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Anomalies

• Anomalies arise when a classical symmetry is broken by
quantization

• The prime example is the chiral anomaly

• Trace anomalies also have extensive applications:

Classically, conformally invariant theories often exhibit a
stress tensor with vanishing trace, Tµ

µ(x) = 0

Quantization produces a nonvanishing trace,
the trace anomaly 〈Tµ

µ(x)〉 6= 0



Trace anomalies and consistency conditions

The trace anomaly depends on the background geometry.
By dimensional analysis (and covariance)

〈Tµ
µ〉 = αRµνρσRµνρσ + β RµνRµν + γ R2

+ δ�R + ε
√

gεµνλρRµναβRλρ
αβ

impose WZ consistency conditions ([δσ1(x), δσ2(x)]Γ[g] = 0)

〈Tµ
µ〉 = a E4 + c C2 + d �R + e P4

E4 = RµνρσRµνρσ − 4RµνRµν + R2

C2 = CµνρσCµνρσ = RµνρσRµνρσ − 2RµνRµν +
1
3

R2

P4 =
√

gεµνλρRµναβRλρ
αβ =

√
gεµνλρCµναβCλρ

αβ



Trace anomalies

〈Tµ
µ〉 = a E4 + c C2 + d �R + e P4

• �R can be eliminated by a counterterm
• trace anomaly parametrized by a and c coefficients, as in

the past the Pontryagin term P4 was not seen to arise ...
• but recently, its relevance has been reconsidered:
? Nakayama (2012) stressed that it could be present
? Bonora et al., (2014, 2018) found an imaginary
contribution proportional to P4 for massless Weyl fermions

• Claim potentially relevant: it needs an independent check!



Analogous situation in a gauge background

Trace anomaly in a gauge background:
by dimensional analysis (and gauge covariance)

〈Tµ
µ〉 = αFµνFµν + βεµνρσFµνF ρσ

solves the WZ consistency conditions.

• Can the Chern-Pontryagin term arise in chiral theories?
• Nakayama (2012) conjectured also its presence
• The situation seems analogous to the one in curved space,

and perhaps even simpler to decide



Chiral fermions in D = 4
Weyl spinors λ (say γ5λ = λ) coupled to a gauge field Aa

L = −λD/ (A)λ

D/ (A) = γaDa(A), Da(A) = ∂a + Aa, Aa = −iAαa Tα

Classically: • covariantly conserved gauge current
• traceless stress tensor

Convenient to embed it into the Bardeen model with Dirac ψ’s

L = −ψD/ (A,B)ψ

Da(A,B) = ∂a + Aa + Baγ
5

Aa couples to vector current Jaα = iψγaTαψ
Ba couples to axial current Jaα

5 = iψγaγ5Tαψ

Projection to the Weyl model: Aa = Ba → Aa
2

Compute anomalies in generalized model
(couple to gravity to study insertion of the stress tensor)



Bardeen model in curved space

L = −eψ∇/ (A,B)ψ

∇/ (A,B) = γaea
µ
(
∂µ + Aµ + Bµγ5 +

1
4
ωµbcγ

bc
)

invariant under:

• diffeomorphisms
• local Lorentz transformations
• vector gauge symmetry
• axial gauge symmetry
•Weyl transformations

We want to calculate corresponding anomalies



Just for the record:

• Weyl symmetry δψ(x) = −3
2
σ(x)ψ(x) , δψ(x) = −3

2
σ(x)ψ(x)

δea
µ(x) = σ(x)ea

µ(x)

• Gauge symmetries (α = −iαα
a (x)Tα and β = −iβα

a (x)Tα)
δψ = −(α + βγ5)ψ , δψ = ψ(α− βγ5)

δAa = ∂aα + [Aa, α] + [Ba, β]

δBa = ∂aβ + [Aa, β] + [Ba, α]

• Bardeen curvatures

F̂ab = ∂aAb − ∂bAa + [Aa,Ab] + [Ba,Bb]

Ĝab = ∂aBb − ∂bBa + [Aa,Bb] + [Ba,Ab]



Pauli-Villars regularization

We regulate the theory at one-loop by the Pauli-Villars method

−

• Anomalies come from the non-invariance of the PV mass
term, which generates finite contributions at M →∞
• Can cast the calculation in a simple form, then evaluated
using heat kernel formulae
• This method produces consistent anomalies (it computes the
variation of the one-loop effective action)



L =
1
2
ϕT TOϕ , δϕ = Kϕ

LPV =
1
2
φT TOφ+

1
2

MφT Tφ , δφ = Kφ

eiΓ =

∫
Dϕ eiS → eiΓ =

∫
DϕDφ ei(S+SPV )

iδΓ = i〈δSPV 〉 = lim
M→∞

iM〈φT (TK +
1
2
δT )φ〉

= − lim
M→∞

Tr
[(

K +
1
2

T−1δT
)(

1 +
O
M

)−1]
= − lim

M→∞
Tr
[(

K +
1
2

T−1δT +
1
2
δO
M

)(
1− O

2

M2

)−1]
= − lim

M→∞
Tr
[(

K +
1
2

T−1δT +
1
2
δO
M

)
e

O2

M2

]
〈φφT 〉 = i

TO+TM [Diaz et al.(1989)]



Thus, we obtain a Fujikawa-like formula

iδΓ = i〈δS〉 = − lim
M→∞

Tr
[
J e−

R
M2
]

J = K +
1
2

T−1δT +
1
2
δO
M

R = −O2



Pauli-Villars for the Bardeen model

How to regulate the Bardeen model?
• Use PV fields: their mass term is totally arbitrary, as long as it
regulates (invertible mass matrix)
• The mass term usually cannot maintain all symmetries of the
massless lagrangian: it preserves some symmetries while
breaking others, the latter can get anomalies!
•We choose a Dirac mass: it preserves the green symmetries
and break the red ones.

LPV = −eψ∇/ (A,B)ψ − eMψψ



Casting
LPV = −eψ∇/ (A,B)ψ − eMψψ

in the form

LPV =
1
2
φT TOφ+

1
2

MφT Tφ , with φ =

(
ψ
ψc

)
, ψc = C−1ψ

T

one finds (in flat space)

TO =

(
0 CD/ (−AT ,BT )

CD/ (A,B) 0

)
, T =

(
0 C
C 0

)

O =

(
D/ (A,B) 0

0 D/ (−AT ,BT )

)

O2 =

(
D/ 2(A,B) 0

0 D/ 2(−AT ,BT )

)
The latter is the regulator R = −O2.



Identify now the breaking term J (the Fujikawa jacobian)

Jaxial =

(
iβα(x)Tαγ5 0

0 iβα(x)TαTγ5

)
JWeyl =

( 1
2σ(x) 0

0 1
2σ(x)

)
Then, use the heat kernel to find

(Da〈Ja
5 〉)α =

i
(4π)2

[
tr [γ5Tαa2(Rψ)] + tr [γ5TαT a2(Rψc )]

]
〈T a

a〉 = − 1
2(4π)2

[
tr a2(Rψ) + tr a2(Rψc )

]
Rψ = −D/ 2(A,B) , Rψc = −D/ 2(−AT ,BT )

The a2 coefficients are the only ones that survive
renormalization and the limit M →∞.



Heat kernel: a quick summary
Given an operator H on flat D-dimensional spacetime

H = −∇2 + V

V matrix potential, ∇2 = ∇a∇a, ∇a = ∂a + Wa

[∇a,∇b] = ∂aWb − ∂bWa + [Wa,Wb] = Fab

The trace of its heat kernel has a small time expansion

Tr
[
J e−isH] =

∫
dDx tr

[
J(x)〈x |e−isH |x〉

]
=

∫
dDx i

(4πis)
D
2

∞∑
n=0

tr [J(x)an(x ,H)](is)n

=

∫
dDx i

(4πis)
D
2

tr [J(x)(a0(x ,H) + a1(x ,H)is + a2(x ,H)(is)2 + ...)]

“tr” is a trace on remaining discrete matrix indices
J(x) is an arbitrary matrix function
an(x ,H) are the heat kernel (Seeley-DeWitt) coefficients.



Heat kernel: a quick summary

Matrix valued heat kernel coefficients:

a0(x ,H) = 1
a1(x ,H) = −V

a2(x ,H) =
1
2

V 2 − 1
6
∇2V +

1
12
F2

ab

where ∇aV = ∂aV + [Wa,V ], etc.



Anomalies in Bardeen model
Chiral anomaly

(Da〈Ja
5 〉)α = − 1

(4π)2 ε
abcd trYM Tα

[
F̂abF̂cd +

1
3

ĜabĜcd

− 8
3

(F̂abBcBd + BaF̂bcBd + BaBbF̂cd ) +
32
3

BaBbBcBd

]
+ PETs

PETs are cohomologically trivial parity-even terms

PETs =
i

(4π)2 trYM Tα

[
4
3

D2DB +
2
3

[F̂ ab, Ĝab] +
8
3

[DaF̂ab,Bb]

− 4
3
{B2,DB}+ 8BaDBBa +

8
3
{{Ba,Bb},DaBb}

]
.

Indeed canceled by the chiral gauge variation of a local counterterm

Γct =

∫
d4x

(4π)2 trYM

[
2
3

(DaBb)(DaBb) + 4F ab(A)BaBb −
8
3

B4 +
4
3

BaBbBaBb

]



Anomalies in Bardeen model
Trace anomaly

〈T a
a〉 =

1
(4π)2 trYM

[
2
3

F̂ abF̂ab +
2
3

ĜabĜab

]
+ CTTs

where CTTs

CTTs =
1

(4π)2

(
−4

3

)
trYM

[
D2B2+DBDB−(DaBb)(DbBa)−2F ab(A)BaBb

]
are canceled by the Weyl variation of

Γ̄ct =

∫
d4x
√

g
(4π)2 trYM

[
2
3

(DµBν)(DµBν) + 4Fµν(A)BµBν +
1
3

RB2
]

N.B.: counterterms merge consistently into a unique counterterm

Γtot
ct =

∫
d4x
√

g
(4π)2 trYM

[
2
3

(DµBν)2 + 4Fµν(A)BµBν +
1
3

RB2

− 8
3

B4 +
4
3

BµBνBµBν

]



Anomalies in Bardeen model

(Da〈Ja
5 〉)α = − 1

(4π)2 ε
abcd trYM Tα

[
F̂abF̂cd +

1
3

ĜabĜcd

− 8
3

(F̂abBcBd + BaF̂bcBd + BaBbF̂cd ) +
32
3

BaBbBcBd

]
〈T a

a〉 =
1

(4π)2 trYM

[
2
3

F̂ abF̂ab +
2
3

ĜabĜab

]

Trace anomaly is gauge invariant and without parity-odd terms



Anomalies of Weyl fermions

Take chiral limit Aa = Ba → 1
2Aa

F̂ab = Ĝab → 1
2Fab(A) , Ja = Ja

5 → Ja = 1
2(Ja + Ja

5 )

(Da〈Ja〉)α = − 1
(4π)2 ε

abcd trYM Tα∂a

[
2
3

Ab∂cAd +
1
3

AbAcAd

]
〈T a

a〉 =
1

(4π)2 trYM

[
1
3

F abFab

]
The chiral anomaly is the standard one
The trace anomaly is our result, which shows the absence of
parity-odd terms
It is just half the trace anomaly of non-chiral Dirac fermions
F.B. and M. Broccoli, arXiv:1908.03750, 1808.03489



Weyl fermions in curved space
Same procedure can be applied to Weyl fermions in curved
space:

• no contribution from Pontryagin term to the trace anomaly
F.B. and R. Martelli, arXiv:1610.02304

• tension with the alternative calculation of
L. Bonora et al., arXiv:1403.2606, 1703.10473, 1807.01249

• last two references introduce a metric-axial-tensor (MAT)
background

ĝµν = gµν + fµνγ5

as an extension of Bardeen’s method to curved space
• fermions in MAT background can also be regulated with PV

fields. We anticipate that no parity-odd term arises in the
trace anomaly of Weyl fermions F.B. and M. Broccoli, in
progress



Conclusions

• Described the trace anomalies of Weyl fermions
• Obtained the trace anomaly of Weyl fields in abelian and

non-abelian gauge backgrounds: no parity-odd terms
• Similar findings for Weyl fermions on curved background
• ... but clash with different derivations by Bonora et al.
• Alternative calculations are welcome!


