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Infrared Universality in cosmology



History of Universe

In cosmology, it is crucially important to under the evolution at large scales,

k 1/H Hubble scale (curvature radius) 1
T T <<
aH a/k physical length

k = |k|

a(t):scale factor




83asic idea of inflation
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Primordial perturbations

Unigue window to explore models of inflation
spin O (inflaton) ¢, spin 2 GWSs yj

g
Det. hi; = a’e?t €]

spatial coordinates  9"7;; = 0

time slicing  §¢ =0
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Solving large scale evolution

Tensor-to-scalar ratio (7¢.002)

k/aH

Large scale evolution k/aH << 1
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Conservation of C

Tensor-to-scalar ratio (7¢.002)
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Pe(k)k jar ot Time conservation 0, = O((k/laH)?)



More on Conservation of C

Matter action Sm = Sm|[ g, O]

(d+1)-dim Diff invariance

5 m 5 m /
nv

=0 (eom)

0= 5¢Sm

Lyth, Malik, § sasali(2004)
- Energy conservation 1, V,IT"" =0

- Barotropic p=p(0)
- Asymp FLRW
dp+3(p+ P)H+{) +0() =0 —> ¢ =0O(?)

slicing p(t, x) = p(t)



Weinberg’s adiabatic mode

Adiabatic Modes in Cosmology

Steven Weinberg!
Theory Group, Department of Physics, University of Texas
Austin, TX, 78712

We show that the field equations for cosmological perturbations in Newtonian

gauge always have an adiabatic solution, for which a quantity R is non-zero
and constant in all eras in the limit of large wavelength, so that it can be
used to connect observed cosmological fluctuations in this mode with those at
very early times. There is also a second adiabatic mode, for which R vanishes
for large wavelength, and in general there may be non-adiabatic modes as
well. These conclusions apply in all eras and whatever the constituents of
the universe, under only a mild technical assumption about the wavelength
dependence of plhtmiolduttaiiontmtoimlonsomomomloniiml ittt
anisotropic ind  While it may not be the dominant solution in IR,
large waveleng  the constant solution exists rather generically.
scale factor.

what appears t C 7é 0, C — Cl + CQ él ~ 0
in synchronous
and Newtonian gauges suggest inequivalent assumptions about the behavior
of the perturbations for large wavelength.




Consistency relation

correlation fun. with 1 soft / y; at time const. slicing

_ universal
= X
factor

( / yij n-point functions

k {9:}

Maldacena (2002),Creminelli§Zaldarriaga (2004), ...

e'g' <C(t*7 kl) S C(t*a kn)> — 5(1{1 + 0t kn) C(n)({kz}n)

C(n)({ki}n) _ (TLE—: ki - Ok + 3(n — 2)) C(n—l)({ki}n—l)

1=2

lim

kn—0  P(ky)



Question

IR "Universality”

- Existence of const. solution in ¢ (a.k.a. WAM)

- Consistency relation (~ soft theorem)

- Cancellation of IR divergence Tanaka §Y-U. (09, 10,....), ...

holds rather generically, but not always.

e.g. WAM does not exist

- Solid inflation, 3 scalar fields w/ large scale anisotropic pressure

enlich, Nicholas and wang (11, 12)

Then, what is the condition that ensures IR “Universality”?



Outline

1) Introduction

2) IR physics in asymptotically flat spacetimes

ki = 0
( ) ~ Learn from predecessors~

3) Conditions for IR “Universality”



Infrared triangle

Strominger+ (13,14, ...)
review 1703 .05448

Christodoulow (1991) MEMORY
EFFECT

SOFT IDENTITY ASYMPTOTIC
THEOREM SYMMETRY
Bloch § Nordsieck (1937#) Bowdi, Metzner, Sachs (1962)

weinberg (1965)



for QED ®Bloch § Nordsieck (1937)
Soft theorem A for gravitons  weinberg (1965)

. q,¢ : . ;
S matrix _ universal S matrix
w/soft Ieg fa C.t or (n—m scattering)
Soft photon theorem
out / — : — e - qutpzut ) 6+ . - Q}cnpi:n ) 6+ ou in 0
(out|as™(7)Slin) = Z T Z oo | {outlStin) + 0(4)

propagator

—i . i
p+a)+m’> P +2p-g+qg+m® 2p-q

vertex factor

iee"2Qp,

q,¢€




Asymptotic symmetry /' Eondi, Metzner, Sachs (1962)

BMS group: Symmetry in asymptotically flat sp.

fixed (t, z, z), taking r = o : approaching to Z*

2m

ds® = —du® — 2dudr + 2r*y,dzdz + —2du® +rC_dz* + rC.dZ* + ...

r

— My - GW
Supertranslations
= 10, L (D f0,+ D*f0) + DDfO, + ... £(z2)
Mg — C., = —2D*C

c. - Supertranslation

C—oC+f

Strominger+ (13,14, ...)

WT of supertranslation = Soft graviton theorem




Large gauge transformations /-

see, e.9., Harvey (9¢&)

o Small GTs s g—=1 (inx] = o) g € Gs
> Large GTs 4. g1 (inx| > Jgea

e.qg. Large GTs in U(1) gauge theory
AHX) = AH(X) = AH(X) + oMA(X)

Lorentz gauge 9, A%(x) =0

- Small GTs  fixed by OLHA(X) = -3 AH(X)
- Large GTIs  duobA(x) = 0O

AMx) = Z Clyo, Tt oo xbm
i symmetric traceless tensor




Zel’dovich § Polnarev (1974)
MemOry effects A Christodoulou (1991)

Gravitational memory effect: Non-oscillatory contributions to GW amplitude
(Christodoulou effect)

GW detector G.W.
Test particles
h /”"\\\ PR N
,’ ,/____‘__:\
A / ~w
‘ 0 i Dl ' ®
\ DB , .\I| A /
\\ L/
N2 @)
\\_._,’ \\\__’//
Before After
hg—hp
& > 1

from talk slide of A.Ishibashi



Infrared triangle +

Strominger+ (13,14, ...)

Christodoulow (1991) review 1703.05448

MEMORY
EFFECT

Cancellation of

IR divergence
Fadoeev-Kulish (1970)

N\

SOFT IDENTITY ASYMPTOTIC
THEOREM SYMMETRY
Bloch § Nordsieck (1937#) Bowdi, Metzner, Sachs (1962)

weinberg (1965)



Cancellation of IR div. ®/\

IR divergence in QED
S-matrix element — O

N IR cutoff =& O

Fadoeev-Kulish (1970)

Dressing IR photons which are too IR to be detected -~ = Degenerated state

IR divs. pair-wise cancellation

see also Kinoshita-Lee-Nauenberg for non-abelian



Infrared triangle +

Strominger+ (13,14, ...)

Christodoulow (1991) review 1703.05448

MEMORY
EFFECT

Cancellation of

IR divered . Asymptotically flat
Faddeev-K| - Gauge symmetry ( = Existence of massless mode)

SOFT IDENTITY ASYMPTOTIC
THEOREM SYMMETRY
Bloch § Nordsieck (1937#) Bowdi, Metzner, Sachs (1962)

weinberg (1965)



Outline

1) Introduction

2) IR physics in asymptotically flat spacetimes

~ Learn from predecessors~

3) Conditions for IR “Universality”



Large GTs for {yi /-
Large: |xi| = o at each time slicing

Invariance under Large GTs that preserves [asym FLRW]

(Counter part of BMS in cosmology)

- Dilatation transformation b —s e

G, ©) = Cs(t, ) = C(t, e °x) — s

Very roughly speaking.....

dilatation inv. ensures “shift symmetry” of C



Infrared physics in cosmology

MEMORY ?

on spatial infinity

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

Cancellation of

IR divergence
Tanaka & Y.U. (15, 17) ‘s
Consistency SOFT IDENTITY ASYMPTOTIC
Relation THEOREM Hinterbichler et al.(13) SYMMETRY
Maldacena(02) o Invariance under
K Large spatial GTs

Const. solution of {/y;;

e.g. X = esx
Tanaka & Y.U. (15, 17), Garriga & Y.U.(16) J



Cancellation of IR div. ®/\

For massless fields in (quasi) dS, accumulation of IR modes,
k/aH <<1, leads to logarithmic divergence.

FordgParker (F7), AllengFolaccel (%), ..., Tsamis §Woodard (94, 97),....

€.d. Lléf” > CQ(aC)Q in (d+1)-dim spacetimes
. dk
(Loop integral) ~ / dk |G |2 ol n

scale inv. spectrum in IR
in QED \/@/
Limitation on detectable IR modes ‘ IR reg.

IN cosmology
Limitation on detectable IR k modes ~ %/ IR reg. w/CR
~ gpatial distance Tanaka § Y. (09, 10,..),



Conditions for |

R “Universality”

QFT in asymptotically flat spacetimes

- Gauge invariance

- Asymptotically Flat spacetimes

MEMORY

E— IR triangle

QFT in cosmology

- Gauge invariance: spatial Diff. invariance

- Asymptotically FLRW spacetimes

— IR “Universality” 7



Gradient expansion

Gradient expansion Salopek § Bond (1990), Shibata § sasaki (1999)

Physical scale of inhomogeneity of our focus L >> 1/H
(or coarse graining scale)

e=1/(HL)

In local theory, we identity € exp. as derivative exp.

(d+1)-dim line element & Gauge choice

ds* = —N?dt* + g;;(dz’ + N'dt)(dx’ + N dt) gij = a’e** i
- spatial coordinates: Transverse i =0

recall FLRW ds® = —dt* + a*(t)¥;; (x)dz" dz?

det[y] =1



Asymptotically FLRW spacetime

Asymp FLRW condition

spatial average at reference time t,

_ dix ((t,, x)
= IV, = / ak
el = 0(e) =T g
rt — e (—(—s

* Do not impose condition on time derivative of yj
Lyth, Malik § Sasaki (2004)

* At linear order, [ AsympFLRW] is a condition on shear. ko, ~ 9;N;/a

* f IS Introduced for the dilatation invariance.

(* For (d+1)-Diff, the above condition is imposed on K=dH slicing.)



Classical Lagrangian

[Spatial Diff. invariance] (& [Locality] )

S = /dd—l_l.fl?\/ —( [[,g + »Cmatter]

with

(szKjZ — 51K2) + 39°R + 0(62 w/o N, = w/N;)

L . g
K5 = ﬁ(%’j — D;N;j — D;N;) K = ~+Y K;;

* Matter sector > Integer spin fields w/sDiff + locality

recall cosmological collier program Arkani-tHamed § Maldacena (2015)



Sottom-line argument Tanaka § Y.U. (n progress)

(d+1)-dim Diff H-const & M-const —— % =J + O(e)

J is described only by other independent dynamical fields.

All terms w/ C are O(g)

- dilatation inv. ~ shift sym. of C (for quantum system)
- asymp FLRW e.g. during inflation

(ex) Single scalar field, classical linear perturbation

i ¢ 2(d—1)H? 9Ny )
H-const 0 worgo ol +0() = O(e2)

[ AsympFLRW]

(ZumiEMukoh yama (11)
Gqumrukeuoglu et al. (11)

similarly for HL gravity w/d-dim Diff % =J + O(e) Armendariz-Picon et al(10)

Arat, Stbiryakov, Y.U. (18)



Spin-0 Tanaka § Y.WU. (2015)

arbi’cmrg integer spine.  Tanaka § Y.U. (in progress)

Soft theorem

Soft theorem: WT for dilatation (+ locality)

(‘ > kit 3a> (oD (t1, K1) @ (s kn)) s
1=1 o

L) )

01.Sin 3
B /dt <‘Pf)(t1, k1) - "SO(iS)(t”’ kn) t(E,)OJr -
0C" (t, ki)

5iSint[so(_L), so(_s)]

— [at { (11, k1) @ (tn, Kon)
><s / < 5¢Wt, k)

c,o<_L)—O> QO(S)

amputated
long (IR) mode




Why do we need additional condition”

Soft theorem e Consistency relation
(relation for correlators)

QFT in asymptotically flat spacetimes

LSZ reduction formula (, Lorentz symmetry)

Inserting soft legs.  wioriw rima s e & ie"2Qw,
~ BMS

QFT in cosmology

LSZ awtates (, LoreWtry)

only When* holds, dilatation describes soft mode insertion




Summary

[Spatial Diff.]

dilatation 4—(
[ Asymp FLRW)

)( solid inflation

X anisotropic inflation

[ Locality]
Existence of const. sol (WAM)
N
No LSZ * C(t, k) = VM (k) + /dt/ J(t' k) + O(e)

\4

. . - multi-field inflation
Consistency relation

- violation of SR



pback-up slide



Coordinates at 7=

Minkowski space  ds* = —di* + (az)’

-
ds® = —du® — 2dudr + 2%, d=dz R 2 _ gy 2 -
s° = —du udr 4 2r°y,;dzdz Ves 1727 ds® = —dv® + 2dvdr + 2r°y,;dzdz
2—(_’)2 =1 — o' in® = ar xg—rl_zz o' in® = 2r x3:@1_zz
P=@, u=t-r “Tra T v=ttr O =

For a given z, anti-podal relation betweenZ™ and 7~ .



—xistence of const. solution w/ (d+1)-dim Dift
Choosing time slicing K =dH —» N=1+ % + O(€?)

recall SN formalism starobiwslreg (82), Sasaki-Stewardt (95)

) 8 pto _ _ AYGA,
H-const pj b — O(e) 0ptotal = 0P + 0PTT OPTT =~ 7
M-const  Remove one field e.g. scalar field system ¢! = ¢'(¢?, ¢%, - )

Tanaka § Y.WU. (in progress)
5ptot
p

[Spatial Diff.] & [Asymp FLRW]

¢ w/o O(e*) appears only through N (or 6N) in — O(e)

— % = J + O(e) also for inhomogeneous ¢  [locality]



—xtension to quantum theory

® = {09, ¥}  metric perturbations & matter fields

(S) — A’k . ik-x
short modes e)(t, x) = / (%)ge(k ke(a))e™ ™ o(t, k)

Stochastic inflation

long modes o(t, ) = plt. 2) — o (t, @) Starobinsky (2¢)
Smeared field in gradient exp. corresponds to )

Feynman § vernow (63)

Influence functional

Feynwman § Hibbs (&5)

ZSGH QO+ 790 = In [/ Dg /Dg (5) elSto thS}) SOSF)] ZStot[‘P(_L),SO(_S)]

effective action w/ influence of ¢



D)
O p S rty 2 Arkani-Hamed&Maldacena (15)

(" 4 R )
- o\ 2 k%
By(ki, ko ks =kp) = AgPe(kr - kg) T Py(kp)Py(ks) |1+ 0O | 3
S

0=0,2,.}

- Non-local contributions = Non-analyticity

- Dilution between the Hubble crossing times of k. and ks
— (k. /ks)3/2
- A/ contains two suppressions

1) Boltzmann suppression
2) Weak interaction, suppressed by SR parameters



