z̄) in retarded Bondi coordinates, while in the right diagram, I� is
parametrized by advanced time v and spherical coordinates (z, z̄) in advanced Bondi
coordinates. The advanced and retarded (z, z̄) coordinates are chosen so that they are
related by an antipodal map on spheres of constant (u, r).

In retarded coordinates (r, u, z, z̄), the Minkowski line element is

ds2 = �du2 � 2dudr + 2r2�zz̄dzdz̄ . (2.4.1)
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think that the fields should simply be taken to be equal, but this turns out to be completely
wrong. In fact, such a matching condition is not even Lorentz invariant! We will soon see it
is also not obeyed by the Liénard-Wiechert solution.

To describe I�, it is useful to introduce advanced time:

v = t + r . (2.2.1)

To describe I+, we introduce retarded time:

u = t � r . (2.2.2)

I� is a three-dimensional surface, so four coordinates are not needed. We could try to use
the usual (t, r, x̂), x̂ being a unit vector labeling a point on the sphere, but this choice is
awkward, because t and r are both infinite on I. However, if we follow null rays backward
(in time), t + r is finite, and if we follow them forward, t � r is finite. So I+ is naturally
parametrized by (u, x̂), and I� is naturally parametrized by (v, x̂).

2.3 Antipodal Matching Condition

A peculiar property of the Liénard-Wiechert solution is that if we start at a point in the
bulk, take the limit first to I+ and then to i0, we get a di↵erent answer than if we take the
limit to I� and then to i0. In fact, the Liénard-Wiechert solution takes di↵erent values at
fixed angles (or x̂) on I+

� and I�

+ , but obeys an antipodal matching condition.
To see this, first rewrite (2.1.9) in retarded coordinates u = t � r:

Frt = Fru =
e2

4⇡

nX

k=1

Qk�k

⇣
r � (u + r)x̂ · ~�k

⌘

���2
k

⇣
u + r � rx̂ · ~�k

⌘2

� (u + r)2 + r2
��3/2

. (2.3.1)

To reach I+, hold u fixed and take the limit r ! 1:

Frt

��
I

+ =
e2

4⇡r2

nX

k=1

Qk

�2
k(1 � x̂ · ~�k)

2
. (2.3.2)

To reach I+
� , we must further take u ! �1, but since the expression is u-independent,

(2.3.2) is the final answer. Note, if we take the velocity ~�k = 0, we recover the usual
Coulomb field for a static charged particle.

The leading 1

r
2 component of the electric field due to moving charges is not a constant:

it depends on the angle of the sphere at infinity. In standard electrodynamics texts, such
as Jackson [193], one often studies the multipole expansion of static configurations. The 1

r
2

component is then constant and proportional to the total electric charge, while the 1

r
3 term

comes from the static electric dipole moment with angular momentum ` = 1. In contrast, for
the case of a single charge moving at constant velocity, no electric dipole is in the picture,
but there is a dipole moment in the 1

r
2 term, in the sense that the ` = 1 mode of the

distribution over the sphere is nonzero. This ` = 1 mode dipole moment of the 1
r
2 term is
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This factor does not depend on zk at all. Thus, we can pull this factor out of the sum
to get


lim
q1!0

, lim
q2!0

�
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n+2 (q1, "1; q2, "2) / ig2
Y Mfa1a2b
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nX

k=1

T b

kAn = 0 . (9.0.128)

The argument follows through in the same way when the helicity is negative (just take
all z’s to z̄’s).

10. We take the metric to be of the form

ds2 = �du2 � 2dudr + 2r2�zz̄dzdz̄ +
2mB

r
du2 + rCzzdz2 + rCz̄z̄dz̄2

+ Uzdudz + Uz̄dudz̄ + · · · .
(9.0.129)

The four-dimensional Weyl tensor of a spacetime is given by

Cµ⌫⇢� = Rµ⌫⇢� +
1

2

�
g⌫⇢R�µ + gµ�R⇢⌫ � g⌫�R⇢µ � gµ⇢R�⌫

�
+

1

6
R
�
gµ⇢g�⌫ � gµ�g⇢⌫

�
.

(9.0.130)

We are interested in computing the following components:

Crzrz = Rrzrz � 1

2
gzzRrr , Crurz = Rrurz +

1

2
(gurRrz � guzRrr) . (9.0.131)

For the metric of interest, we then find

Crzrz = O(r�3) , Crurz = � 1

4r2 (Uz � DzCzz) + O(r�3) , (9.0.132)

where Dz is the covariant derivative with respect to �zz̄. Thus, to have an asymptoti-
cally flat spacetime, we must have

Uz = DzCzz . (9.0.133)

11(a). We will show that @r det
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gAB
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= 0 implies that CAB is traceless.
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These coordinates will be used in the neighborhood of I+. Here, u = t � r is the retarded
time coordinate introduced in equation (2.2.2), r is the radial coordinate, and z is a complex
coordinate on the unit sphere with metric

�zz̄ =
2

(1 + zz̄)2 . (2.4.2)

If we keep (u, z, z̄) fixed and take the limit r ! 1, we move out along a null line to I+. One
can see that this is a null line, because along this path, du = dz = dz̄ = 0, which implies
ds2 = 0. The standard metric on Minkowski space,

ds2 = �dt2 + (d~x)2 , (2.4.3)

is related to the metric in equation (2.4.1) by the coordinate transformations

(~x)2 = r2 , t = u + r , x1 + ix2 =
2rz

1 + zz̄
, x3 = r

1 � zz̄

1 + zz̄
. (2.4.4)

The inverse transformation is

r2 = (~x)2 , u = t � r , z =
x1 + ix2

x3 + r
. (2.4.5)

Here, z runs over the entire complex plane; z = 0 is the north pole, z = 1 is the south
pole, zz̄ = 1 is the equator, and z ! �1/z̄ is the antipodal map. This is a convenient
coordinate system to work in near I+ because, as we will see, everything falls o↵ near I+,
so we can expand fields in powers of 1

r
. However, we cannot easily use these coordinates

near I�, because u = �1 there. To work in a neighborhood of I�, we introduce advanced
coordinates. The advanced line element is

ds2 = �dv2 + 2dvdr + 2r2�zz̄dzdz̄ . (2.4.6)

This metric can be obtained from the standard Cartesian metric on Minkowski space by
means of the coordinate transformations

(~x)2 = r2 , t = v � r , x1 + ix2 = � 2rz

1 + zz̄
, x3 = �r

1 � zz̄

1 + zz̄
. (2.4.7)

Crucial minus signs introduced into the last two terms of (2.4.7) imply that the z in the
advanced coordinates denotes the antipodal point on the sphere to the z in the retarded co-
ordinates (the sign reverses under z ! �1/z̄). If we take a light ray which crosses Minkowski
space, then the value of z at which it starts in advanced coordinates will be the same as the
value of z at which it ends in retarded coordinates. Moreover, z is constant along the null
generators of I� as they pass through i0 to I+. This perhaps odd-seeming choice of notation
simplifies subsequent formulas.

Now we wish to expand around I+. Given any field—say, the z-component of the vector
potential—we can write an expansion for it as a sum

Az(u, r, z, z̄) =
1X

n=0

A(n)
z (u, z, z̄)

rn , (2.4.8)
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Poincaré group. Had this been the case, GR would reduce to special relativity at large-
distances and weak fields. Surprisingly, as we now review, what they got instead was an
infinite-dimensional group, now called the BMS group. This contains as a subgroup the
finite-dimensional Poincaré group. However, the four global translations are elevated to a
whole function’s worth of “supertranslations” that act independently on each point of the
asymptotic sphere. Moreover, as we shall see, GR does not reduce to special relativity at
large distances and weak fields. Instead, a large space of degenerate vacua remains.

5.2.1 BMS Analysis

We will not reproduce here the entire calculation of BMS [8, 9], which is a bit lengthy.
We instead make a simplifying assumption that eliminates six Lorentz generators. Namely,
we restrict consideration to di↵eomorphisms that have the large-r fallo↵s:

⇠u, ⇠r ⇠ O(1) , ⇠z, ⇠z̄ ⇠ O
✓

1

r

◆
. (5.2.1)

This condition is equivalent to the statement that the vector field is O(1) at large r in an
orthonormal frame, thereby eliminating boosts and rotations that grow with r at infinity.
We return to a discussion of these in section 5.3.

The Lie derivative of the metric components at large r are then

L⇣gur = �@u⇣
u + O

✓
1
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◆
,

L⇣gzr = r2�zz̄@r⇣
z̄ � @z⇣

u + O
✓

1

r

◆
,

L⇣gzz̄ = r�zz̄

⇥
2⇣r + rDz⇣

z + rDz̄⇣
z̄
⇤
+ O(1),

L⇣guu = �2@u⇣
u � 2@u⇣

r + O
✓

1

r

◆
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(5.2.2)

Then, requiring that the Bondi gauge conditions (5.1.2) and fallo↵s (5.1.5) are both preserved
implies that at large r,

⇣ = f@u � 1

r

�
Dzf@z + Dz̄f@z̄

�
+ DzDzf@r + . . . , (5.2.3)

where f(z, z̄) is any function of (z, z̄). It turns out that (5.2.3) also preserves all the remaining
conditions. We note here that the last term in (5.2.3) is derived from the condition that

gur = �1+O
⇣

1

r
2

⌘
. In other formulations of asymptotically flat spacetimes (for instance, the

one considered by Newman and Unti [212], where gur = �1), this term takes on a di↵erent
form. The first two terms are universal and are directly measured by the gravitational
memory e↵ect, which we discuss in Section 6. The transformations generated by (5.2.3)
are called supertranslations, depicted in figure 17. They are generalizations of the four
translations in Minkowski space. For instance, for f(z, z̄) = constant, (5.2.3) generates u-
translations. What is less obvious, though, is that if f(z, z̄) is taken to be the ` = 1 harmonic
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Figure 17: Under a supertranslation, retarded time u is shifted independently at every
angle on I.

on the sphere, we retrieve the three spatial translations. The most general f e↵ectively allows
separate translations along every null generator of I+.

Supertranslations transform one geometry into a new, physically inequivalent geometry,
despite the fact that they are di↵eomorphisms. To see this, consider a solution where an
outgoing pulse of gravitational or electromagnetic waves crosses the south pole of I+, and
another pulse crosses the north pole of I+, both at retarded time u = 100. Now supertrans-
late this solution with a function f(z, z̄) that has the property that f(south pole)=100 and
f(north pole)=0. The new solution now has one outgoing pulse at the north pole only at
u = 100 and one at the south pole only at u = 200. The outgoing data are measurably
changed by the supertranslation.

This simple example shows that the e↵ect of a supertranslation on a solution can be
discerned even at the classical level. While the structure here follows the abelian gauge
theory case quite closely, the large abelian gauge transformations only modified phases of
states and therefore are somewhat quantum in nature. For this reason, it can be less confusing
to discuss asymptotic symmetries in the case of gravity. Although supertranslations were not
understood to be a symmetry of gravitational scattering until recently [42,43], the fact that
they act nontrivially on the phase spaces at I± was understood fifty years ago by BMS [8,9].
It is odd that this symmetry of gravity was at least partially understood fifty years ago,
whereas the precisely analogous symmetries in electromagnetism were only understood in
the past few years [10, 11, 13, 14]. This is perhaps in part due to the quantum nature of the
electromagnetic symmetries.

The action of supertranslations on the I+ data mB, Czz, and Nzz can be determined by
computing the Lie derivative of the appropriate component of the metric and then extracting
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the appropriate coe�cient in the large-r expansion. This process gives (see exercise 11)

LfNzz = f@uNzz,

LfmB = f@umB +
1

4

⇥
N zzD2

zf + 2DzN
zzDzf + c.c.

⇤
,

LfCzz = f@uCzz � 2D2
zf.

(5.2.4)

The last equation above is especially interesting. Suppose we supertranslate flat Minkowski
spacetime described by mB = Nzz = Czz = 0. Equation (5.2.4) implies that the super-
translated spacetime will still have zero Bondi mass and Bondi news and vanishing Riemann
tensor. This is consistent with the fact that a di↵eomorphism cannot change the physical
mass squared or create gravitational waves. However, the supertranslated spacetime does
have a nonzero Czz. One may check that the vanishing of the curvature in fact requires

Czz = �2D2
zC, (5.2.5)

for some function C(z, z̄). Under a supertranslation,

LfC = f. (5.2.6)

Hence C is the Goldstone boson of spontaneously broken supertranslation invariance. It
parametrizes the classically inequivalent gravitational vacua. Since the ` = 0, 1 modes of C
are annihilated by D2

z , the four rigid spacetime translations are not broken.
If one drops the overly restrictive fallo↵s (5.2.1) on ⇣, one obtains the larger BMS+

group which is a semidirect product of supertranslations with Lorentz transformations on
I+. The four spacetime translations are an ideal of BMS+ and so may be canonically
identified in any BMS+ frame. In general, there is no preferred Poincaré subgroup of BMS+.
Di↵erent subgroups are transformed into one another via conjugation by supertranslations.
In particular, this implies that there is no BMS+ invariant definition of angular momentum.
This is sometimes referred to as “the problem of angular momentum in general relativity,”
although I view it as a feature, not a bug. However, given any particular classical choice of
vacuum, there is a unique Poincaré subgroup of BMS+ under which it is invariant.25

So far, we have not utilized any equations of motion. Assume that the geometry is
governed by the Einstein equations

Rµ⌫ � 1

2
gµ⌫R = 8⇡GTM

µ⌫ . (5.2.7)

Since we are here interested in the structure of null infinity, we assume that TM

µ⌫ is a matter
stress tensor corresponding to massless modes.26 Plugging in the explicit form of the met-
ric (5.1.4) and expanding in large r, we find that the leading uu component of Einstein’s
equations is

@umB =
1

4

⇥
D2

zN
zz + D2

z̄N
z̄z̄

⇤
� Tuu, (5.2.8)

25Thus, classically, there is always an unbroken Poincaré subgroup of BMS+ in flat space. In the quantum
theory, a generic superposition of vacua will have only the four global translations as an unbroken symmetry.

26The massive case is treated by Campiglia and Laddha [183,184].
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although I view it as a feature, not a bug. However, given any particular classical choice of
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Figure 17: Under a supertranslation, retarded time u is shifted independently at every
angle on I.

on the sphere, we retrieve the three spatial translations. The most general f e↵ectively allows
separate translations along every null generator of I+.

Supertranslations transform one geometry into a new, physically inequivalent geometry,
despite the fact that they are di↵eomorphisms. To see this, consider a solution where an
outgoing pulse of gravitational or electromagnetic waves crosses the south pole of I+, and
another pulse crosses the north pole of I+, both at retarded time u = 100. Now supertrans-
late this solution with a function f(z, z̄) that has the property that f(south pole)=100 and
f(north pole)=0. The new solution now has one outgoing pulse at the north pole only at
u = 100 and one at the south pole only at u = 200. The outgoing data are measurably
changed by the supertranslation.

This simple example shows that the e↵ect of a supertranslation on a solution can be
discerned even at the classical level. While the structure here follows the abelian gauge
theory case quite closely, the large abelian gauge transformations only modified phases of
states and therefore are somewhat quantum in nature. For this reason, it can be less confusing
to discuss asymptotic symmetries in the case of gravity. Although supertranslations were not
understood to be a symmetry of gravitational scattering until recently [42,43], the fact that
they act nontrivially on the phase spaces at I± was understood fifty years ago by BMS [8,9].
It is odd that this symmetry of gravity was at least partially understood fifty years ago,
whereas the precisely analogous symmetries in electromagnetism were only understood in
the past few years [10, 11, 13, 14]. This is perhaps in part due to the quantum nature of the
electromagnetic symmetries.

The action of supertranslations on the I+ data mB, Czz, and Nzz can be determined by
computing the Lie derivative of the appropriate component of the metric and then extracting
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Infrared triangle + 

1 Introduction

1.1 The Infrared Triangle

These lectures concern a triangular equivalence relation that governs the infrared (IR)
dynamics of all physical theories with massless particles. Each of the three corners of the
triangle, illustrated in figure 1, represents an old and central subject in physics on which
hundreds or even thousands (in the case of soft theorems) of papers have been written.
Over the past few years we have learned that these three seemingly unrelated subjects are
actually the same subject, arrived at from very di↵erent starting points and expressed in
very di↵erent notations.

Soft
Theorem

Ward
Identity Asymptotic

Symmetry

Vacuum
Transition

Memory
Effect

Fourier
Transform

1

Figure 1: The infrared triangle.

The first corner is the topic of soft theorems. These originated in quantum electrodynam-
ics (QED) in 1937 with the work of Bloch and Nordsieck [1], were significantly developed in
1958 by Low and others [2–6], and were generalized to gravity in 1965 by Weinberg [7]. Soft
theorems characterize universal properties of Feynman diagrams and scattering amplitudes
when a massless external particle becomes soft (i.e., its energy is taken to zero). These
theorems tell us that a surprisingly large — in fact, infinite — number of soft particles are
produced in any physical process, but in a highly controlled manner that is central to the
consistency of quantum field theory.

The second corner is the subject of asymptotic symmetries. This is the study of the
nontrivial exact symmetries or conserved charges of any system with an asymptotic region

1
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Cancellation of IR div.

Figure 13: The resummation of IR divergent processes, in which pairs of external
charged legs exchange soft photons, sets the amplitude for Bhabha scattering to zero.

Finding a new way of computing zero, however, is not enough: we would like to use our
insights to construct finite amplitudes. The problem above was the mismatched Coulomb
fields produced by the asymptotic charge fluxes. This mismatch can be avoided by using
radiative, rather than the Coulombic, modes to satisfy the constraints:

����*
0

@uF
(2)
ru + DzF (0)

uz + Dz̄F (0)
uz̄ = �e2j(2)

u ,

����*
0

@vF
(2)
rv � DzF (0)

vz � Dz̄F (0)
vz̄ = e2j(2)

v . (2.15.5)

For a single outgoing positron, this has the radiative shock wave solution15

A(0)
z = � e2

4⇡(z � z0)
✓(u � u0). (2.15.6)

The field strength has support only at at u = u0, but the gauge potential is shifted by
the shock wave, indicating a transition between the degenerate vacua. Its frequency space
Fourier transform has the signature ! ! 0 pole. The corresponding “dressed” coherent
quantum state for the outgoing positron,

|j0idressed = e
( i

2⇡

R
d
2

z

z0�z
A

(0)
z̄

(u0,z,z̄)�h.c.)|j0i , (2.15.7)

is annihilated by the I+ constraint equation (2.15.5) (with the fields promoted to operators).
This state can be described as a positron surrounded by a cloud of soft photons. Dressing
all the positrons and electrons in this manner, one finds for “dressed” Bhabha scattering16

F (2)
ru (z, z̄)

���
I

+
�

= 0 = F (2)
rv (z, z̄)

���
I

�
+

, (2.15.8)

15This solution is singular at z = 1, but in the case of Bhabha scattering with zero net global charge the
singularity is cancelled.

16When there is net global charge, this procedure sets the leading radial component of the electric field to
a nonzero but angle-independent constant.
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IR divergence in QED

S-matrix element  → 0

in IR cutoff → 0

Figure 13: The resummation of IR divergent processes, in which pairs of external
charged legs exchange soft photons, sets the amplitude for Bhabha scattering to zero.

Finding a new way of computing zero, however, is not enough: we would like to use our
insights to construct finite amplitudes. The problem above was the mismatched Coulomb
fields produced by the asymptotic charge fluxes. This mismatch can be avoided by using
radiative, rather than the Coulombic, modes to satisfy the constraints:
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15This solution is singular at z = 1, but in the case of Bhabha scattering with zero net global charge the
singularity is cancelled.

16When there is net global charge, this procedure sets the leading radial component of the electric field to
a nonzero but angle-independent constant.
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Faddeev-Kulish (1970)

Figure 14: The Faddeev-Kulish mechanism. IR divergences from soft exchanges be-
tween external charges are pairwise cancelled by exchanges between external charges
and soft photon clouds surrounding each particle.

and the matching conditions (2.15.4) are trivially satisfied. Of course, there are many other
ways to satisfy the matching condition, but the example (2.15.7) is particularly simple and
illustrates the main point.

Since the conservation laws are satisfied, there is no reason for dressed Bhabha ampli-
tudes to vanish and no need for IR divergences. In fact, these amplitudes are known to be
completely IR finite!17 The dressed state here is a special case of the ones shown by Kulish
and Faddeev in 1970 [147] to have IR finite scattering amplitudes. As shown in figure 14,
there is a pairwise cancellation of IR divergences in soft photon exchanges between pairs of
external charges and external charges and soft clouds.18 We can now understand the role of
Faddeev-Kulish clouds as inserting radiative photons to satisfy the conservation laws.

This is progress, but Faddeev-Kulish states are highly nongeneric. When the net charge is
zero, they all have vanishing leading radial electric fields near spatial infinity as in (2.15.8).
When it is not zero, the leading electric field is nonzero but is independent of the angle,
because the soft photon cloud shields all the angle-dependent components. Such states are
unphysical. When pairs of protons are thrown at one another at the LHC, they are not
followed up with a finely tuned cloud of soft photons to shield the angle-dependent part
of the electric field. The S-matrix SFK restricted to Faddeev Kulish states is not unitary:
rather S†

FK
SFK = PFK is a projection operator projecting onto such shielded states. PFK

projects out the states we scatter in accelerator experiments.
It is desirable to have IR finite scattering amplitudes for all physical states. The discussion

here suggests that IR divergences arise only to enforce charge conservation. Accordingly, it
was conjectured in [210] that all amplitudes allowed by charge conservation are free of IR
divergences.19 As depicted in figure 15, a leading order analysis corroborates this conjecture.

17There are UV divergences in this particular example, as the positrons, electrons, and shock waves are
all infinitely localized. These divergences can be eliminated by smearing but are not our interest here.

18More generally, cloud-cloud exchanges also participate in the cancellations.
19This conjecture was recently proven by R. Akhoury and S. Choi [211].
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Dressing IR photons which are too IR to be detected 

Figure 14: The Faddeev-Kulish mechanism. IR divergences from soft exchanges be-
tween external charges are pairwise cancelled by exchanges between external charges
and soft photon clouds surrounding each particle.
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unphysical. When pairs of protons are thrown at one another at the LHC, they are not
followed up with a finely tuned cloud of soft photons to shield the angle-dependent part
of the electric field. The S-matrix SFK restricted to Faddeev Kulish states is not unitary:
rather S†

FK
SFK = PFK is a projection operator projecting onto such shielded states. PFK

projects out the states we scatter in accelerator experiments.
It is desirable to have IR finite scattering amplitudes for all physical states. The discussion

here suggests that IR divergences arise only to enforce charge conservation. Accordingly, it
was conjectured in [210] that all amplitudes allowed by charge conservation are free of IR
divergences.19 As depicted in figure 15, a leading order analysis corroborates this conjecture.

17There are UV divergences in this particular example, as the positrons, electrons, and shock waves are
all infinitely localized. These divergences can be eliminated by smearing but are not our interest here.
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Infrared triangle + 

1 Introduction

1.1 The Infrared Triangle

These lectures concern a triangular equivalence relation that governs the infrared (IR)
dynamics of all physical theories with massless particles. Each of the three corners of the
triangle, illustrated in figure 1, represents an old and central subject in physics on which
hundreds or even thousands (in the case of soft theorems) of papers have been written.
Over the past few years we have learned that these three seemingly unrelated subjects are
actually the same subject, arrived at from very di↵erent starting points and expressed in
very di↵erent notations.
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Figure 1: The infrared triangle.

The first corner is the topic of soft theorems. These originated in quantum electrodynam-
ics (QED) in 1937 with the work of Bloch and Nordsieck [1], were significantly developed in
1958 by Low and others [2–6], and were generalized to gravity in 1965 by Weinberg [7]. Soft
theorems characterize universal properties of Feynman diagrams and scattering amplitudes
when a massless external particle becomes soft (i.e., its energy is taken to zero). These
theorems tell us that a surprisingly large — in fact, infinite — number of soft particles are
produced in any physical process, but in a highly controlled manner that is central to the
consistency of quantum field theory.

The second corner is the subject of asymptotic symmetries. This is the study of the
nontrivial exact symmetries or conserved charges of any system with an asymptotic region

1
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Large GTs for ζ/γij

- Dilatation transformation 

we will discuss in Sec. 4, in the limit k/aH ⌧ 1, a perturbative expansion can break down

in computing some quantity and taking this limit requires a careful treatment.

2.1 Large gauge transformations

Likewise in the discussion about the soft photons and gravitons in the asymptotically

flat spacetime, a large gauge transformation plays a crucial role for a clear understanding

about the soft modes of ⇣ and �ij in an inflationary spacetime. In line with Refs. [1, 2], we

define the large gauge transformation as follows. A local symmetry denotes a symmetry

under a transformation which is parametrized by a spacetime dependent function, while a

global symmetry denotes a symmetry under a transformation by a spacetime independent

function.

Among local symmetry transformations, it is important to make a distinction between

small gauge transformation and large gauge transformations. The former becomes the

identity at the infinity and the latter does not. In Refs. [26, 29], it was shown that the

soft theorem for the photons and the gravitons in the asymptotically flat spacetime can be

derived from the Ward-Takahashi identities for large gauge transformations which do not

vanish on J
±.

2.1.1 Dilatation as a large gauge transformation

First, let us clarify the prescription we adopt. In this paper, we use the ADM form of the

line element:

ds2 = �N2dt2 + hij(dx
i +N idt)(dxj +N jdt) , (2.1)

where we introduced the lapse function N , the shift vector N i, and the spatial metric hij .

We determine the time slicing, employing the uniform field gauge:

�� = 0 . (2.2)

We express the spatial metric hij as

hij = a2e2⇣ [e� ]ij , (2.3)

where �ij is set to traceless. As spatial gauge conditions, we impose

@i�ij = 0 . (2.4)

To discuss the soft modes of the primordial perturbations in the spatially flat FRW

background, we consider the large gauge transformations, which do not vanish at the spatial

infinity on a time constant surface. This large gauge transformation was first discussed

in the context of cosmology by Weinberg in Ref. [3]. In the unitary gauge, where the

fluctuation of the inflaton vanishes, we consider, in particular, the dilatation:

xi ! esxi , (2.5)

– 4 –

where s is a constant parameter. Under the dilatation, the curvature perturbation ⇣ trans-

forms as

⇣(t, x) ! ⇣s(t, x) = ⇣(t, e�sx)� s . (2.6)

The change of ⇣ is given by

�s⇣(t, x) = �s(1 + x · @x⇣(t, x)) +O(s2) . (2.7)

The classical action in a di↵eomorphism (Di↵) invariant theory remains invariant under

the transformation of ⇣ given in Eq. (2.6). As one may expect from the fact that the

dilatation shifts ⇣ by �s, the dilatation invariance is related to the massless property of ⇣,

which implies that ⇣ is conserved at large scales in single clock inflation.

2.1.2 Two di↵erent prescriptions of dilatation

The dilatation invariance may be somehow confusing, because it also appears as a part

of the de Sitter invariance by changing the time coordinate simultaneously. The Killing

vector which corresponds to this transformation is given by

�⌘@⌘ � xi@i ,

where ⌘ denotes the conformal time. The dilatation symmetry in de Sitter group states

that the time shift can be compensated by the scale transformation. Since inflation has

to end at some point, the time translation symmetry needs to be broken in the context of

inflationary scenario.

The time translation symmetry is broken, when the physical frequency !ph becomes

well below ⇤b with ⇤4
b ⌘ �̇2. In the e↵ective field theory of inflation [32], the Goldstone

mode, the pion ⇡, is introduced to restore the invariance under the time reparametrization

t ! t+ ⇠ , ⇡ ! ⇡ � ⇠ (2.8)

in the symmetry breaking phase. With this construction, the pion Lagrangian non-linearly

preserves the invariance since ⇡ appears only in the combination t + ⇡. Through the

coupling with the metric perturbations, the pion acquires the mass of m⇡ = O(
p
"1H).

The relation between the dilatation discussed in Sec. 2.1.1 and the one discussed here

is somewhat puzzling. As we will discuss in the following section, the former is preserved

in an arbitrary quasi FRW spacetime, while the latter is a part of the de Sitter symmetry

and is broken below the symmetry breaking scale ⇤b. Related to this point, preserving

the former dilatation invariance directly ensures that ⇣ should be massless. On the other

hand, there is no simple argument which shows the massless property of ⇣ in the latter

prescription, where ⇣ is related to the Goldstone mode ⇡ as ⇣ = �H⇡. Related to this

point, recall that the pion acquires the mass m⇡ through the coupling with the metric

perturbation for !ph <
⇠ m⇡

1. Therefore, in the regime where ⇣ approaches a constant

1
Recall that the Goldstone mode for a global symmetry is not necessarily massless in a Lorentz violating

background.

– 5 –

Invariance under Large GTs that preserves [asym FLRW] 

Large: |xi| → ∞ at each time slicing

?

(Counter part of BMS in cosmology)

Very roughly speaking…..

dilatation inv. ensures “shift symmetry” of ζ



Infrared physics in cosmology

1 Introduction

1.1 The Infrared Triangle

These lectures concern a triangular equivalence relation that governs the infrared (IR)
dynamics of all physical theories with massless particles. Each of the three corners of the
triangle, illustrated in figure 1, represents an old and central subject in physics on which
hundreds or even thousands (in the case of soft theorems) of papers have been written.
Over the past few years we have learned that these three seemingly unrelated subjects are
actually the same subject, arrived at from very di↵erent starting points and expressed in
very di↵erent notations.
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Figure 1: The infrared triangle.

The first corner is the topic of soft theorems. These originated in quantum electrodynam-
ics (QED) in 1937 with the work of Bloch and Nordsieck [1], were significantly developed in
1958 by Low and others [2–6], and were generalized to gravity in 1965 by Weinberg [7]. Soft
theorems characterize universal properties of Feynman diagrams and scattering amplitudes
when a massless external particle becomes soft (i.e., its energy is taken to zero). These
theorems tell us that a surprisingly large — in fact, infinite — number of soft particles are
produced in any physical process, but in a highly controlled manner that is central to the
consistency of quantum field theory.

The second corner is the subject of asymptotic symmetries. This is the study of the
nontrivial exact symmetries or conserved charges of any system with an asymptotic region

1

Cancellation of 
IR divergence

These coordinates will be used in the neighborhood of I+. Here, u = t � r is the retarded
time coordinate introduced in equation (2.2.2), r is the radial coordinate, and z is a complex
coordinate on the unit sphere with metric

�zz̄ =
2

(1 + zz̄)2 . (2.4.2)

If we keep (u, z, z̄) fixed and take the limit r ! 1, we move out along a null line to I+. One
can see that this is a null line, because along this path, du = dz = dz̄ = 0, which implies
ds2 = 0. The standard metric on Minkowski space,

ds2 = �dt2 + (d~x)2 , (2.4.3)

is related to the metric in equation (2.4.1) by the coordinate transformations

(~x)2 = r2 , t = u + r , x1 + ix2 =
2rz

1 + zz̄
, x3 = r

1 � zz̄

1 + zz̄
. (2.4.4)

The inverse transformation is

r2 = (~x)2 , u = t � r , z =
x1 + ix2

x3 + r
. (2.4.5)

Here, z runs over the entire complex plane; z = 0 is the north pole, z = 1 is the south
pole, zz̄ = 1 is the equator, and z ! �1/z̄ is the antipodal map. This is a convenient
coordinate system to work in near I+ because, as we will see, everything falls o↵ near I+,
so we can expand fields in powers of 1

r
. However, we cannot easily use these coordinates

near I�, because u = �1 there. To work in a neighborhood of I�, we introduce advanced
coordinates. The advanced line element is

ds2 = �dv2 + 2dvdr + 2r2�zz̄dzdz̄ . (2.4.6)

This metric can be obtained from the standard Cartesian metric on Minkowski space by
means of the coordinate transformations

(~x)2 = r2 , t = v � r , x1 + ix2 = � 2rz

1 + zz̄
, x3 = �r

1 � zz̄

1 + zz̄
. (2.4.7)

Crucial minus signs introduced into the last two terms of (2.4.7) imply that the z in the
advanced coordinates denotes the antipodal point on the sphere to the z in the retarded co-
ordinates (the sign reverses under z ! �1/z̄). If we take a light ray which crosses Minkowski
space, then the value of z at which it starts in advanced coordinates will be the same as the
value of z at which it ends in retarded coordinates. Moreover, z is constant along the null
generators of I� as they pass through i0 to I+. This perhaps odd-seeming choice of notation
simplifies subsequent formulas.

Now we wish to expand around I+. Given any field—say, the z-component of the vector
potential—we can write an expansion for it as a sum

Az(u, r, z, z̄) =
1X

n=0

A(n)
z (u, z, z̄)

rn , (2.4.8)
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Cancellation of IR div.

For massless fields in (quasi) dS, accumulation of IR modes, 
k/aH <<1, leads to logarithmic divergence.  
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Figure 14: The Faddeev-Kulish mechanism. IR divergences from soft exchanges be-
tween external charges are pairwise cancelled by exchanges between external charges
and soft photon clouds surrounding each particle.

and the matching conditions (2.15.4) are trivially satisfied. Of course, there are many other
ways to satisfy the matching condition, but the example (2.15.7) is particularly simple and
illustrates the main point.

Since the conservation laws are satisfied, there is no reason for dressed Bhabha ampli-
tudes to vanish and no need for IR divergences. In fact, these amplitudes are known to be
completely IR finite!17 The dressed state here is a special case of the ones shown by Kulish
and Faddeev in 1970 [147] to have IR finite scattering amplitudes. As shown in figure 14,
there is a pairwise cancellation of IR divergences in soft photon exchanges between pairs of
external charges and external charges and soft clouds.18 We can now understand the role of
Faddeev-Kulish clouds as inserting radiative photons to satisfy the conservation laws.

This is progress, but Faddeev-Kulish states are highly nongeneric. When the net charge is
zero, they all have vanishing leading radial electric fields near spatial infinity as in (2.15.8).
When it is not zero, the leading electric field is nonzero but is independent of the angle,
because the soft photon cloud shields all the angle-dependent components. Such states are
unphysical. When pairs of protons are thrown at one another at the LHC, they are not
followed up with a finely tuned cloud of soft photons to shield the angle-dependent part
of the electric field. The S-matrix SFK restricted to Faddeev Kulish states is not unitary:
rather S†

FK
SFK = PFK is a projection operator projecting onto such shielded states. PFK

projects out the states we scatter in accelerator experiments.
It is desirable to have IR finite scattering amplitudes for all physical states. The discussion

here suggests that IR divergences arise only to enforce charge conservation. Accordingly, it
was conjectured in [210] that all amplitudes allowed by charge conservation are free of IR
divergences.19 As depicted in figure 15, a leading order analysis corroborates this conjecture.

17There are UV divergences in this particular example, as the positrons, electrons, and shock waves are
all infinitely localized. These divergences can be eliminated by smearing but are not our interest here.

18More generally, cloud-cloud exchanges also participate in the cancellations.
19This conjecture was recently proven by R. Akhoury and S. Choi [211].
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Figure 14: The Faddeev-Kulish mechanism. IR divergences from soft exchanges be-
tween external charges are pairwise cancelled by exchanges between external charges
and soft photon clouds surrounding each particle.
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and Faddeev in 1970 [147] to have IR finite scattering amplitudes. As shown in figure 14,
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external charges and external charges and soft clouds.18 We can now understand the role of
Faddeev-Kulish clouds as inserting radiative photons to satisfy the conservation laws.

This is progress, but Faddeev-Kulish states are highly nongeneric. When the net charge is
zero, they all have vanishing leading radial electric fields near spatial infinity as in (2.15.8).
When it is not zero, the leading electric field is nonzero but is independent of the angle,
because the soft photon cloud shields all the angle-dependent components. Such states are
unphysical. When pairs of protons are thrown at one another at the LHC, they are not
followed up with a finely tuned cloud of soft photons to shield the angle-dependent part
of the electric field. The S-matrix SFK restricted to Faddeev Kulish states is not unitary:
rather S†
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SFK = PFK is a projection operator projecting onto such shielded states. PFK

projects out the states we scatter in accelerator experiments.
It is desirable to have IR finite scattering amplitudes for all physical states. The discussion

here suggests that IR divergences arise only to enforce charge conservation. Accordingly, it
was conjectured in [210] that all amplitudes allowed by charge conservation are free of IR
divergences.19 As depicted in figure 15, a leading order analysis corroborates this conjecture.

17There are UV divergences in this particular example, as the positrons, electrons, and shock waves are
all infinitely localized. These divergences can be eliminated by smearing but are not our interest here.

18More generally, cloud-cloud exchanges also participate in the cancellations.
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Conditions for IR “Universality”

QFT in asymptotically flat spacetimes 

- Asymptotically Flat spacetimes

QFT in cosmology 

- Gauge invariance

IR triangle 

1 Introduction

1.1 The Infrared Triangle

These lectures concern a triangular equivalence relation that governs the infrared (IR)
dynamics of all physical theories with massless particles. Each of the three corners of the
triangle, illustrated in figure 1, represents an old and central subject in physics on which
hundreds or even thousands (in the case of soft theorems) of papers have been written.
Over the past few years we have learned that these three seemingly unrelated subjects are
actually the same subject, arrived at from very di↵erent starting points and expressed in
very di↵erent notations.
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Figure 1: The infrared triangle.

The first corner is the topic of soft theorems. These originated in quantum electrodynam-
ics (QED) in 1937 with the work of Bloch and Nordsieck [1], were significantly developed in
1958 by Low and others [2–6], and were generalized to gravity in 1965 by Weinberg [7]. Soft
theorems characterize universal properties of Feynman diagrams and scattering amplitudes
when a massless external particle becomes soft (i.e., its energy is taken to zero). These
theorems tell us that a surprisingly large — in fact, infinite — number of soft particles are
produced in any physical process, but in a highly controlled manner that is central to the
consistency of quantum field theory.

The second corner is the subject of asymptotic symmetries. This is the study of the
nontrivial exact symmetries or conserved charges of any system with an asymptotic region

1

- Gauge invariance: spatial Diff. invariance

- Asymptotically FLRW spacetimes

IR “Universality” ? 



Gradient expansion

Gradient expansion Salopek & Bond (1990), Shibata & Sasaki (1999)

Physical scale of inhomogeneity of our focus  L  >> 1/H 

1 Introduction

Basic conditions

• [aFLRW] In the large scale limit, the asymptotic geometry approaches the FLRW
spacetime.

• [LGTinv] The system preserves the spatial Diff invariance for the small gauge trans-
formation. Additionally, the system remains invariant under the large gauge trans-
formations.

Generalization of the proof on the existence of the constant solution

• Generalization to foliation Diff invariant theory (w/o (d+ 1)-dim Diff).

• Generalization to the case with the quantum correction of the short modes.

• Generalization to an arbitrary spacetime dimension.

2 Classical gradient expansion

2.1 Basic conditions

We express the (d+ 1)-dimensional line element as

ds
2 = �N

2
dt

2 + gij(dx
i +N

i
dt)(dxj +N

j
dt) , (2.1)

with i, j = 1, · · · , d. We express the spatial metric as

gij = a
2
e
2⇣
�ij , (2.2)

with det[�] = 1. We choose the spatial coordinates, imposing the transverse condition on
�ij , i.e.,

�ij
|j = 0 , (2.3)

where |j denotes the covariant derivative with respect to the background spatial metric �̄ij .
Here and hereafter, we put a bar to denote a background variable. The gauge condition
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flat FLRW background includes a spatially non-local contribution as @�2
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2�f = 0. The first term

is manifestly suppressed in the large scale limit, while the second term is not necessarily
the case. In fact, �f accepts a solution which does not decay in the limit |x
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Asymptotically FLRW spacetime

Asymp FLRW condition

• [locality] The Lagrangian density (before eliminating the Lagrange multipliers) only
depends on a single spacetime point.

L(x) = L [�(x)] (2.5)

Meanwhile, when the Lagrangian density includes a non-local contribution, L is not neces-
sarily characterized by the spatial derivative nor the Fourier mode. As a simple example,
let us consider the case where the Lagrangian density of perturbed variables in the spatially
flat FLRW background includes a spatially non-local contribution as @�2

@
4
/(aH)2f , where

@
�2 denotes the inverse Laplacian. When we identify L with @/@x

i, the power counting of
✏ gives 2. This contribution can be rewritten as

@
�2

@
4
/(aH)2f = @

2
/(aH)2f +�f ,

where �f is a solution of the Laplace equation which satisfies @
2�f = 0. The first term

is manifestly suppressed in the large scale limit, while the second term is not necessarily
the case. In fact, �f accepts a solution which does not decay in the limit |x

i
| ! 1 such

as �f ⇠ const. and �f / x
i. Therefore, in such a non-local theory, even if the power

counting of ✏ gives a positive number, this does not ensure that the corresponding term
falls off in the large scale limit. By contrast, as far as the [locality] condition is fulfilled, a
positive power of ✏ with 1/L ⇠ @i indeed characterizes the fall-off in the large scale limit,
as is implicitly assumed in the gradient expansion [1, 2]. In this paper, we also assume the
[locality] condition.

In this paper, we also discuss a theory where the (d + 1)-dim. Diff is broken down to
the d-dim spatial Diff. Then, because of the absence of the lightcone, there is no notion of
the causality. Even in such case, as far as the [locality] holds, our argument can apply.

Not to conflict with the [LGTinv] condition, the parameter ✏ should be introduced so
that the dilatation invariance is preserved. For example, to be more precise, ✏ ⇠ @i/(aL)

should be replaced in a dilatation invariant combination such as

✏ ⇠ e
�⇣̄ @i

aH
,

where ⇣̄ is the spatial average of ⇣ at a reference time t?, given by

⇣̄ ⌘

R
d
dx ⇣(t?, x)R

ddx
, (2.6)

which transforms under the dilatation as ⇣̄ ! ⇣̄ � s. Using the parameter ✏, we define the
[aFLRW] condition as

[aFLRW]

����e
�⇣̄ Ni

aN

���� = O(✏) , (2.7)

where we have introduced e
�⇣̄ to make the prescription dilatation invarinat. Since the

degrees of freedom to perform the small gauge transformations are already removed by
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where we have introduced e
�⇣̄ to make the prescription dilatation invarinat. Since the

degrees of freedom to perform the small gauge transformations are already removed by
imposing Eq. (2.3), Eq. (2.6) cannot be fulfilled by choosing the coordinates. In Ref. [3],
the fall-off of the shift vector was imposed as Ni = O(✏). Instead, here we impose the
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spatial average at reference time t★ 

* Do not impose condition on time derivative of γij  
Lyth, Malik & Sasaki (2004)

�⇢tot are also suppressed by O(✏2), since it should be contracted by a term with another
spatial index. Solving Eq. (2.26), we can express one of �I in terms of the other �

Is, e.g.,
�
1 = �

1(�2
, �

3
, · · · ). At non-linear orders, the expression of �1, in general, becomes non-

local. Eliminating �
1 in J by using the non-local expression, J acquires non-local terms.

However, since the expression of �1 does not include ⇣ that is not suppressed by O(✏2), such
a non-local contribution does not disturb showing the existence of the constant solution of
⇣ from Eq. (2.22). As a result, the ⇣ dependent terms that are not suppressed by O(✏2) only
appear from N , which is given by Eq. (2.25). Eliminating ⇣̇ which appears in J recursively
by using the lower order expression of Eq. (2.22), we can express J only in terms of the
other fields, implying the non-linear existence of the constant solution for ⇣.

It is insightful that Eq. (2.22), which shows the existence of the constant solution, is
derived from Eq. (2.23), where the non-suppressed ⇣ dependent contributions in ✏ ⌧ 1

can be fully absorbed into the perturbed e-folding number dNUE ⌘ NHdt. Integrating
Eq. (2.25) over time between t1 and t2, we obtain the basic formula in the �N formalism [3,
6, 7] in the uniform expansion slicing 1 as

⇣(t2, x
i)� ⇣(t1, x

i) =

Z t2

t1

dt
0
H(t0)N(t0, xi)� N̄ +O(✏2) , (2.33)

where N̄ denotes the e-folding number for the background geometry. Let us emphasize that
we do not need to assume the fall-off property of �̇ij to derive Eq. (2.33).

In Sec. 2.1, we argued that the leading contribution in the gradient expansion in terms
of ✏ does not always describe the actual leading contribution. To discuss an explicit example,
temporarily in this paragraph, let us consider the linear perturbation for a single field model
in general relativity, where �� can be set to 0 by choosing the time slicing. Then, solving
the constraint equations, we obtain

⇣̇

H
=

2(d� 1)H2

16⇡G ˙̄
�2

@kNk

a2H
+O(✏2) . (2.34)

In linear perturbation, Ni is related to the scalar shear �g as k�g ⇠ @iNi/a, which falls off
as k�g / 1/ad�1 (in the absence of the anisotropic pressure) in the limit ✏ ⌧ 1. Since the
first term in Eq. (2.34) is the sub-leading contribution in the gradient expansion, the leading
contribution in the gradient expansion describes the constant solution of ⇣ as ⇣̇/H = O(✏2).
Now, let us show that the sub-leading contribution in the gradient expansion can dominate
the constant solution. Using @iNi / 1/ad�2 and integrating the first term of Eq. (2.34), we
obtain the other solution, which evolves as

⇣
(L), dec

/

Z
dt

H
2

ad
˙̄
�2

(2.35)

and is sometimes called the Weinberg’s second mode. As far as �̇/H stays almost constant
in time as in the standard slow-roll inflation, Eq. (2.35) describes the decaying solution.

1For a general time slicing, dN is defined as dN ⌘ (K/d)Ndt and Eq. (2.33) is derived from the purely
geometrical expression, Eq. (2.15) [7].
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* At linear order,【 AsympFLRW】is a condition on shear.

(* For (d+1)-Diff, the above condition is imposed on K=dH slicing.)

• [locality] The Lagrangian density (before eliminating the Lagrange multipliers) only
depends on a single spacetime point.

Meanwhile, when the Lagrangian density includes a non-local contribution, L is not neces-
sarily characterized by the spatial derivative nor the Fourier mode. As a simple example,
let us consider the case where the Lagrangian density of perturbed variables in the spatially
flat FLRW background includes a spatially non-local contribution as @�2

@
4
/(aH)2f , where

@
�2 denotes the inverse Laplacian. When we identify L with @/@x

i, the power counting of
✏ gives 2. This contribution can be rewritten as

@
�2

@
4
/(aH)2f = @

2
/(aH)2f +�f ,

where �f is a solution of the Laplace equation which satisfies @
2�f = 0. The first term

is manifestly suppressed in the large scale limit, while the second term is not necessarily
the case. In fact, �f accepts a solution which does not decay in the limit |x

i
| ! 1 such

as �f ⇠ const. and �f / x
i. Therefore, in such a non-local theory, even if the power

counting of ✏ gives a positive number, this does not ensure that the corresponding term
falls off in the large scale limit. By contrast, as far as the [locality] condition is fulfilled, a
positive power of ✏ with 1/L ⇠ @i indeed characterizes the fall-off in the large scale limit,
as is implicitly assumed in the gradient expansion [1, 2]. In this paper, we also assume the
[locality] condition.

In this paper, we also discuss a theory where the (d + 1)-dim. Diff is broken down to
the d-dim spatial Diff. Then, because of the absence of the lightcone, there is no notion of
the causality. Even in such case, as far as the [locality] holds, our argument can apply.

Not to conflict with the [LGTinv] condition, the parameter ✏ should be introduced so
that the dilatation invariance is preserved. For example, to be more precise, ✏ ⇠ @i/(aH)

should be replaced in a dilatation invariant combination such as

✏ ⇠ e
�⇣̄ @i

aH
,

where ⇣̄ is the spatial average of ⇣ at a reference time t?, given by

⇣̄ ⌘

R
d
dx ⇣(t?, x)R

ddx
, (2.5)

which transforms under the dilatation as ⇣̄ ! ⇣̄ � s. Using the parameter ✏, we define the
[aFLRW] condition as

[aFLRW]

����e
�⇣̄ Ni

aN

���� = O(✏) , (2.6)

where we have introduced e
�⇣̄ to make the prescription dilatation invarinat. Since the

degrees of freedom to perform the small gauge transformations are already removed by
imposing Eq. (2.3), Eq. (2.6) cannot be fulfilled by choosing the coordinates. In Ref. [3],
the fall-off of the shift vector was imposed as Ni = O(✏). Instead, here we impose the

– 3 –

2.4.2 Projectable HL gravity

In the projectable version, the story is somewhat simpler, since N does not acquire an
inhomogeneous perturbation. Setting N = 1 and inserting Eq. (2.15) into Eq. (2.18), we
obtain Eq. (2.22) with J = S, which implies the existence of the constant solution in the
limit ✏ ⌧ 1. The existence of the constant solution in the projectable HL gravity was shown
in Ref. [13] by considering a vacuum system and in Ref. [14] by considering a single scalar
field. Our argument extends their analyses to a general matter content.

3 Quantum gradient expansion a la Starobinsky

In the previous section, we have discussed a classical theory. Keeping an application to
the inflationary scenario, in the following, we will extend our discussion to quantum field
theory. In classical theory, we have shown that the constraint equations lead to Eq. (2.22),
where J only depends on the fields which are not dependent of ⇣. To show this aspect, the
dilatation invariance plays the crucial role. In this section, we generalize this discussion to
take into account the quantum correction, including the radiative corrections.

In the rest of this paper, we consider a quantum system which includes the metric
perturbations �g = (⇣, �ij , N, Ni), and matter fields included in Lmatter, which we describe
'
↵ with ↵ = 1, 2, · · · . The fields '

↵ can have a non-zero integer spin S↵, including
higher spin fields that are motivated in cosmological collider program. Nevertheless, the
[aFLRW] condition restricts the non-zero spin field which does not fall off in large scale
limit.

3.1 Dilatation invariance

To discuss a quantum system, as the [LGTinv] condition, using the generator of the dilata-
tion, Q⇣ , we impose

[LGTinv] Q⇣ | i = 0 , (3.1)

where | i denotes the quantum state for the whole degrees of freedom. The generator of
the dilatation x

i
! e

�s
x
i, Q⇣ , which is the Noether charge, is given by 2

Q⇣ ⌘
1

2

Z
d
3x

"
�s⇣(t, x)⇡(t, x) +

X

↵

�s'
↵(t, x)⇡↵(t, x) + (h.c.)

#
, (3.2)

where ⇡↵ denotes the conjugate momentum of '↵, which is an additional field with integer
spin S↵. The Noether charge Q⇣ generates the field-dependent additive shift as

[Q⇣ , ⇣(x)] = �i�s⇣(x) , (3.3)
[Q⇣ , '

↵(x)] = �i�s'
↵(x) . (3.4)

2In our previous paper, we did not explicitly write the contributions of '↵ in Q⇣ . To be precise, these
contributions should be included in Q⇣ . Otherwise, Eq. (3.6) in Ref. [15] cannot be properly derived.
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* ζ is introduced for the dilatation invariance.



Classical Lagrangian2.2 Basic equations

Considering a spacetime which is dominated by a scalar field, we express the total action
as

S =

Z
d
d+1

x
p
�g [Lg + Lmatter] , (2.8)

where Lg is the Lagrangian density for the gravitational field and Lmatter denotes the
Lagrangian density for a matter content, which can include more than one ingredient. As
a theory of gravitation that satisfies the [locality] condition and avoids the appearance of
the ghost, we consider Lg given by

Lg =
1

16⇡G

�
K

i
jK

j
i � �1K

2
�
+ �2

s
R+O(✏2 w/o Ni, ✏

3 w/Ni)

�
, (2.9)

where s
R is the spatial Ricci scalar, Kij is the extrinsic curvature defined as

Kij =
1

2N
(�̇ij �DiNj �DjNi) (2.10)

with the covariant derivative for the spatial metric, Di and K is the trace part, K ⌘ �
ij
Kij .

We assume that the terms in the second line of Lg with Ni are O(✏3) and those without
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* Matter sector ∋ Integer spin fields w/sDiff + locality
recall cosmological collier program Arkani-Hamed & Maldacena (2015)



Bottom-line argument

H-const & M-const

Tanaka & Y.U. (in progress)

 is described only by other independent dynamical fields.

the background values of these fields vanish. Using Eq. (2.27), the first term of Eq. (2.26)
(divided by 8⇡G) reads

N

aH2

@Lmatter

@N i
= �2PIJ

@i�
I

aH

�̇
J

NH
+

N

aH2

@Lothers

@N i
(2.28)

with

Pij ⌘
1

2

✓
@P

@XIJ
+

@P

@XJI

◆
. (2.29)

Then, Eq. (2.26) relates the scalar fields �
I , allowing us to eliminate one of �Is in �⇢. For

example, at linear order of perturbation, Eq. (2.26) reads

GPIJ��
I
˙̄
�
J

H
= O(✏) , (2.30)

where DjA
j
i and @Lothers/@N

i only appears from the second order in perturbation. Solving
Eq. (2.30), we can express one of �I in terms of the other fields. Using Eq. (2.27) and the
Hamiltonian constraint (2.23), we obtain

1

⇢̄

"
2�

 
PIJ

�̇
I

N

�̇
J

N

!
� �P

#
= �

�⇢others + �⇢TT

⇢̄
+O(✏2) . (2.31)

Inserting Eq. (2.25) into N , we can rewrite Eq. (2.31) into the form of Eq. (2.22), where
the linear contribution of J is given by

JL =
1

2P̄IJ
˙̄
�I ˙̄�J

h
2�(PIJ �̇

I
�̇
J)� �P

i
. (2.32)

Notice that �⇢others and ⇢TT do not include linear terms in perturbation. Using Eq. (2.26),
we can eliminate one of �

Is in JL and express it in terms of the fields which are not
dependent of ⇣.

Next, using the dilatation invariance, let us show that J can be expressed only in terms
of other independent fields also in non-linear orders. Notice that ⇣ appears in two ways:
one is directly from the spatial metric gij and the other is indirectly from N and Ni. The
dilatation invariance requires ⇣ which directly appears in �⇢tot should be in the combination
of e�⇣

@i or e�S↵⇣'↵, where '↵ is a spin S↵( 6= 0) field (with the lower indices). The existence
of the non-zero spin field which does not fall off for ✏ ⌧ 1 readily contradicts with the
[aFLRW] condition, generating an anisotropic pressure at large scales. For example, let us
consider the kinetic term of a spin-1 field 'i, gij'̇i'̇j . The existence of such a spin-1 filed
generates the anisotropic pressure which does not fall off in ✏ ⌧ 1. Solving the traceless

(i, , j) component of the Einstein equation for the Lagrangian density (2.9), we

find that the existence of the anisotropic pressure for ✏ ⌧ 1 leads to the large

scale shear that contradicts with Eq. (2.6). In the absence of the non-screened field
'
↵ with S↵ 6= 0, all the terms with e

�⇣
@i are suppressed by O(✏2), i.e., all the terms

with ⇣ which appear from g
ij are suppressed by O(✏2). Similarly, the terms with Ni in
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Izumi&Mukohyama(11)

Armendariz-Picon et al(10)
Arai, Sibiryakov, Y.U.(18)

Gumrukcuoglu et al.(11)

(ex) Single scalar field, classical linear perturbation

H-const

�⇢tot are also suppressed by O(✏2), since it should be contracted by a term with another
spatial index. Solving Eq. (2.26), we can express one of �I in terms of the other �

Is, e.g.,
�
1 = �

1(�2
, �

3
, · · · ). At non-linear orders, the expression of �1, in general, becomes non-

local. Eliminating �
1 in J by using the non-local expression, J acquires non-local terms.

However, since the expression of �1 does not include ⇣ that is not suppressed by O(✏2), such
a non-local contribution does not disturb showing the existence of the constant solution of
⇣ from Eq. (2.22). As a result, the ⇣ dependent terms that are not suppressed by O(✏2) only
appear from N , which is given by Eq. (2.25). Eliminating ⇣̇ which appears in J recursively
by using the lower order expression of Eq. (2.22), we can express J only in terms of the
other fields, implying the non-linear existence of the constant solution for ⇣.

It is insightful that Eq. (2.22), which shows the existence of the constant solution, is
derived from Eq. (2.23), where the non-suppressed ⇣ dependent contributions in ✏ ⌧ 1

can be fully absorbed into the perturbed e-folding number dNUE ⌘ NHdt. Integrating
Eq. (2.25) over time between t1 and t2, we obtain the basic formula in the �N formalism [3,
6, 7] in the uniform expansion slicing 1 as

⇣(t2, x
i)� ⇣(t1, x

i) =

Z t2

t1

dt
0
H(t0)N(t0, xi)� N̄ +O(✏2) , (2.33)

where N̄ denotes the e-folding number for the background geometry. Let us emphasize that
we do not need to assume the fall-off property of �̇ij to derive Eq. (2.33).

In Sec. 2.1, we argued that the leading contribution in the gradient expansion in terms
of ✏ does not always describe the actual leading contribution. To discuss an explicit example,
temporarily in this paragraph, let us consider the linear perturbation for a single field model
in general relativity, where �� can be set to 0 by choosing the time slicing. Then, solving
the constraint equations, we obtain

⇣̇

H
=

2(d� 1)H2

16⇡G ˙̄
�2

@kNk

a2H
+O(✏2) . (2.34)

In linear perturbation, Ni is related to the scalar shear �g as k�g ⇠ @iNi/a, which falls off
as k�g / 1/ad�1 (in the absence of the anisotropic pressure) in the limit ✏ ⌧ 1. Since the
first term in Eq. (2.34) is the sub-leading contribution in the gradient expansion, the leading
contribution in the gradient expansion describes the constant solution of ⇣ as ⇣̇/H = O(✏2).
Now, let us show that the sub-leading contribution in the gradient expansion can dominate
the constant solution. Using @iNi / 1/ad�2 and integrating the first term of Eq. (2.34), we
obtain the other solution, which evolves as

⇣
(L), dec

/

Z
dt

H
2

ad
˙̄
�2

(2.35)

and is sometimes called the Weinberg’s second mode. As far as �̇/H stays almost constant
in time as in the standard slow-roll inflation, Eq. (2.35) describes the decaying solution.

1For a general time slicing, dN is defined as dN ⌘ (K/d)Ndt and Eq. (2.33) is derived from the purely
geometrical expression, Eq. (2.15) [7].
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【 AsympFLRW】

where �̄ is (the abbreviated notation of) the Christoffel symbol for the background spatial
metric �̄ij , which vanishes for K = 0. Notice that @t det � = 0 implies

�
ij
�̇ij = 0 .

Inserting Eq. (2.14) into Eq. (2.12), we obtain

@i
K

dH
=

1

d�1 � 1


DjA

j
i

H
+

8⇡GN

H

@Lmatter

@N i

�
+O(✏2) . (2.17)

Solving this expression, we obtain

K

dH
� 1 = S +O(✏) (2.18)

with

S ⌘
1

d�1 � 1
@
�2

�̄
ik
@k


8⇡GN

H

@Lmatter

@N i
+

DjA
j
i

H

�
, (2.19)

and @
2
⌘ �̄

ij
@i@j . Taking into account that S does not have a background contribution, we

inserted �1 in the left hand side of Eq. (2.18). The boundary condition of the inverse Lapla-
cian should be determined so that the [aFLRW] condition is fulfilled. Inserting Eq. (2.18)
into Eq. (2.11), we obtain the Friedmann equation

d(d�1 � 1)H2 + d(d� 1)�2
K

a2
= 16⇡G⇢̄ , (2.20)

and the perturbed Hamiltonian constraint equation as

d(d�1 � 1)S(S + 2)�
A

i
jA

j
i

H2
+ �2

�
s
R

H2
= 16⇡G

�⇢

H2
+O(✏2) . (2.21)

where �X denotes the perturbed variable of X, defined as �X = X � X̄. Let us emphasize
that Eqs. (2.18) and (2.21) are fully non-linear expressions.

In Ref. [3], considering a perfect fluid, the existence of the constant solution for ⇣ was
shown by using the energy conservation. Here, using the constraint equations, we show
the existence of the constant solution generically under the [aFLRW] , [LGTinv] , and
[locality] conditions. The outlined argument is as follows. We will show that Eqs. (2.14)
and (2.21) lead to

⇣̇

H
= J +O(✏) . (2.22)

Furthermore, the [locality] condition, which has not been manifestly used yet, restricts
the terms in J to those that do not include ⇣ and are expressed only in terms of other
independent dynamical degrees of freedom. One can see that the [LGTinv] condition indeed
restricts the possible terms by considering the case where the background spatial curvature
K does not vanish. The invariance under the dilation requires K = 0, because the presence
of the curvature scale 1/

p
|K| violates the dilatation invariance. This can be explicitly seen
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(d+1)-dim Diff

similarly for HL gravity w/d-dim Diff

All terms w/ ζ are O(ε)

- dilatation inv. ~ shift sym. of ζ 
- asymp FLRW
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= J +O(✏) . (2.22)
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independent dynamical degrees of freedom. One can see that the [LGTinv] condition indeed
restricts the possible terms by considering the case where the background spatial curvature
K does not vanish. The invariance under the dilation requires K = 0, because the presence
of the curvature scale 1/

p
|K| violates the dilatation invariance. This can be explicitly seen
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(for quantum system)
e.g. during inflation



Soft theorem

Soft theorem: WT for dilatation (+ locality) 

The WT identity can be derived by equating these correlation functions evaluated before
(no subscript below) and after (with subscript s) the dilatation and then by setting '(L)
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where
P

↵ S↵ denotes the summation over the scaling dimensions of the all short modes
'(S) in the correlation function. Here, we have assigned S⇣ = S�ij = SN = 0 and SNi = 1

for the metric perturbations. For example, if the set of the operators are all ⇣(S),
P

↵ S↵ is
0. The s dependence in Sint appears only from ⇣, which acquires the additive shift under
the dilatation, since other s dependent terms vanish after setting '(L) = 0. In Sint of the
left hand side, ⇣(L)± should be replaced with �s and the other soft modes should be just set
to 0 as is indicated by Sint[⇣

(L)
± = �s].

Equation (3.29) is the WT identity for the dilatation. The n operators, '(S), can be
an arbitrary combination among the short modes. At O(s), the WT identity (3.29) yields
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Notice that the integral measure in these correlation functions is only for the short modes
'(S) and do not include the long modes '(L). The higher order contributions of s in
Eq. (3.29) yield the relation for the expectation values with more insertions of �Sint/�⇣

(L).
The difference between Eq. (3.26) expanded by '(L) and the one by g'(L) is given by
the sum of the WT identities multiplied by ⇣̄

n, which turns out to vanish. An explicit
computation for the case where '

(↵) consists of an inflaton and a massive scale field can be
found in Ref. [17] (see also Ref. [15]).

The WT identity (3.30) gives the relation between the correlation function for the n

short modes '(S) and the correlation function for the same n short modes and
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where we have used
�

�⇣(L)(x)
=

Z
d
dk

(2⇡)d/2
e
�ik·x �

�⇣(L)(t, k)
.

Since the [locality] condition ensures that Sint does not include any non-local operators, the
interaction vertex in the right hand side of Eq. (3.31), where ⇣

(L)
± (t, k = 0) is amputated,
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with the real parameters ✓k and �k as

bk = cosh ✓kak � i sinh ✓ke
�i�ka

†
�k = Sk(✓k, �k)akS

†
k(✓k, �k) , (3.14)

another vacuum state, which satisfies bk| 0
i = 0, can be described, in the form (3.11), as

| 0
i =

Y

k

Sk(✓k, �k)| adii . (3.15)

Here, ak and a
†
k are the annihilation and creation operators for either of '↵s, that satisfy

the standard commutation relation. For a free theory in de Sitter limit, | adii is called
the Bunch-Davies vacuum and the set of the vacuum states | ̃i, related to the Bunch-
Davies vacuum through the Bogoliubov transformation, is called the non Bunch-Davies
vacuum. As one can imagine from the fact that the non Bunch-Davies vacuum is related to
the Bunch-Davies vacuum through the squeezed operator, the former exhibits the particle
excitation in the basis of the Bunch-Davies vacuum.

3.2 Influence functional

In the previous section, considering a classical theory, we discussed the long mode of ⇣,
solving the constraint equations up to O(✏2). In this section, we discuss how the evolution
of ⇣ can be modified by the quantum corrections due to the short modes of O(✏2), which are
simply ignored in the previous section. For ' ⌘ {�g, '

↵
}, we introduce the short modes

and the long modes as

✏
2'(S)(t, x) ⌘ e

�2⇣̄ @
2

(aH)2
'(t, x) , (3.16)

'(L)(t, x) ⌘ '(t, x)�'(S)(t, x) , (3.17)

where ⇣̄ denotes the spatial average of ⇣, evaluated at a reference time t?. The definition of
the long and short modes is introduced so that it does not break the dilatation invariance
e.g., as ✏ ⇠ e

�⇣̄
@i/(aH). This becomes important in particular at the higher orders in the

gradient expansion, while we focus on the leading order in this paper. The basic idea is along
the line with the stochastic approach, initiated by Starobinsky [18–20], while we introduce
the long and short modes in the position space, maintaining the dilatation invariance. In
this regards, our approach can be understood as a generalization of the gradient expansion
to include the ignored short modes based on the stochastic approach.

We now compute the effective action, using the path integral prescription. The inte-
gration measure of the path integral should be introduced in the form which preserves the
dilatation invariance. Using ⇣̄, let us introduce

g
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The WT identity can be derived by equating these correlation functions evaluated before
(no subscript below) and after (with subscript s) the dilatation and then by setting '(L)

±
before the dilatation to 0, i.e.,
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, (3.29)

where
P

↵ S↵ denotes the summation over the scaling dimensions of the all short modes
'(S) in the correlation function. Here, we have assigned S⇣ = S�ij = SN = 0 and SNi = 1

for the metric perturbations. For example, if the set of the operators are all ⇣(S),
P

↵ S↵ is
0. The s dependence in Sint appears only from ⇣, which acquires the additive shift under
the dilatation, since other s dependent terms vanish after setting '(L) = 0. In Sint of the
left hand side, ⇣(L)± should be replaced with �s and the other soft modes should be just set
to 0 as is indicated by Sint[⇣

(L)
± = �s].

Equation (3.29) is the WT identity for the dilatation. The n operators, '(S), can be
an arbitrary combination among the short modes. At O(s), the WT identity (3.29) yields
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Notice that the integral measure in these correlation functions is only for the short modes
'(S) and do not include the long modes '(L). The higher order contributions of s in
Eq. (3.29) yield the relation for the expectation values with more insertions of �Sint/�⇣

(L).
The difference between Eq. (3.26) expanded by '(L) and the one by g'(L) is given by
the sum of the WT identities multiplied by ⇣̄

n, which turns out to vanish. An explicit
computation for the case where '

(↵) consists of an inflaton and a massive scale field can be
found in Ref. [17] (see also Ref. [15]).

The WT identity (3.30) gives the relation between the correlation function for the n

short modes '(S) and the correlation function for the same n short modes and
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where we have used
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�⇣(L)(t, k)
.

Since the [locality] condition ensures that Sint does not include any non-local operators, the
interaction vertex in the right hand side of Eq. (3.31), where ⇣

(L)
± (t, k = 0) is amputated,
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4 Soft theorem and consistency relation

In Sec. 3, we derived the WT identity for the dilatation (3.29) or (3.30), considering the case
where both the classical action and the quantum state remain invariant under the dilatation.
Imposing the [locality] condition additionally, we derived the soft theorem (3.32). In this
section, we clarify the relation between the soft theorem (3.32) and consistency relation,
which was first derived by Maldacena for the bi-spectrum of ⇣ [24] (see also Ref. [25]).

4.1 Derivation of consistency relation

Performing the Fourier transformation, the soft theorem (3.32) gives
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Here and hereafter, we only consider the correlation functions for '(S) = '
↵(S)

, ⇣
(S)

, �
(S)
ij ,

which can be included in Eq. (4.1) in an arbitrary combination. Let us emphasize again that
the soft theorem (4.1) holds, as long as the dilatation invariance and the [locality] condition
are fulfilled. Equation (4.1) is the relation for the correlation functions defined in Eq. (3.28),
where only the short modes '(S)

± are integrated out, while the long modes '(L)
± are set to

0. We now would like to rewrite the soft theorem (4.1) into a relation between the usual
correlation functions where both of '(L)

± and '(S)
± are integrated out, i.e.,
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where ± should be chosen properly, depending on the operator ordering along the closed
time path.

When we consider a correlation function (4.2) which only includes the short modes
'(S), the path integral over '(L) is canceled out between the numerator and denominator,
reproducing the correlation function (3.28). In this case, the correlation function in the first
line of the soft theorem (4.1) can be replaced with the correlation function (4.2). In order
to rewrite the correlation functions in the second and third lines, let us make the problem
more explicit, considering the following ansatz
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for Sint, where O(S) includes only the short modes '(S). Then, �Sint/�⇣
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± (t, kL) in Eq. (4.1)

can be replaced with O
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± (t, �k). One may naively think that we can rephrase the second
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When we consider a correlation function (4.2) which only includes the short modes
'(S), the path integral over '(L) is canceled out between the numerator and denominator,
reproducing the correlation function (3.28). In this case, the correlation function in the first
line of the soft theorem (4.1) can be replaced with the correlation function (4.2). In order
to rewrite the correlation functions in the second and third lines, let us make the problem
more explicit, considering the following ansatz
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4 Soft theorem and consistency relation

In Sec. 3, we derived the WT identity for the dilatation (3.29) or (3.30), considering the case
where both the classical action and the quantum state remain invariant under the dilatation.
Imposing the [locality] condition additionally, we derived the soft theorem (3.32). In this
section, we clarify the relation between the soft theorem (3.32) and consistency relation,
which was first derived by Maldacena for the bi-spectrum of ⇣ [24] (see also Ref. [25]).

4.1 Derivation of consistency relation

Performing the Fourier transformation, the soft theorem (3.32) gives
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which can be included in Eq. (4.1) in an arbitrary combination. Let us emphasize again that
the soft theorem (4.1) holds, as long as the dilatation invariance and the [locality] condition
are fulfilled. Equation (4.1) is the relation for the correlation functions defined in Eq. (3.28),
where only the short modes '(S)
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with the real parameters ✓k and �k as
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another vacuum state, which satisfies bk| 0
i = 0, can be described, in the form (3.11), as

| 0
i =
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Sk(✓k, �k)| adii . (3.15)

Here, ak and a
†
k are the annihilation and creation operators for either of '↵s, that satisfy

the standard commutation relation. For a free theory in de Sitter limit, | adii is called
the Bunch-Davies vacuum and the set of the vacuum states | ̃i, related to the Bunch-
Davies vacuum through the Bogoliubov transformation, is called the non Bunch-Davies
vacuum. As one can imagine from the fact that the non Bunch-Davies vacuum is related to
the Bunch-Davies vacuum through the squeezed operator, the former exhibits the particle
excitation in the basis of the Bunch-Davies vacuum.

3.2 Influence functional

In the previous section, considering a classical theory, we discussed the long mode of ⇣,
solving the constraint equations up to O(✏2). In this section, we discuss how the evolution
of ⇣ can be modified by the quantum corrections due to the short modes of O(✏2), which are
simply ignored in the previous section. For ' ⌘ {�g, '
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}, we introduce the short modes

and the long modes as
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where ⇣̄ denotes the spatial average of ⇣, evaluated at a reference time t?. The definition of
the long and short modes is introduced so that it does not break the dilatation invariance
e.g., as ✏ ⇠ e

�⇣̄
@i/(aH). This becomes important in particular at the higher orders in the

gradient expansion, while we focus on the leading order in this paper. The basic idea is along
the line with the stochastic approach, initiated by Starobinsky [18–20], while we introduce
the long and short modes in the position space, maintaining the dilatation invariance. In
this regards, our approach can be understood as a generalization of the gradient expansion
to include the ignored short modes based on the stochastic approach.

We now compute the effective action, using the path integral prescription. The inte-
gration measure of the path integral should be introduced in the form which preserves the
dilatation invariance. Using ⇣̄, let us introduce
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Consistency relation : short (UV) modes

⇣(t,kL) = ⇣WAM(kL) +

Z
dt0 J (t0,kL) +O(✏)
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Figure 7: On the left is a Feynman diagram representing n ! m scattering. On the
right the e↵ect of adding an outgoing soft photon (or graviton) with momentum q and
polarization " is illustrated. In the upper diagrams the soft particle attaches to an
external propagator, while in the lower one it attaches to an internal propagator.

The LSZ rule for computing scattering amplitudes starts out by computing the time-
ordered Green’s functions using the Feynman i✏ prescription and then amputating the ex-
ternal legs. The Feynman diagrams have factors for vertices and propagators. What happens
when we attach the extra photon to an external leg is, since external legs are amputated,
we need only add a vertex and propagator for the particle to whose external leg the photon
is added. The di↵erence between the diagram with and without the attached external soft
photon is just the vertex and propagator.

Now I have to say a little bit about the interaction vertex. Let us take the interaction to
be

Lint = �Aµjµ . (2.9.2)

For a scalar field of charge Q, the charge current is

jµ = iQ(�@µ�
⇤ � �⇤@µ�) . (2.9.3)

For a plane wave, this is just
jµ ⇠ 2Qpµ , (2.9.4)

where we have used the normalization for single-particle states

hp|p0i = 2!p(2⇡)3�3(p � p0) . (2.9.5)
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Inserting soft legs.

LSZ reduction formula (, Lorentz symmetry)
This is the electromagnetic current associated to a scalar field of charge Q, meaning that
under gauge transformations, it acquires a phase eiQ". Moreover, we take the polarization of
the photon to obey "µqµ = 0, where qµ is the momentum of the photon. The propagator for
a scalar particle of mass m gives a factor

�i

(p + q)2 + m2 =
�i

p2 + 2p · q + q2 + m2 =
�i

2p · q
, (2.9.6)

where we have used the fact that in a scattering amplitude, all the external lines must be
on-shell, so q2 = 0 and p2 = �m2. The vertex factor is, up to O(q) corrections,

ie"µ2Qpµ , (2.9.7)

where "µ comes from Aµ and 2Qpµ comes from jµ. The total contribution is

ie"µ(2Qpµ)
�i

(p + q)2 + m2 ! eQ" · p

q · p
. (2.9.8)

There is one such term for every outgoing particle, while for the incoming particles there is
an additional minus sign. Altogether these give

mX

k=1

eQout
k pout

k · "

pout
k · q

�
nX

k=1

eQin
k pin

k · "

pin
k · q

. (2.9.9)

At the end of the day, if we just consider the diagrams in which the photon attaches to
an external leg, we simply multiply the S-matrix element by the factor in equation (2.9.9),
sometimes called the “soft factor”, which you may recognize from equation (2.8.21).

We have not yet considered the terms coming from the photon attaching to an internal
leg. The key point is that the internal propagators are never on-shell (i.e., they never have
p2 = �m2). In the propagator, one then never has the cancellation between p2 and m2, so if
we take qµ ! 0, the di↵erence between p2 and m2 will dominate, and we will not get a pole.
These types of diagrams are most certainly nonzero, but they do not contribute to the pole,
so we can forget about them in the soft limit. This is an extremely simple derivation. Up
to some signs, one finds the same thing for a soft incoming photon.

Now we note an important feature of this formula. The condition "µqµ = 0 defines the
polarization vector only up to shifts of "µ by qµ, because q2 = 0. The physical amplitude
with the soft photon should be invariant if we shift "µ by any multiple of qµ. Now it is
interesting to see what happens to the soft factor (2.9.9). If we shift "µ by qµ, it shifts by

mX

k=1

eQout
k �

nX

k=1

eQin
k = 0 . (2.9.10)

In other words, global charge conservation guarantees that this soft factor is gauge invariant.
This observation was in fact the basis of Low’s derivation of the soft formula in 1958 [4].

We have only worked out the soft theorem for the case of a scalar. For a fermion or some
other kind of charged particle, it is a little more complicated, but it works out to the same
expression [151]. One way of seeing that this must be so is that (2.9.9) is the only formula
with the right dimensions that is invariant under shifts "µ ! "µ + qµ.
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eQin
k pin

k · "

pin
k · q

. (2.9.9)

At the end of the day, if we just consider the diagrams in which the photon attaches to
an external leg, we simply multiply the S-matrix element by the factor in equation (2.9.9),
sometimes called the “soft factor”, which you may recognize from equation (2.8.21).

We have not yet considered the terms coming from the photon attaching to an internal
leg. The key point is that the internal propagators are never on-shell (i.e., they never have
p2 = �m2). In the propagator, one then never has the cancellation between p2 and m2, so if
we take qµ ! 0, the di↵erence between p2 and m2 will dominate, and we will not get a pole.
These types of diagrams are most certainly nonzero, but they do not contribute to the pole,
so we can forget about them in the soft limit. This is an extremely simple derivation. Up
to some signs, one finds the same thing for a soft incoming photon.

Now we note an important feature of this formula. The condition "µqµ = 0 defines the
polarization vector only up to shifts of "µ by qµ, because q2 = 0. The physical amplitude
with the soft photon should be invariant if we shift "µ by any multiple of qµ. Now it is
interesting to see what happens to the soft factor (2.9.9). If we shift "µ by qµ, it shifts by

mX

k=1

eQout
k �

nX

k=1

eQin
k = 0 . (2.9.10)

In other words, global charge conservation guarantees that this soft factor is gauge invariant.
This observation was in fact the basis of Low’s derivation of the soft formula in 1958 [4].

We have only worked out the soft theorem for the case of a scalar. For a fermion or some
other kind of charged particle, it is a little more complicated, but it works out to the same
expression [151]. One way of seeing that this must be so is that (2.9.9) is the only formula
with the right dimensions that is invariant under shifts "µ ! "µ + qµ.
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⇣(t,kL) = ⇣WAM(kL) +

Z
dt0 J (t0,kL) +O(✏)
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k are the annihilation and creation operators for either of '↵s, that satisfy

the standard commutation relation. For a free theory in de Sitter limit, | adii is called
the Bunch-Davies vacuum and the set of the vacuum states | ̃i, related to the Bunch-
Davies vacuum through the Bogoliubov transformation, is called the non Bunch-Davies
vacuum. As one can imagine from the fact that the non Bunch-Davies vacuum is related to
the Bunch-Davies vacuum through the squeezed operator, the former exhibits the particle
excitation in the basis of the Bunch-Davies vacuum.

3.2 Influence functional

In the previous section, considering a classical theory, we discussed the long mode of ⇣,
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of ⇣ can be modified by the quantum corrections due to the short modes of O(✏2), which are
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where ⇣̄ denotes the spatial average of ⇣, evaluated at a reference time t?. The definition of
the long and short modes is introduced so that it does not break the dilatation invariance
e.g., as ✏ ⇠ e
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gradient expansion, while we focus on the leading order in this paper. The basic idea is along
the line with the stochastic approach, initiated by Starobinsky [18–20], while we introduce
the long and short modes in the position space, maintaining the dilatation invariance. In
this regards, our approach can be understood as a generalization of the gradient expansion
to include the ignored short modes based on the stochastic approach.
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only when      holds, dilatation describes soft mode insertion
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- multi-field inflation

❌ anisotropic inflation

- violation of SR
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Coordinates at 

at past null infinity I� and pass through spatial infinity i0 to future null infinity I+. The
matching condition (2.3.5) then states that the fields are continuous along the generators of
I, including when they cross i0, even though it is generically a singular point. It is singular,
because, for example, even just one charge in the interior needs an image charge at i0, which
will cause the electric field to diverge there. One certainly cannot demand that the fields be
smooth at spatial infinity. In the presence of multiple moving charges, the singularity can
become very complicated and in general requires arbitrarily many parameters to describe.
However, we are still able to consistently require, without violating Lorentz invariance (which
is a conformal symmetry of the compactified geometry), that the fields are continuous along
the null generators passing through i0 as prescribed by equation (2.3.5).

2.4 Asymptotic Expansions

Before going any further, it is convenient to introduce specific advanced and retarded
coordinates, illustrated in figure 6, and to be more precise about our large-r expansions
around I±.

I+

I�

+1

�1
0

1

u
z, z̄

r

I+

I�

+1
0

1

�1

v

r

z, z̄

Figure 6: In the left diagram, I+ is parametrized by retarded time u and spherical
coordinates (z, z̄) in retarded Bondi coordinates, while in the right diagram, I� is
parametrized by advanced time v and spherical coordinates (z, z̄) in advanced Bondi
coordinates. The advanced and retarded (z, z̄) coordinates are chosen so that they are
related by an antipodal map on spheres of constant (u, r).

In retarded coordinates (r, u, z, z̄), the Minkowski line element is

ds2 = �du2 � 2dudr + 2r2�zz̄dzdz̄ . (2.4.1)
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These coordinates will be used in the neighborhood of I+. Here, u = t � r is the retarded
time coordinate introduced in equation (2.2.2), r is the radial coordinate, and z is a complex
coordinate on the unit sphere with metric

�zz̄ =
2

(1 + zz̄)2 . (2.4.2)

If we keep (u, z, z̄) fixed and take the limit r ! 1, we move out along a null line to I+. One
can see that this is a null line, because along this path, du = dz = dz̄ = 0, which implies
ds2 = 0. The standard metric on Minkowski space,

ds2 = �dt2 + (d~x)2 , (2.4.3)

is related to the metric in equation (2.4.1) by the coordinate transformations

(~x)2 = r2 , t = u + r , x1 + ix2 =
2rz

1 + zz̄
, x3 = r

1 � zz̄

1 + zz̄
. (2.4.4)

The inverse transformation is

r2 = (~x)2 , u = t � r , z =
x1 + ix2

x3 + r
. (2.4.5)

Here, z runs over the entire complex plane; z = 0 is the north pole, z = 1 is the south
pole, zz̄ = 1 is the equator, and z ! �1/z̄ is the antipodal map. This is a convenient
coordinate system to work in near I+ because, as we will see, everything falls o↵ near I+,
so we can expand fields in powers of 1

r
. However, we cannot easily use these coordinates

near I�, because u = �1 there. To work in a neighborhood of I�, we introduce advanced
coordinates. The advanced line element is

ds2 = �dv2 + 2dvdr + 2r2�zz̄dzdz̄ . (2.4.6)

This metric can be obtained from the standard Cartesian metric on Minkowski space by
means of the coordinate transformations

(~x)2 = r2 , t = v � r , x1 + ix2 = � 2rz

1 + zz̄
, x3 = �r

1 � zz̄

1 + zz̄
. (2.4.7)

Crucial minus signs introduced into the last two terms of (2.4.7) imply that the z in the
advanced coordinates denotes the antipodal point on the sphere to the z in the retarded co-
ordinates (the sign reverses under z ! �1/z̄). If we take a light ray which crosses Minkowski
space, then the value of z at which it starts in advanced coordinates will be the same as the
value of z at which it ends in retarded coordinates. Moreover, z is constant along the null
generators of I� as they pass through i0 to I+. This perhaps odd-seeming choice of notation
simplifies subsequent formulas.

Now we wish to expand around I+. Given any field—say, the z-component of the vector
potential—we can write an expansion for it as a sum

Az(u, r, z, z̄) =
1X

n=0

A(n)
z (u, z, z̄)
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at past null infinity I� and pass through spatial infinity i0 to future null infinity I+. The
matching condition (2.3.5) then states that the fields are continuous along the generators of
I, including when they cross i0, even though it is generically a singular point. It is singular,
because, for example, even just one charge in the interior needs an image charge at i0, which
will cause the electric field to diverge there. One certainly cannot demand that the fields be
smooth at spatial infinity. In the presence of multiple moving charges, the singularity can
become very complicated and in general requires arbitrarily many parameters to describe.
However, we are still able to consistently require, without violating Lorentz invariance (which
is a conformal symmetry of the compactified geometry), that the fields are continuous along
the null generators passing through i0 as prescribed by equation (2.3.5).

2.4 Asymptotic Expansions

Before going any further, it is convenient to introduce specific advanced and retarded
coordinates, illustrated in figure 6, and to be more precise about our large-r expansions
around I±.
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Figure 6: In the left diagram, I+ is parametrized by retarded time u and spherical
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These coordinates will be used in the neighborhood of I+. Here, u = t � r is the retarded
time coordinate introduced in equation (2.2.2), r is the radial coordinate, and z is a complex
coordinate on the unit sphere with metric

�zz̄ =
2

(1 + zz̄)2 . (2.4.2)

If we keep (u, z, z̄) fixed and take the limit r ! 1, we move out along a null line to I+. One
can see that this is a null line, because along this path, du = dz = dz̄ = 0, which implies
ds2 = 0. The standard metric on Minkowski space,

ds2 = �dt2 + (d~x)2 , (2.4.3)

is related to the metric in equation (2.4.1) by the coordinate transformations

(~x)2 = r2 , t = u + r , x1 + ix2 =
2rz

1 + zz̄
, x3 = r

1 � zz̄

1 + zz̄
. (2.4.4)

The inverse transformation is

r2 = (~x)2 , u = t � r , z =
x1 + ix2

x3 + r
. (2.4.5)

Here, z runs over the entire complex plane; z = 0 is the north pole, z = 1 is the south
pole, zz̄ = 1 is the equator, and z ! �1/z̄ is the antipodal map. This is a convenient
coordinate system to work in near I+ because, as we will see, everything falls o↵ near I+,
so we can expand fields in powers of 1

r
. However, we cannot easily use these coordinates

near I�, because u = �1 there. To work in a neighborhood of I�, we introduce advanced
coordinates. The advanced line element is

ds2 = �dv2 + 2dvdr + 2r2�zz̄dzdz̄ . (2.4.6)

This metric can be obtained from the standard Cartesian metric on Minkowski space by
means of the coordinate transformations

(~x)2 = r2 , t = v � r , x1 + ix2 = � 2rz

1 + zz̄
, x3 = �r

1 � zz̄

1 + zz̄
. (2.4.7)

Crucial minus signs introduced into the last two terms of (2.4.7) imply that the z in the
advanced coordinates denotes the antipodal point on the sphere to the z in the retarded co-
ordinates (the sign reverses under z ! �1/z̄). If we take a light ray which crosses Minkowski
space, then the value of z at which it starts in advanced coordinates will be the same as the
value of z at which it ends in retarded coordinates. Moreover, z is constant along the null
generators of I� as they pass through i0 to I+. This perhaps odd-seeming choice of notation
simplifies subsequent formulas.

Now we wish to expand around I+. Given any field—say, the z-component of the vector
potential—we can write an expansion for it as a sum

Az(u, r, z, z̄) =
1X

n=0

A(n)
z (u, z, z̄)

rn , (2.4.8)
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where the coe�cients depend only on the coordinates (u, z, z̄) parametrizing I+. In exercise
2, it is shown that A(0)

z is the local Cauchy data. The superscript (n) will be used to denote
the order in the expansion (the power of 1/r) about r = 1. In general, we are going to
be expanding many fields about both I+ and I�. Using our new notation, we can finally
rewrite the matching condition (2.3.5) as

F (2)
ru (z, z̄)

���
I

+
�

= F (2)
rv (z, z̄)

���
I

�
+

, (2.4.9)

where F (2)
ru is the 1

r
2 term in the expansion of the ru component of the field strength around

I+. Evaluating it at I+
� is equivalent to taking u = �1:

F (2)
ru (z, z̄)

���
I

+
�

= F (2)
ru (�1, z, z̄) . (2.4.10)

The simplicity of expression (2.4.9) motivated our definition of the z values on I+ as antipo-
dally related to those on I�.

2.5 An Infinity of Conserved Charges

In this section we will show that the matching condition (2.4.9) immediately implies,
without further ado, the existence of an infinite number of conserved charges in all electro-
magnetic theories in Minkowski space.

Consider any function " on Minkowski space obeying the boundary condition

"(z, z̄)|
I

+
�

= "(z, z̄)|
I

�
+

. (2.5.1)

Note that "(z, z̄) is not smooth near spatial infinity, but instead is antipodally identified.
Now we define future and past charges:

Q+
" =

1

e2

Z

I
+
�

" ⇤ F, Q�

" =
1

e2

Z

I
�
+

" ⇤ F . (2.5.2)

It then immediately follows from (2.4.9) that any theory involving electromagnetism has an
infinite number of conservation laws, one for every function ":

Q+
" = Q�

" . (2.5.3)

For example, we could take "|
I

�
+

= Y`m to be a spherical harmonic, in which case we have

one conservation law for every value of the angular momentum (`, m). One way of stating
this conservation law is that all the incoming multipole moments of the electromagnetic field
are equal to the antipodal outgoing multipole moments. All of these moments are nonzero
in a generic time-dependent situation. In this basis, the antipodal map acts as (�)`. The
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think that the fields should simply be taken to be equal, but this turns out to be completely
wrong. In fact, such a matching condition is not even Lorentz invariant! We will soon see it
is also not obeyed by the Liénard-Wiechert solution.

To describe I�, it is useful to introduce advanced time:

v = t + r . (2.2.1)

To describe I+, we introduce retarded time:

u = t � r . (2.2.2)

I� is a three-dimensional surface, so four coordinates are not needed. We could try to use
the usual (t, r, x̂), x̂ being a unit vector labeling a point on the sphere, but this choice is
awkward, because t and r are both infinite on I. However, if we follow null rays backward
(in time), t + r is finite, and if we follow them forward, t � r is finite. So I+ is naturally
parametrized by (u, x̂), and I� is naturally parametrized by (v, x̂).

2.3 Antipodal Matching Condition

A peculiar property of the Liénard-Wiechert solution is that if we start at a point in the
bulk, take the limit first to I+ and then to i0, we get a di↵erent answer than if we take the
limit to I� and then to i0. In fact, the Liénard-Wiechert solution takes di↵erent values at
fixed angles (or x̂) on I+

� and I�

+ , but obeys an antipodal matching condition.
To see this, first rewrite (2.1.9) in retarded coordinates u = t � r:

Frt = Fru =
e2

4⇡

nX

k=1

Qk�k

⇣
r � (u + r)x̂ · ~�k

⌘

���2
k

⇣
u + r � rx̂ · ~�k

⌘2

� (u + r)2 + r2
��3/2

. (2.3.1)

To reach I+, hold u fixed and take the limit r ! 1:

Frt

��
I

+ =
e2

4⇡r2

nX

k=1

Qk

�2
k(1 � x̂ · ~�k)

2
. (2.3.2)

To reach I+
� , we must further take u ! �1, but since the expression is u-independent,

(2.3.2) is the final answer. Note, if we take the velocity ~�k = 0, we recover the usual
Coulomb field for a static charged particle.

The leading 1

r
2 component of the electric field due to moving charges is not a constant:

it depends on the angle of the sphere at infinity. In standard electrodynamics texts, such
as Jackson [193], one often studies the multipole expansion of static configurations. The 1

r
2

component is then constant and proportional to the total electric charge, while the 1

r
3 term

comes from the static electric dipole moment with angular momentum ` = 1. In contrast, for
the case of a single charge moving at constant velocity, no electric dipole is in the picture,
but there is a dipole moment in the 1

r
2 term, in the sense that the ` = 1 mode of the

distribution over the sphere is nonzero. This ` = 1 mode dipole moment of the 1

r
2 term is
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Existence of const. solution w/ (d+1)-dim Diff

in the background metric �̄ij , which includes K�ijx
i
x
j . Thus, the dilatation invariance sets

the terms of O(✏�̄/aH) in Eqs. (2.15) and (2.16) and also the last term in the first line of
Eq. (2.21) to 0. In the following, requesting the [LGTinv] condition, we set K = 0.

Equation (2.22) directly shows the existence of the constant solution as the homoge-
neous solution of Eq. (2.22). This constant solution exists non-linearly in ✏ ⌧ 1, since all
the terms with ⇣ are suppressed by O(✏2) in the right hand side of Eq. (2.22).

2.3 Diff invariant theory

With the (d + 1)-dim. Diff invariance, we can choose the time slicing, performing the
transformation t ! t̃(t, xi). We determine the time slicing, requesting K = dH, which is
called the uniform expansion slicing. In this gauge, using Eq. (2.18), we obtain S = O(✏).
Inserting this expression into Eq. (2.21) and using the Friedmann equation (2.20), we obtain

�⇢tot

⇢̄
= O(✏) . (2.23)

Here, we have introduced

�⇢TT ⌘
A

i
jA

j
i

16⇡G
, (2.24)

interpreting it as the energy density of the transverse traceless modes. Equation (2.23) can
be understood as requesting the large scale fall-off of the fluctuation of the "total" energy
density �⇢total ⌘ �⇢+ �⇢TT. Evaluating Eq. (2.15) in this slicing, we obtain

N = 1 +
⇣̇

H
+O(✏2) . (2.25)

Since S, given in Eq. (2.19), is

@
2
S = (aH)2 ⇥O(✏3) ,

we obtain

1

aH


8⇡GN

H

@Lmatter

@N i
+

DjA
j
i

H

�
= O(✏2) . (2.26)

Solving Eq. (2.26), we can express one degree of freedom, e.g., the dominant one in the
Universe, by other degrees of freedom. Rewriting Eq. (2.23), we obtain Eq. (2.22).

To see this procedure more explicitly, let us consider an example where the background
Universe is predominantly composed of scalar field(s) whose Lagrangian density is given
by [5]

Lmatter = P (XIJ
, �

I) + Lothers (2.27)

with X
IJ = �@µ�

I
@
µ
�
J . As another degree of freedom, Lothers can also include non-zero

integer spin fields, which may be motivated in the context of cosmological collider. Here, let
us assume that the fields in Lothers do not contribute to the background geometry so that
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recall δN formalism Starobinsky(82), Sasaki-Stewardt(95)

Remove one field

�⇢tot are also suppressed by O(✏2), since it should be contracted by a term with another
spatial index. Solving Eq. (2.26), we can express one of �I in terms of the other �

Is, e.g.,
�
1 = �

1(�2
, �

3
, · · · ). At non-linear orders, the expression of �1, in general, becomes non-

local. Eliminating �
1 in J by using the non-local expression, J acquires non-local terms.

However, since the expression of �1 does not include ⇣ that is not suppressed by O(✏2), such
a non-local contribution does not disturb showing the existence of the constant solution of
⇣ from Eq. (2.22). As a result, the ⇣ dependent terms that are not suppressed by O(✏2) only
appear from N , which is given by Eq. (2.25). Eliminating ⇣̇ which appears in J recursively
by using the lower order expression of Eq. (2.22), we can express J only in terms of the
other fields, implying the non-linear existence of the constant solution for ⇣.

It is insightful that Eq. (2.22), which shows the existence of the constant solution, is
derived from Eq. (2.23), where the non-suppressed ⇣ dependent contributions in ✏ ⌧ 1

can be fully absorbed into the perturbed e-folding number dNUE ⌘ NHdt. Integrating
Eq. (2.25) over time between t1 and t2, we obtain the basic formula in the �N formalism [3,
6, 7] in the uniform expansion slicing 1 as

⇣(t2, x
i)� ⇣(t1, x

i) =

Z t2

t1

dt
0
H(t0)N(t0, xi)� N̄ +O(✏2) , (2.33)

where N̄ denotes the e-folding number for the background geometry. Let us emphasize that
we do not need to assume the fall-off property of �̇ij to derive Eq. (2.33).

In Sec. 2.1, we argued that the leading contribution in the gradient expansion in terms
of ✏ does not always describe the actual leading contribution. To discuss an explicit example,
temporarily in this paragraph, let us consider the linear perturbation for a single field model
in general relativity, where �� can be set to 0 by choosing the time slicing. Then, solving
the constraint equations, we obtain

⇣̇

H
=

2(d� 1)H2

16⇡G ˙̄
�2

@kNk

a2H
+O(✏2) . (2.34)

In linear perturbation, Ni is related to the scalar shear �g as k�g ⇠ @iNi/a, which falls off
as k�g / 1/ad�1 (in the absence of the anisotropic pressure) in the limit ✏ ⌧ 1. Since the
first term in Eq. (2.34) is the sub-leading contribution in the gradient expansion, the leading
contribution in the gradient expansion describes the constant solution of ⇣ as ⇣̇/H = O(✏2).
Now, let us show that the sub-leading contribution in the gradient expansion can dominate
the constant solution. Using @iNi / 1/ad�2 and integrating the first term of Eq. (2.34), we
obtain the other solution, which evolves as

⇣
(L), dec

/

Z
dt

H
2

ad
˙̄
�2

(2.35)

and is sometimes called the Weinberg’s second mode. As far as �̇/H stays almost constant
in time as in the standard slow-roll inflation, Eq. (2.35) describes the decaying solution.

1For a general time slicing, dN is defined as dN ⌘ (K/d)Ndt and Eq. (2.33) is derived from the purely
geometrical expression, Eq. (2.15) [7].

– 9 –

e.g. scalar field system

Tanaka & Y.U. (in progress)

【Spatial Diff.】& 【Asymp FLRW】  

in the background metric �̄ij , which includes K�ijx
i
x
j . Thus, the dilatation invariance sets

the terms of O(✏�̄/aH) in Eqs. (2.15) and (2.16) and also the last term in the first line of
Eq. (2.21) to 0. In the following, requesting the [LGTinv] condition, we set K = 0.

Equation (2.22) directly shows the existence of the constant solution as the homoge-
neous solution of Eq. (2.22). This constant solution exists non-linearly in ✏ ⌧ 1, since all
the terms with ⇣ are suppressed by O(✏2) in the right hand side of Eq. (2.22).

2.3 Diff invariant theory

With the (d + 1)-dim. Diff invariance, we can choose the time slicing, performing the
transformation t ! t̃(t, xi). We determine the time slicing, requesting K = dH, which is
called the uniform expansion slicing. In this gauge, using Eq. (2.18), we obtain S = O(✏).
Inserting this expression into Eq. (2.21) and using the Friedmann equation (2.20), we obtain

�⇢tot

⇢̄
= O(✏) . (2.23)

Here, we have introduced

�⇢TT ⌘
A

i
jA

j
i

16⇡G
, (2.24)
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It is insightful that Eq. (2.22), which shows the existence of the constant solution, is
derived from Eq. (2.23), where the non-suppressed ⇣ dependent contributions in ✏ ⌧ 1

can be fully absorbed into the perturbed e-folding number dNUE ⌘ NHdt. Integrating
Eq. (2.25) over time between t1 and t2, we obtain the basic formula in the �N formalism [3,
6, 7] in the uniform expansion slicing 1 as

⇣(t2, x
i)� ⇣(t1, x

i) =

Z t2

t1

dt
0
H(t0)N(t0, xi)� N̄ +O(✏2) , (2.33)

where N̄ denotes the e-folding number for the background geometry. Let us emphasize that
we do not need to assume the fall-off property of �̇ij to derive Eq. (2.33).

In Sec. 2.1, we argued that the leading contribution in the gradient expansion in terms
of ✏ does not always describe the actual leading contribution. To discuss an explicit example,
temporarily in this paragraph, let us consider the linear perturbation for a single field model
in general relativity, where �� can be set to 0 by choosing the time slicing. Then, solving
the constraint equations, we obtain

⇣̇

H
=

2(d� 1)H2

16⇡G ˙̄
�2

@kNk

a2H
+O(✏2) . (2.34)

In linear perturbation, Ni is related to the scalar shear �g as k�g ⇠ @iNi/a, which falls off
as k�g / 1/ad�1 (in the absence of the anisotropic pressure) in the limit ✏ ⌧ 1. Since the
first term in Eq. (2.34) is the sub-leading contribution in the gradient expansion, the leading
contribution in the gradient expansion describes the constant solution of ⇣ as ⇣̇/H = O(✏2).
Now, let us show that the sub-leading contribution in the gradient expansion can dominate
the constant solution. Using @iNi / 1/ad�2 and integrating the first term of Eq. (2.34), we
obtain the other solution, which evolves as

⇣
(L), dec

/

Z
dt

H
2

ad
˙̄
�2

(2.35)

and is sometimes called the Weinberg’s second mode. As far as �̇/H stays almost constant
in time as in the standard slow-roll inflation, Eq. (2.35) describes the decaying solution.

1For a general time slicing, dN is defined as dN ⌘ (K/d)Ndt and Eq. (2.33) is derived from the purely
geometrical expression, Eq. (2.15) [7].
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where �̄ is (the abbreviated notation of) the Christoffel symbol for the background spatial
metric �̄ij , which vanishes for K = 0. Notice that @t det � = 0 implies

�
ij
�̇ij = 0 .

Inserting Eq. (2.14) into Eq. (2.12), we obtain

@i
K

dH
=

1

d�1 � 1


DjA

j
i

H
+

8⇡GN

H

@Lmatter

@N i

�
+O(✏2) . (2.17)

Solving this expression, we obtain

K

dH
� 1 = S +O(✏) (2.18)

with

S ⌘
1

d�1 � 1
@
�2

�̄
ik
@k


8⇡GN

H

@Lmatter

@N i
+

DjA
j
i

H

�
, (2.19)

and @
2
⌘ �̄

ij
@i@j . Taking into account that S does not have a background contribution, we

inserted �1 in the left hand side of Eq. (2.18). The boundary condition of the inverse Lapla-
cian should be determined so that the [aFLRW] condition is fulfilled. Inserting Eq. (2.18)
into Eq. (2.11), we obtain the Friedmann equation

d(d�1 � 1)H2 + d(d� 1)�2
K

a2
= 16⇡G⇢̄ , (2.20)

and the perturbed Hamiltonian constraint equation as

d(d�1 � 1)S(S + 2)�
A

i
jA

j
i

H2
+ �2

�
s
R

H2
= 16⇡G

�⇢

H2
+O(✏2) . (2.21)

where �X denotes the perturbed variable of X, defined as �X = X � X̄. Let us emphasize
that Eqs. (2.18) and (2.21) are fully non-linear expressions.

In Ref. [3], considering a perfect fluid, the existence of the constant solution for ⇣ was
shown by using the energy conservation. Here, using the constraint equations, we show
the existence of the constant solution generically under the [aFLRW] , [LGTinv] , and
[locality] conditions. The outlined argument is as follows. We will show that Eqs. (2.14)
and (2.21) lead to

⇣̇

H
= J +O(✏) . (2.22)

Furthermore, the [locality] condition, which has not been manifestly used yet, restricts
the terms in J to those that do not include ⇣ and are expressed only in terms of other
independent dynamical degrees of freedom. One can see that the [LGTinv] condition indeed
restricts the possible terms by considering the case where the background spatial curvature
K does not vanish. The invariance under the dilation requires K = 0, because the presence
of the curvature scale 1/

p
|K| violates the dilatation invariance. This can be explicitly seen
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also for inhomogeneous ζ 【locality】  



Extension to quantum theory

with the real parameters ✓k and �k as

bk = cosh ✓kak � i sinh ✓ke
�i�ka

†
�k = Sk(✓k, �k)akS

†
k(✓k, �k) , (3.14)

another vacuum state, which satisfies bk| 0
i = 0, can be described, in the form (3.11), as

| 0
i =

Y

k

Sk(✓k, �k)| adii . (3.15)

Here, ak and a
†
k are the annihilation and creation operators for either of '↵s, that satisfy

the standard commutation relation. For a free theory in de Sitter limit, | adii is called
the Bunch-Davies vacuum and the set of the vacuum states | ̃i, related to the Bunch-
Davies vacuum through the Bogoliubov transformation, is called the non Bunch-Davies
vacuum. As one can imagine from the fact that the non Bunch-Davies vacuum is related to
the Bunch-Davies vacuum through the squeezed operator, the former exhibits the particle
excitation in the basis of the Bunch-Davies vacuum.

3.2 Influence functional

In the previous section, considering a classical theory, we discussed the long mode of ⇣,
solving the constraint equations up to O(✏2). In this section, we discuss how the evolution
of ⇣ can be modified by the quantum corrections due to the short modes of O(✏2), which are
simply ignored in the previous section. For ' ⌘ {�g, '

↵
}, we introduce the short modes

and the long modes as

✏
2'(S)(t, x) ⌘ e

�2⇣̄ @
2

(aH)2
'(t, x) , (3.16)

'(L)(t, x) ⌘ '(t, x)�'(S)(t, x) , (3.17)

where ⇣̄ denotes the spatial average of ⇣, evaluated at a reference time t?. The definition of
the long and short modes is introduced so that it does not break the dilatation invariance
e.g., as ✏ ⇠ e

�⇣̄
@i/(aH). This becomes important in particular at the higher orders in the

gradient expansion, while we focus on the leading order in this paper. The basic idea is along
the line with the stochastic approach, initiated by Starobinsky [18–20], while we introduce
the long and short modes in the position space, maintaining the dilatation invariance. In
this regards, our approach can be understood as a generalization of the gradient expansion
to include the ignored short modes based on the stochastic approach.

We now compute the effective action, using the path integral prescription. The inte-
gration measure of the path integral should be introduced in the form which preserves the
dilatation invariance. Using ⇣̄, let us introduce

g
'
↵(t, x) ⌘ e

�S↵⇣̄'
↵(t, e�⇣̄x) , g

⇣
(S)(t,x) ⌘ ⇣

(S)(t, e�⇣̄x) ,

g
N

(S)(t,x) ⌘ N
(S)(t, e�⇣̄x) , g

N
(S)
i (t,x) ⌘ e

�⇣̄
N

(S)
i (t, e�⇣̄x) , (3.18)

g
�
(S)
ij (t,x) ⌘ �

(S)
ij (t, e�⇣̄x) ,
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short modes

long modes

Smeared field in gradient exp. corresponds to 
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the line with the stochastic approach, initiated by Starobinsky [18–20], while we introduce
the long and short modes in the position space, maintaining the dilatation invariance. In
this regards, our approach can be understood as a generalization of the gradient expansion
to include the ignored short modes based on the stochastic approach.

We now compute the effective action, using the path integral prescription. The inte-
gration measure of the path integral should be introduced in the form which preserves the
dilatation invariance. Using ⇣̄, let us introduce

g
'
↵(t, x) ⌘ e

�S↵⇣̄'
↵(t, e�⇣̄x) , g

⇣
(S)(t,x) ⌘ ⇣

(S)(t, e�⇣̄x) ,

g
N

(S)(t,x) ⌘ N
(S)(t, e�⇣̄x) , g

N
(S)
i (t,x) ⌘ e

�⇣̄
N

(S)
i (t, e�⇣̄x) , (3.18)

g
�
(S)
ij (t,x) ⌘ �

(S)
ij (t, e�⇣̄x) ,
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which remain invariant under the dilatation, because ⇣̄ transforms as ⇣̄
s + s = ⇣̄ under

the dilatation x ! xs = e
sx. Using these variables, we define the integral measure in the

dilatation invariant combination as

D
g'(S)

⌘ D
g
⇣
(S)

D
g
�
(S)
ij

Y

↵

D
g
'
↵(S) (3.19)

For a (d + 1)-dim Diff invariant theory, we can eliminate one of g
'
↵s, choosing the time

slicing. We eliminate one of '↵(S)s, setting the field fluctuation to 0. For example, when '
↵

includes the scalar fields whose Lagrangian density is given by the first term of Eq. (2.27),
we impose the gauge condition GPIJ �̇

I
��

J(S) = 0. The eliminated field should not be
included in the integral measure. Furthermore, since we can relate N and Ni with other
dynamical degrees of freedom (or we can set N to 1 for the projectable HL gravity), using
the constraint equations, we do not include N and Ni in the integration measure.

Integrating out the short modes '(S) with the integral measure D
g'(S), we introduce

the effective action for �g as 3

iSe↵

h
'(L)

+ , '(L)
�

i
⌘ ln

Z
D

g'(S)
+

Z
D

g'(S)
� e

iStot['
(L)
+ ,'

(S)
+ ]�iStot['

(L)
� ,'

(S)
� ]

�
, (3.20)

The subscripts + and � denote fields defined on two segments of the closed time path: from
the past infinity to the time t and from the time t to the past infinity. The effective action
also depends on the quantum state, whose variation is described by the unitary operator
U(�g, '↵) as given in Eq. (3.11). We incorporated the contribution of U(�g, '↵) into Stot,
which is defined as Stot = S + �S. Here, S is the classical action, given in Eq. (2.8) and �S

is the contribution from U(�g, '↵). Since U(�g, '↵) remains invariant under the dilatation,
so does Stot. After reinterpreting a variation of the quantum state as a variation of the
additional interaction expressed by �S, the initial state of the path integral in Eq. (3.20)
should be set to the adiabatic vacuum. The contributions in Se↵ generated through the
interactions between '(L) and '(S) are called the influence functional. Taking the derivative
of Se↵ with respect to N

(L) and N
(L)
i , we obtain the Hamiltonian and momentum constraint

equations with the quantum correction of '(S). As the [aFLRW] condition, we require that
N

(L) and N
(L)
i should fall off as Eq. (2.6).

In Sec. 2.1, we have imposed the [locality] condition for a classical system. For a
quantum system, we impose the [locality] condition on the total action, including the con-
tribution from U(�g, '↵), i.e.,

• [locality] The Lagrangian density for Stot (before eliminating the Lagrange multipliers)
only depends on a single spacetime point.

Let us emphasize that since Stot also depends on the information of the quantum state,
described by U(�g, '↵), the [locality] condition also restricts the quantum state.

3The entire correlation function includes the integral measure for both '(L) and '(S) (see Eq. (4.2)).
Changing D'(L)

R
D'(S) into D'(L)

R
Dg'(S) (for a given '(L)) is simply a change of the integration

variable.
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Feynman & Vernon(63)
Influence functional

effective action w/ influence of

Feynman & Hibbs (65)
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i = 0, can be described, in the form (3.11), as
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Sk(✓k, �k)| adii . (3.15)

Here, ak and a
†
k are the annihilation and creation operators for either of '↵s, that satisfy

the standard commutation relation. For a free theory in de Sitter limit, | adii is called
the Bunch-Davies vacuum and the set of the vacuum states | ̃i, related to the Bunch-
Davies vacuum through the Bogoliubov transformation, is called the non Bunch-Davies
vacuum. As one can imagine from the fact that the non Bunch-Davies vacuum is related to
the Bunch-Davies vacuum through the squeezed operator, the former exhibits the particle
excitation in the basis of the Bunch-Davies vacuum.

3.2 Influence functional

In the previous section, considering a classical theory, we discussed the long mode of ⇣,
solving the constraint equations up to O(✏2). In this section, we discuss how the evolu-
tion of ⇣ can be modified by the quantum corrections due to the short modes of O(✏2),
which are simply ignored in the previous section. In the stochastic approach, initiated by
Starobinsky [? ? ? ? ], the short and long modes for ' ⌘ {�g, '

↵
} are introduced as

'(S)(t, x) ⌘

Z
d
dk

(2⇡)
d
2

✓(k � kc(a))e
ik·x'(t, k) , (3.16)

'(L)(t, x) ⌘ '(t, x)�'(S)(t, x) , (3.17)

where ✓ denotes the Heaviside function. The coarse-grained field discussed in the classical
gradient expansion corresponds to the long modes '(L)(t, x). In the conventional gradient
expansion, the interaction with the short modes is simply ignored. Here, using the influence
functional [? ] which can be obtained by integrating out the short modes, we take into
account the influence of the short modes on the dynamics of the long modes. We choose
the time dependent course-graining scale kc(a) as

kc(a) ⌘ �aH (3.18)

with a positive definite parameter 0 < � ⌧ 1.
We now quantize the system and derive the effective action, using the path integral

prescription. In this subsection, we show that the dilatation invariance of the classical
action and the quantum state ensures the dilatation invariance of the effective action. For
this purpose, it is convenient to introduce g' as

g
'
↵(t, x) ⌘ e

�S↵⇣̄'
↵(t, e�⇣̄x) , g

⇣(t,x) ⌘ ⇣(t, e�⇣̄x) ,

g
N(t,x) ⌘ N(t, e�⇣̄x) , g

Ni(t,x) ⌘ e
�⇣̄

Ni(t, e
�⇣̄x) , (3.19)

g
�ij(t,x) ⌘ �ij(t, e

�⇣̄x) ,
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Stochastic inflation 
Starobinsky(86)

the effective action S
0
e↵ in terms of g'(L) as

iS
0
e↵

h
g'(L)

+ ,
g'(L)

�

i
⌘

1X

n=2

iS
0
e↵(n)

h
g'(L)

+ ,
g'(L)

�

i
, (3.25)

where S
0
e↵(n) denotes the terms which include n �g

(L)s, given by

iS
0
e↵(n)

h
g'(L)

+ ,
g'(L)

�

i
=

1

n!

X

s1=±
· · ·

X

sn=±

Z
d
d+1

x1 · · ·

Z
d
d+1

xn

⇥
g'(L)

s1 (x1) · · ·
g'(L)

sn (xn)W
(n)
's1

···'sn
(x1, · · · , xn) , (3.26)

with

W
(n)
's1

···'sn
(x1, · · · , xn) ⌘

�
n
iS

0
e↵ [⇣+, ⇣�]

�'(L)
s1 (x1) · · · �'

(L)
sn (xn)

�����
'

(L)
± =0

. (3.27)

Here, g
�g

(L) should sum up all the metric perturbations given in Eq. (3.24). The coefficient
of the expansion, W (n)

's1
···'sn

(x1, · · · , xn), is given by the correlation function,

hO['(S)
+ , '(S)

� ]i± ⌘

R
D'(S)

+

R
D'(S)

� O['(S)
+ , '(S)

� ] ei(Sint['
(L)
+ ,'

(S)
+ ]�iSint['

(L)
� ,'

(S)
� ])

R
D'(S)

+

R
D'(S)

� e
i(Sint['

(L)
+ ,'

(S)
+ ]�iSint['

(L)
� ,'

(S)
� ])

�����
'

(L)
± =0

,

(3.28)

where the metric perturbations �g± are set to 0. In Eq. (3.28), the correlation function only
with '+ or '� corresponds to the time ordered or anti-time ordered correlation function and
the one with both '+ and '� can be expressed by the Wightman functions. The [locality] of
the action Sint plays the role to ensure that S

0
e↵ can be expanded by the simple products

of g'(L) and the correlation functions of '(S) without including a non-local operator which
operates on both of the short modes and the long modes. The contribution with n = 0 is
the vacuum bubble and the one with n = 1 vanishes as the tadpole contribution [17]. In
the above correlation function, we have replaced g'(S) and D

g'(S)
± with '(S) and D'(S)

± ,
respectively, because they become identical after setting '(L) = 0. Because of that, when
we expand the influence functional S0

e↵ in terms of '(L), we obtain the same expansion
series as Eq. (3.26) with Eq. (3.27), except that all g'(L)s are now replaced with '(L)s.
This may sound somewhat confusing, because the dilatation invariance is not manifest for
the expansion series in terms of '(L). The key to understand the spurious difference is the
Ward-Takahashi (WT) identity for the dilatation invariance.

The integral measure D
g'(S)

± and Sint are both dilatation invariant, so are the expec-
tation values of g'±, given by

R
D

g'(S)
+

R
D

g'(S)
�

g'(S)
± (x1) · · · g'

(S)
± (xn) e

i(Sint['
(L)
+ ,'

(S)
+ ]�iSint['

(L)
� ,'

(S)
� ])

R
Dg'+

R
Dg'� e

i(Sint['
(L)
+ ,'

(S)
+ ]�iSint['

(L)
� ,'

(S)
� ])
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Property 2 Arkani-Hamed&Maldacena (15)

as a synonym of early-type and “blue”, of late-type galaxies. In the low-redshift Universe,
a very small fraction of early-types have blue colors [13], but this assumption has not been
tested at the high redshifts to be probed by upcoming imaging surveys. On the other hand,
recent results from numerical hydrodynamical simulations suggest that indeed color is well
correlated with galaxy dynamics as tracers of the intrinsic alignment signal [14]. Alignments
are typically regarded as a contaminant to ‘cosmic shear’ (the two-point correlation of lensing-
induced ellipticities), and they can contribute significantly to the correlation of galaxy shapes
with the weak lensing of the Cosmic Microwave Background (CMB) [15, 16].

The exploration of alignments as a cosmological probe has only started recently. The
wealth of shape information expected from upcoming imaging surveys, and the availability
of a model that reproduces the observed alignment correlations of red galaxies, has triggered
the exploration of the use of intrinsic alignments for cosmology. For example, the correlation
between galaxy shapes and CMB B-mode polarization induced by primordial gravitational
waves could be detected from future surveys, albeit with limitations in confirming its primor-
dial origin [17]. While the CMB B-mode polarization is a purely linear effect induced by the
gravitational redshift of tensor metric perturbations, the latter also induce an effective tidal
field which modifies the local growth of structure and acts to align galaxies [18, 19]. Another
example of the use of intrinsic alignments for cosmology is the possible detection of baryon
acoustic oscillations in the cross-correlation of galaxy positions and shapes from future sur-
veys [20]. While intrinsic alignments are weaker in amplitude than galaxy clustering, they
do have some advantages such as the absence of redshift-space distortions (RSD) [21].

In this work, we show that intrinsic alignments can probe inflationary models where the
squeezed-limit bispectrum of the primordial curvature perturbations, usually denoted R or
ζ, is anisotropic. Phrased in terms of the primordial potential perturbation φ during matter
domination, which is related to the curvature perturbation by R = (5/3)φ, the squeezed-limit
bispectrum can be expressed as

Bφ(k1,k2,k3 = kL) =
∑

ℓ=0,2,...

AℓPℓ(k̂L · k̂S)

(

kL
kS

)∆

Pφ(kL)Pφ(kS)

[

1 +O
(

k2L
k2S

)]

, (1.1)

where k3 = kL ≪ k1, k2 while kS = k1 − kL/2, Pℓ are the Legendre polynomials, and
Aℓ are dimensionless amplitudes. Note that the angular dependence has to be even; see
Section 2. In general, there can be several contributions with different power indices ∆.
In this paper, we will focus on the “local” scaling with ∆ = 0. However, our results are
easily generalized to other scalings. In Eq. (1.1), the coefficient A0 of the isotropic term is
related to the usual local non-Gaussianity parameter f loc

NL via A0 = 4f loc
NL. We are interested

in constraining the parameter that governs the leading anisotropic contribution, namely the
quadrupolar dependence of the bispectrum, A2. As we will show, A2 does not lead to a
significant large-scale effect in galaxy clustering, specifically the two-point function. It does
however lead to the analog of the well-known scale-dependent bias for galaxy counts, which
scales as f loc

NL(k/aH)−2, in the two-point statistics of galaxy shapes, adding a contribution ∝
A2(k/aH)−2. Combining galaxy clustering with shapes, we can then constrain both isotropic
and anisotropic non-Gaussianity simultaneously.

Thus, alignments offer a golden opportunity to explore a new dimension in the parameter
space of inflationary models. Anisotropic non-Gaussianity can arise in several early-Universe
scenarios. In solid inflation [22], inflation is driven by the exponential stretching of an
unusual solid. A feature of solid inflation is that it produces large anisotropic non-Gaussianity
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Note that we only care about ✏ up to an overall scale, therefore we can generically take it to
be of this form. Then we find that the two point function in Fourier space is proportional
to (see appendix A)

h✏s.O~k
✏̃s.O�~ki

0
/ k2��3I2(~✏, ~̃✏, k̂) , with k̂ ⌘

~k

|~k|

I2(~✏, ~̃✏, k̂) ⌘

sX

m=�s

eim( � 0)

✓
(2s)!

(s�m)!(s+m)!

◆
I2(�,m) (3.26)

I2(�,m) ⌘
�(�� 1 +m)

�(2��+m)

�(2��+ s)

�(�� 1 + s)
(3.27)

I2(~✏, ~̃✏, k̂) = e�is( � 0)
2F1(�� s� 1,�2s, 2� s��;�ei( � 

0)) (3.28)

Here m indicates the angular momentum of the mode around the ~k direction. We some-
times call this the “helicity” of the mode. The factor in parenthesis in (3.26) is an un-
interesting normalization factor, see appendix (A). The I2(�,m) factor is a phase for
� = 3

2 + iµ, with µ real. Note that the hypergeometric function in (3.28) is a polynomial.
This formula contains an interesting lesson. First, let us recall the formula that gives

the dimension in terms of the mass for a spin s field [21]

�± =
3

2
±

s✓
s�

1

2

◆2

�
m2

H2
=

3

2
± iµ (3.29)

where the last equality defines µ. When m = 0 we have a gauge symmetry in the bulk. In
this case, �+ = 1 + s which is the dimension of a conserved current. Let us now consider
the massive case, but with a small enough mass so that �± are real. The leading late
time behavior of the expectation value of the field is given in terms of the component with
dimension ��, which is associated to the more slowly decaying function. An interesting
feature of the coe�cients in (3.28) is that they can change sign. First, let us see this in a
concrete example. Consider the s = 2 case

h✏2.O~k
✏̃2.O�~ki

0
/ k2��3


e�2i� +

4(3��)

�
e�i� +

6(3��)(2��)

(�� 1)�
+

4(3��)

�
ei� + e2i�

�

(3.30)
with � =  � 0. Note that for any integer spin I2 in (3.27) is a ratio of simple polynomials
of �. Let us start with � = 3

2 where all terms are positive. As � decreases we see that the
middle term changes sign at � = 1. The fact that it diverges at � = 1 is related to the
fact that the kinetic term for this mode becomes zero. This is the phenomenon of partial
masslessness discussed in [22, 23]. For �� < 1 we have a negative sign. This negative
sign is a problem because the term corresponds to the expectation value of a field and its
complex conjugate4, which should be positive. Note that here we are using that for real

4Now that for  0 =  , ~̃✏ = ~✏⇤ in (3.25).
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- Non-local contributions → Non-analyticity

- Dilution between the Hubble crossing times of kL and kS

 →(kL /kS)3/2

- Al contains two suppressions
1) Boltzmann suppression
2) Weak interaction, suppressed by SR parameters


