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BEAM INSTABILITIES
IN CIRCULAR PARTICLE ACCELERATORS

E. Métral (CERN, BE/ABP)
3 seminars of 2 hours (3-5/06/19)

◆ Introduction

◆ Longitudinal low-intensity

◆ Transverse low-intensity

◆ Transverse high-intensity

◆ Longitudinal high-intensity

◆ Conclusion
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ABSTRACT
◆ The theory of impedance-induced bunched-beam coherent instabilities is

reviewed following Garnier-Laclare's formalism, adding the effect of an
electronic damper in the transverse plane

◆ Both single-bunch and coupled-bunch instabilities are discussed, both low-
intensity and high-intensity regimes are analyzed, both longitudinal and
transverse planes are studied, and both short-bunch and long-bunch
regimes are considered

◆ 2 similar approaches for coherent instabilities using the linearised Vlasov
equation (and Garnier-Laclare’s formalism) are presented, leading to 2
“new” Vlasov solvers
§ For Transverse Instabilities: GALAC-TIC (GArnier-LAclare Coherent Transverse

Instabilities Code)

§ For Longitudinal Instabilities: GALAC-LIC (GArnier-LAclare Coherent Longitudinal
Instabilities Code)

◆ Observables and mitigation measures are also briefly examined
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INTRODUCTION
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Mont Blanc

 Elias.Metral@cern.ch 
Tel.: 00 41 75 411 4809 

http://emetral.web.cern.ch/emetral/ 

Section leader of the HSC section
(Hadron Synchrotron Collective/Coherent effects)

https://espace.cern.ch/be-dep-workspace/abp/HSC/SitePages/Home.aspx
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SPS tunnel

LHC tunnelTT2 transfer line tunnel

PS tunnel
Linac2

PS Booster
(after the wall) PS
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 Single-particle trajectory  

 Circular design orbit  
 One particle  

In the middle of the 
vacuum chamber 
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βr

SPACE CHARGE WAKE FIELD / IMPEDANCE 

BEAM-BEAM 

ELECTRON CLOUD 

285 µrad   

Courtesy W. Herr 
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50-page article for a special edition of IEEE Transactions on Nuclear Science 
for the 50th anniversary of the PAC conference (originally launched by IEEE in 1965)

And all the 
references therein
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u Limits performance of ALL machines
§ Beam instabilities => Increased beam size, beam losses
§ Excessive heating => Deformed / melted components, beam dumps

u Each equipment of each accelerator has an impedance => To be
characterized and minimized!

FOCUS OF THIS COURSE:
IMPEDANCE-INDUCED BEAM INSTABILITIES
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MEASUREMENTS 
(17/05/2010 at 3.5 TeV) 

< 
x 

> 
[a

.u
.] 

Time [s] 

0.270 0.275 0.280 0.285 0.290
�120

�100

�80

�60

�40

�20

Qh

A
m

p
l

i
t

u
d

e
�dB⇥

0.270 0.275 0.280 0.285 0.290
�120

�100

�80

�60

�40

�20

Qh

A
m

p
l

i
t

u
d

e
�dB⇥

0.270 0.275 0.280 0.285 0.290
�120

�100

�80

�60

�40

�20

Qh

A
m

p
l

i
t

u
d

e
�dB⇥

EXAMPLES OF MEASURED 
BEAM INSTABILITIES

LHC, single bunch, horizontal

e
t
τ

In frequency domain



Elias Métral, La Sapienza University, Rome, Italy, June 3-5, 2019                                                               13

Σ, ΔR, ΔV signals 

Time (10 ns/div) 
~ 700 MHz 

Head stable 
Tail unstable 

Head
Tail

!!
PS, single bunch, vertical 

SPS, single bunch, vertical

EXAMPLES OF MEASURED BEAM INSTABILITIES

PS, single bunch, horizontal



Elias Métral, La Sapienza University, Rome, Italy, June 3-5, 2019                                                               14

C
ou

rte
sy

 o
f G

. P
ap

ot
ti

SPS, single bunch, longitudinal

EXAMPLES OF MEASURED BEAM INSTABILITIES
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SIMULATION (TRACKING) CODES ARE OFTEN USED: 
=> HEADTAIL / PyHEADTAIL code at CERN

Ini$alise	bunch	
•  Typically	106	macropar/cles	
•  Various	distribu/ons	possible:	
Gaussian,	waterbag,	matched	
to	rf	bucket	(longitudinal),	…	

2

100’000s	turns	…	
7

6 Once	per	turn:	
Apply	(non-)linear	
synchrotron	mo/on	

Linear	periodic	maps	for	
transverse	tracking	from	
one	IP	to	the	next	

3

Interac$on	point	
•  Wake	field	kicks	
•  Chroma/city	
•  Octupoles,	RF	quadrupole	
•  Electron	cloud	(PyECLOUD)	
•  …	

4
Wake	field	

Wake	kicks	Courtesy	K.	Li	

Divide	ring	into	
segments	separated	by	
interac$on	points	(IP)	
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=> Discuss the theory of bunched-beam coherent instabilities and
explain theoretically the measured pictures of instabilities

§ Longitudinal and transverse

§ Single-bunch and coupled-bunch

§ Low-intensity and high-intensity

§ Short-bunch and long-bunch

See also last years’ seminars:                                     
http://cds.cern.ch/record/2288203/files/CERN-ACC-SLIDES-2017-0010.pdf
http://cds.cern.ch/record/2652200/files/CERN-ACC-SLIDES-2018-0003.pdf

PURPOSE OF THIS COURSE
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LONGITUDINAL:
LOW-INTENSITY
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PROCEDURE: BOTH LONGITUDINAL (L) & TRANSVERSE (T)
◆ Start with the single particle motion => Harmonic oscillator + beam-induced

electromagnetic force (L or T)
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PROCEDURE: BOTH LONGITUDINAL (L) & TRANSVERSE (T)
◆ Start with the single particle motion => Harmonic oscillator + beam-induced

electromagnetic force (L or T)
◆ Look at the single particle signal => Line spectrum with an infinite number

of synchrotron satellites m (centered at 0 for L and at the chromatic
frequency for T)
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PROCEDURE: BOTH LONGITUDINAL (L) & TRANSVERSE (T)
◆ Start with the single particle motion => Harmonic oscillator + beam-induced

electromagnetic force (L or T)
◆ Look at the single particle signal => Line spectrum with an infinite number

of synchrotron satellites m (centered at 0 for L and at the chromatic
frequency for T)

◆ Consider a distribution of particles (particle density in phase space) and
express it as a sum of a stationary distribution + a perturbation
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◆ Study the effect of the impedance on the stationary distribution (for L) => A
new fixed point is obtained, with a dependency on the bunch intensity of
the synchronous phase, incoherent frequency, effective (total) voltage and
bunch length
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PROCEDURE: BOTH LONGITUDINAL (L) & TRANSVERSE (T)
◆ Start with the single particle motion => Harmonic oscillator + beam-induced

electromagnetic force (L or T)
◆ Look at the single particle signal => Line spectrum with an infinite number

of synchrotron satellites m (centered at 0 for L and at the chromatic
frequency for T)

◆ Consider a distribution of particles (particle density in phase space) and
express it as a sum of a stationary distribution + a perturbation

◆ The beam-induced electromagnetic force can be expressed through the
impedance (complex function of frequency) for both L and T

◆ Study the effect of the impedance on the stationary distribution (for L) => A
new fixed point is obtained, with a dependency on the bunch intensity of
the synchronous phase, incoherent frequency, effective (total) voltage and
bunch length

◆ Around the new fixed point (for L), write the perturbation => Coherent with
respect to the satellite number m

◆ Apply the Vlasov equation to first order => One ends up with an eigen-
value system to solve

◆ The result is an infinite number of modes of oscillation mq
azimuthal

radial
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SINGLE PARTICLE LONGITUDINAL MOTION (1/2)

€ 

˙ ̇ τ +ωs0
2 τ = 0

€ 

τ = ˆ τ cos ωs0 t +ψ0( )

€ 

ωs0 =Ω0 −
e ˆ V RF h η cosφs0

2π β 2 Etotal

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1/ 2

€ 

p0 c = β Etotal

€ 

e = elementary charge

€ 

R = average machine radius

€ 

p0 = momentum of the synch. particle

€ 

ˆ V RF = peak RF voltage 

€ 

h = RF harmonic number 
€ 

R Ω0 = v = β c

€ 

η =α p −
1
γ 2 = −

Δf / f0

Δp / p0

= slip factor

€ 

α p =
1
γ t

2 = mom. comp. factor

€ 

c = speed of light

Time interval between the
passage of the synchronous
particle and the test particle, for
a fixed observer at azimuthal
position

€ 

ϑ

€ 

φs0 = RF phase of the synch. particle
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SINGLE PARTICLE LONGITUDINAL MOTION (2/2)

◆ Canonical conjugate variables

€ 

τ , ˙ τ = dτ
dt

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

€ 

˙ τ = dτ
dt

= −
df
f0

=η
dp
p0

€ 

τ 2 +
˙ τ 2

ωs0
2 = ˆ τ 2

◆ Linear matching condition

€ 

τ b = 2 ˆ τ max

◆ Effect of the (beam-induced) electromagnetic fields

  

€ 

˙ ̇ τ +ωs0
2 τ =

η
p0

dp
dt

=
η e
p0

! 
E + ! v ×

! 
B [ ]z

t ,ϑ =Ω0 t − τ( )( )
€ 

˙ τ =η p − p0

p0

€ 

⇒

When following the particle along its trajectory

€ 

ωs0 =
2 η

Δp
p0

τ b
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SINGLE PARTICLE LONGITUDINAL SIGNAL (1/3)

◆ At time , the synchronous particle starts from and reaches the
Pick-Up (PU) electrode (assuming infinite bandwidth) at times

€ 

t = 0

€ 

ϑ = 0

€ 

tk
0

€ 

Ω0 tk
0 =ϑ + 2kπ, −∞ ≤ k ≤ +∞

◆ The test particle is delayed by . It goes through the electrode at times

€ 

τ

€ 

tk

€ 

tk = tk
0 + τ

◆ The current signal induced by the test particle is a series of impulses
delivered on each passage

€ 

sz t,ϑ( ) = e δ t − τ − ϑ
Ω0

−
2kπ
Ω0

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

k= −∞

k= +∞

∑

Dirac function
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SINGLE PARTICLE LONGITUDINAL SIGNAL (2/3)

◆ Using the relations

€ 

δ u − 2kπ
Ω0

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

k= −∞

k= +∞

∑ =
Ω0

2π
e j pΩ0 u

p = −∞

p = +∞

∑

€ 

e− j u ˆ τ cos ω s 0 t + ψ0( ) = j−m Jm u ˆ τ ( ) e j m ω s 0 t + ψ0( )

m = −∞

m = +∞

∑

Bessel function of mth order

€ 

⇒

€ 

sz t,ϑ( ) =
e Ω0

2π
j −m Jm pΩ0 ˆ τ ( ) e j ω pm t− pϑ + mψ0( )

p , m = −∞

p , m = +∞

∑

€ 

ω pm = pΩ0 + mωs0

€ 

sz ω,ϑ( ) =
e Ω0

2π
j −m Jm pΩ0 ˆ τ ( ) e− j pϑ −mψ0( )δ ω −ω pm( )

p , m = −∞

p , m = +∞

∑

Fourier   transform
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SINGLE PARTICLE LONGITUDINAL SIGNAL (3/3)

€ 

ω pm = pΩ0 + mωs0

◆ The single particle spectrum is a line spectrum at frequencies

€ 

pΩ0◆ Around every harmonic of the revolution frequency , there is an
infinite number of synchrotron satellites m

◆ The spectral amplitude of the mth satellite is given by

€ 

Jm pΩ0 ˆ τ ( )

◆ The spectrum is centered at the origin

◆ Because the argument of the Bessel functions is proportional to , the
width of the spectrum behaves like

€ 

ˆ τ 

€ 

ˆ τ −1
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DISTRIBUTION OF PARTICLES (1/2)

€ 

Ψ ˆ τ ,ψ0 , t( ) = particle density in longitudinal phase space

◆ Signal induced (at the PU electrode) by the whole beam

€ 

Sz t ,ϑ( ) = Nb
ˆ τ = 0

ˆ τ = +∞

∫
ψ0 = 0

ψ0 = 2π

∫ Ψ ˆ τ ,ψ0 , t( ) sz t,ϑ( ) ˆ τ d ˆ τ dψ0

Number of particles per bunch

◆ Canonically conjugated variables derive from a Hamiltonian 
by the canonical equations 

€ 

Η q, p, t( )

€ 

˙ q =
∂Η q, p, t( )

∂ p

€ 

˙ p = −
∂Η q, p, t( )

∂q
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DISTRIBUTION OF PARTICLES (2/2)

◆ According to the Liouville’s theorem, the particles, in a non-dissipative
system of forces, move like an incompressible fluid in phase space. The
constancy of the phase space density is expressed by the
equation

where the total differentiation indicates that one follows the particle while
measuring the density of its immediate neighborhood. This equation,
sometimes referred to as the Liouville’s theorem, states that the local
particle density does not vary with time when following the motion in
canonical variables

€ 

Ψ q, p, t( )

€ 

dΨ q, p, t( )
d t

= 0

€ 

∂Ψ q, p, t( )
∂ t

+ ˙ q 
∂Ψ q, p, t( )

∂q
+ ˙ p 

∂Ψ q, p, t( )
∂ p

= 0

◆ As seen by a stationary observer (like a PU electrode) which does not
follow the particle => Vlasov equation



Elias Métral, La Sapienza University, Rome, Italy, June 3-5, 2019                                                               33

STATIONARY DISTRIBUTION (1/6)

◆ In the case of a harmonic oscillator

€ 

Η =ω
q2 + p2

2

€ 

˙ q = ∂H
∂ p

= pω

€ 

˙ p = − ∂H
∂q

= − qω

€ 

˙ ̇ q +ω 2 q = 0

€ 

q = r cosφ

€ 

p = − r sinφ

€ 

∂Ψ
∂ t

+ ˙ r ∂Ψ
∂r

+ ˙ φ 
∂Ψ
∂φ

= 0

◆ Going to polar coordinates€ 

⇒

€ 

⇒
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€ 

˙ r = 0◆ As r is a constant of motion

€ 

∂Ψ
∂ t

+ω
∂Ψ
∂φ

= 0

€ 

φ =ω t

€ 

∂Ψ
∂ t

= −ω
∂Ψ
∂φ

= −
∂Ψ
∂ t

€ 

Ψ r( )

A stationary distribution is any function of r, or equivalently any function of
the Hamiltonian H

€ 

∂Ψ
∂ t

=
∂Ψ
∂φ

= 0€ 

⇒

€ 

⇒ with

€ 

⇒

€ 

⇒

€ 

⇒

STATIONARY DISTRIBUTION (2/6)
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€ 

q = τ

€ 

p = ˙ τ 

€ 

r = ˆ τ 

€ 

φ =ψ0
◆ In our case

€ 

Ψ0 ˆ τ ,ψ0 , t( ) = g0 ˆ τ ( )

€ 

⇒

€ 

Sz0 ω ,ϑ( ) = 2π Ib σ 0 p( ) δ ω − pΩ0( ) e− j pϑ

p = −∞

p = +∞

∑

€ 

σ 0 p( ) = J0 pΩ0 ˆ τ ( ) g0 ˆ τ ( ) ˆ τ d ˆ τ 
ˆ τ = 0

ˆ τ = +∞

∫with

Amplitude of
the spectrum

€ 

Ib = Nb e Ω0 / 2π

STATIONARY DISTRIBUTION (3/6)
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◆ Let ’ s assume a parabolic amplitude
density

€ 

g0 ˆ z ( ) =
2

π
τ b

2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2 1− ˆ z 2( )

€ 

ˆ z ≡ ˆ τ / τ b / 2( )

◆ The line density is the projection of the distribution on the
axis

€ 

g0 ˆ τ ( )

€ 

λ τ( )

€ 

τ

€ 

λ τ( ) = g0 ˆ τ ( ) d ˙ τ 
ωs0

∫

€ 

⇒

€ 

λ z( ) =
8

3 π τ b

2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1− z2( )
3 / 2

€ 

λ τ( ) dτ∫ =1

€ 

z ≡ τ / τ b / 2( )

STATIONARY DISTRIBUTION (4/6)
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STATIONARY DISTRIBUTION (5/6)

- 1.5 - 1 - 0.5 0.5 1 1.5

0.5

1

1.5

2

2/bτ
τ

στ 4=b
b density  Line τ×

density amplitude Parabolic

density line Parabolic
density amplitudeGaussian 

bunch bag-Water
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€ 

⇒

€ 

σ0 p( ) =
4

π p π B( )2 J2 p π B( )

and

€ 

Sz0 ω ,ϑ( ) = 8 Ib δ ω − pΩ0( ) e− j pϑ J2 p π B( )
p π B( )2

p = −∞

p = +∞

∑
€ 

B = τ b Ω0 / 2π

Bunching factor

STATIONARY DISTRIBUTION (6/6)

◆ Using the relations

€ 

J0 u'( ) u' du'
u'= 0

u'= u

∫ = u J1 u( )

€ 

x 3 J0 x( ) dx∫ = x 2 2 J2 x( ) − x J3 x( )[ ]

Jn−1 x( ) + Jn+1 x( ) =
2 n
x

Jn x( )
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LONGITUDINAL IMPEDANCE

  

€ 

2 π R
! 
E + ! v ×

! 
B [ ]z

t ,ϑ( ) = − Zl ω( ) Sz ω ,ϑ( ) e jω t dω
ω = −∞

ω = +∞

∫

All the properties of the electromagnetic 
response of a given machine to a passing particle is 
gathered into the impedance (complex function => 

in Ω)
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EFFECT OF THE STATIONARY DISTRIBUTION (1/9)

  

€ 

˙ ̇ τ +ωs0
2 τ = F0 =

η e
p0

! 
E + ! v ×

! 
B [ ]z0

t ,ϑ =Ω0 t − τ( )( )

  

€ 

! 
E + ! v ×

! 
B [ ]z0

t ,ϑ =Ω0 t − τ( )( ) = −
1

2 π R
Zl ω( ) Sz0 ω ,ϑ =Ω0 t − τ( )( ) e jω t dω

ω = −∞

ω = +∞

∫

€ 

⇒

€ 

˙ ̇ τ +ωs0
2 τ = F0 =

2 π Ib ωs0
2

Ω0
ˆ V RF h cosφs0

Zl p( )σ 0 p( ) e j pΩ0 τ

p = −∞

p = +∞

∑

€ 

pΩ0
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EFFECT OF THE STATIONARY DISTRIBUTION (2/9)

€ 

˙ ̇ τ +ωs0
2 τ =

2 π Ib ωs0
2

Ω0
ˆ V RF h cosφs0

Zl p( )σ 0 p( ) 1+ j pΩ0 τ −
pΩ0 τ( )2

2
+ ...

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ p = −∞

p = +∞

∑

◆ Expanding the exponential in series (for small amplitudes)

Synchronous phase shift

Incoherent frequency shift 
(potential-well distortion)

Nonlinear terms introducing some 
synchrotron frequency spread
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EFFECT OF THE STATIONARY DISTRIBUTION (3/9)

◆ Synchronous phase shift

€ 

τ = tp − ts0

€ 

˙ ̇ τ +ωs0
2 τ =

2 π Ib ωs0
2

Ω0
ˆ V RF h cosφs0

Re Zl p( )[ ]σ 0 p( )
p = −∞

p = +∞

∑

€ 

⇒

€ 

˙ ̇ t p +ωs0
2 t p =ωs0

2 ts0 +
2 π Ib ωs0

2

Ω0
ˆ V RF h cosφs0

Re Zl p( )[ ]σ 0 p( )
p = −∞

p = +∞

∑
€ 

˙ ̇ t s0 = 0

€ 

⇒

Test particle Synchronous particle

with

€ 

˙ ̇ t p +ωs0
2 t p =ωs0

2 ts

€ 

Δts = ts − ts0 =
2 π Ib

Ω0
ˆ V RF h cosφs0

Re Zl p( )[ ]σ 0 p( )
p = −∞

p = +∞

∑



Elias Métral, La Sapienza University, Rome, Italy, June 3-5, 2019                                                               43

EFFECT OF THE STATIONARY DISTRIBUTION (4/9)

€ 

φ =ωRF t

€ 

ωRF = h Ω0

€ 

φs =ωRF ts

€ 

Δφs = φs − φs0 =ωRF Δts

€ 

⇒

€ 

Δφs = φs − φs0 =
2 π Ib

ˆ V RF cosφs0

Re Zl p( )[ ]σ 0 p( )
p = −∞

p = +∞

∑

Can be used to probe 
the resistive part of the 
longitudinal impedance

Only for the small 
amplitudes. For the power 
loss of the whole bunch an 

averaging is needed!
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EFFECT OF THE STATIONARY DISTRIBUTION (5/9)

◆ Incoherent synchrotron frequency shift (potential-well distortion)

€ 

˙ ̇ τ +ωs0
2 τ =

2 π Ib ωs0
2

Ω0
ˆ V RF h cosφs0

Zl p( )σ 0 p( ) j pΩ0 τ
p = −∞

p = +∞

∑

€ 

⇒

€ 

˙ ̇ τ +ωs
2 τ = 0

with

€ 

ωs
2 =ωs0

2 1− 2 π Ib
ˆ V RF h cosφs0

j Zl p( ) pσ 0 p( )
p = −∞

p = +∞

∑
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

§ If the impedance is constant (in the frequency range of interest)

€ 

ωs
2 =ωs0

2 1− 2 π Ib
ˆ V RF h cosφs0

j
Zl p( )

p
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

const

p2 σ 0 p( )
p = −∞

p = +∞

∑
⎧ 
⎨ 
⎪ 

⎩ ⎪ 

⎫ 
⎬ 
⎪ 

⎭ ⎪ 
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EFFECT OF THE STATIONARY DISTRIBUTION (6/9)

€ 

J2 p x( )
p = −∞

p = +∞

∑ =
2
x

◆ Using the relation

€ 

⇒

€ 

p2 σ 0 p( )
p = −∞

p = +∞

∑ =
8

π 4 B3

€ 

⇒

€ 

Δ =
ωs

2 −ωs0
2

ωs0
2 = −

16 Ib

π 3 B3 ˆ V RF h cosφs0

j
Zl p( )

p
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

const

€ 

ˆ V T = ˆ V RF
ωs

ωs0

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

The change in the RF slope corresponds to the effective (total) voltage

For the parabolic 
amplitude density
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EFFECT OF THE STATIONARY DISTRIBUTION (7/9)

◆ Bunch lengthening / shortening (as a consequence of the shifts of the
synchronous phase and incoherent frequency)

§ Electrons
The equilibrium momentum spread 

is imposed by synchrotron radiation

€ 

Δp
p0

=
Δp
p0

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

0

€ 

⇒

€ 

B
B0

=
ωs0

ωs

cosφs0

cosφs

Neglecting the (usually small) synchronous phase shift

€ 

B
B0

=
B
B0

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

3

+ Δ 0 with

€ 

Δ 0 = ΔB = B0

€ 

⇒
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EFFECT OF THE STATIONARY DISTRIBUTION (8/9)

§ Protons

The longitudinal emittance
is invariant

€ 

τ b
Δp
p0

= τ b 0
Δp
p0

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

0

€ 

⇒

€ 

B
B0

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

=
ωs0

ωs

cosφs0

cosφs

Again, neglecting the (usually small) synchronous phase shift

€ 

B
B0

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

−1

=
B
B0

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

3

+ Δ 0

€ 

⇒
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EFFECT OF THE STATIONARY DISTRIBUTION (9/9)

§ General formula
     

- 0.4 - 0.2 0.2 0.4  0

1

 Protons

 Electrons

0/ BB

0D

€ 

B
B0

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

±1

=
B
B0

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

3

+ Δ 0

+ for electrons 
and – for protons

◆ Conclusion of the effect of the stationary distribution: New fixed point

( )bss Iff Þ0

( )bss Iww Þ0

€ 

ˆ V RF ⇒ ˆ V T Ib( )
( )bIBB Þ0§ Potential-well distortion

§ Synchronous phase shift
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€ 

ΔΨ ˆ τ ,ψ0 , t( ) = gm ˆ τ ( ) e − j mψ0 e j Δωcm t

◆ The form is suggested by the single-particle signal

€ 

sz t,ϑ( ) =
e Ω0

2π
j −m Jm pΩ0 ˆ τ ( ) e j ω pm t− pϑ + mψ0( )

p ,m = −∞

p ,m = +∞

∑

€ 

m ≠ 0

€ 

Δωcm =ωc − mωs <<ωs0

PERTURBATION DISTRIBUTION (1/2)

§ Low-intensity

Around the 
new fixed point

Therefore, the spectral amplitude is maximum for 
satellite number m and null for the other satellites

Coherent synchrotron 
frequency shift to be determined
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€ 

⇒

€ 

ΔSzm ω ,ϑ( ) = 2π Ib σm p( ) δ ω − pΩ0 + mωs + Δωcm( )[ ] e− j pϑ

p = −∞

p = +∞

∑

with

€ 

σm p( ) = j −m Jm pΩ0 ˆ τ ( ) gm ˆ τ ( ) ˆ τ d ˆ τ 
ˆ τ = 0

ˆ τ = +∞

∫

Amplitude of
the perturbation 

spectrum

PERTURBATION DISTRIBUTION (2/2)

€ 

ωs =Ω0 −
e ˆ V T h η cosφs

2π β 2 Etotal

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

1/ 2

€ 

ΔΨ ˆ τ ,ψ0 , t( ) = gm ˆ τ ( ) e − j mψ0 e j Δωcm t

m
∑§ High-intensity
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EFFECT OF THE PERTURBATION (1/10)

€ 

Ψ ˆ τ ,ψ0 , t( ) =Ψ0 + ΔΨ = g0 ˆ τ ( ) + gm ˆ τ ( ) e − j mψ0 e j Δωcm t

m
∑

◆ Vlasov equation with variables

€ 

∂Ψ
∂ t

+
dg0

d ˆ τ 
+
∂ΔΨ
∂ ˆ τ 

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

d ˆ τ 
dt

+
∂ΔΨ
∂ψ0

dψ0

dt
= 0

€ 

ˆ τ ,ψ0( )

€ 

⇒ Linearized Vlasov equation

€ 

∂Ψ
∂ t

= −
dg0

d ˆ τ 
d ˆ τ 
dt

€ 

⇒

€ 

j gm ˆ τ ( ) e − j mψ0 Δωcm e j Δωcm t

m
∑ = −

dg0

d ˆ τ 
d ˆ τ 
dt
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EFFECT OF THE PERTURBATION (2/10)

€ 

d ˆ τ 
dt

=
d
dt

τ 2 +
˙ τ 2

ωs
2

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ = −

Fc

ωs

sin ωs t +ψ0( )

with
  

€ 

˙ ̇ τ +ωs
2 τ = Fc =

η e
p0

! 
E + ! v ×

! 
B [ ]zc

t ,ϑ =Ω0 t − τ( )( )

€ 

Fc =
2π Ib ωs

2

Ω0
ˆ V T h cosφs

e jω c t Zl p( )
p = −∞

p = +∞

∑ e j pΩ0 τ σ p( )

€ 

⇒

€ 

σ p( ) = σm p( )
m
∑with

Spectrum amplitude 
at frequency              

€ 

pΩ0 +ωc
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EFFECT OF THE PERTURBATION (3/10)

◆ Expanding the product (using previously given
relations)

€ 

sinψ e j pΩ0 τ

€ 

ψ =ωs t +ψ0

€ 

sinψ e j pΩ0 τ = j m e − j mψ m
pΩ0 ˆ τ 

Jm pΩ0 ˆ τ ( )
m = −∞

m = +∞

∑

€ 

⇒

€ 

j Δωcm j −m gm ˆ τ ( ) ˆ τ = 2π Ib mωs

Ω0
2 ˆ V T h cosφs

dg0

d ˆ τ 
Zl p( )

pp = −∞

p = +∞

∑ Jm pΩ0 ˆ τ ( )σ p( )

Final form of the equation of coherent motion of a single bunch:

€ 

Δωcm =ωc − mωs
Contribution from all 

the modes m
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EFFECT OF THE PERTURBATION (4/10)

◆ Coherent modes of oscillation at low intensity (i.e. considering only a
single mode m)

€ 

j Δωcm j −m gm ˆ τ ( ) ˆ τ = 2π Ib mωs

Ω0
2 ˆ V T h cosφs

dg0

d ˆ τ 
Zl p( )

pp = −∞

p = +∞

∑ Jm pΩ0 ˆ τ ( )σm p( )

Multiplying both sides by and integrating over

€ 

Jm l Ω0 ˆ τ ( )

€ 

ˆ τ 

€ 

⇒ Δωcm σ m l( ) = Klp
m σ m p( )

p=−∞

p=+∞

∑

€ 

Klp
m = −

2π Ib mωs

Ω0
2 ˆ V T h cosφs

j
Zl p( )

p
dg0

d ˆ τ 
Jm pΩ0 ˆ τ ( ) Jm l Ω0 ˆ τ ( )d ˆ τ 

ˆ τ = 0

ˆ τ = +∞

∫
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EFFECT OF THE PERTURBATION (5/10)
◆ The procedure to obtain first order exact solutions, with realistic modes

and a general interaction, thus consists of finding the eigenvalues and
eigenvectors of the infinite complex matrix whose elements are

◆ The result is an infinite number of modes of oscillation (as there are
2 degrees of freedom )

◆ To each mode, one can associate:

§ a coherent frequency shift (qth eigenvalue)

§ a coherent spectrum (qth eigenvector)

§ a perturbation distribution

◆ For numerical reasons, the matrix needs to be truncated, and thus only a
finite frequency domain is explored

€ 

Klp
m

€ 

mq

€ 

Δωcmq =ωcmq − mωs

€ 

σmq p( )

€ 

gmq ˆ τ ( )

€ 

ˆ τ ,ψ0( )
The imaginary part 

tells us if this mode is 
stable or not
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EFFECT OF THE PERTURBATION (6/10)

€ 

Smq t,ϑ( ) = Sz0 t,ϑ( ) + ΔSzmq t,ϑ( )

€ 

Sz0 t ,ϑ( ) = 2π Ib σ 0 p( ) e j pΩ0 t e− j pϑ

p = −∞

p = +∞

∑

€ 

ΔSzmq t ,ϑ( ) = 2π Ib σmq p( ) e j pΩ0 + m ω s + Δωcmq( ) t e− j pϑ

p = −∞

p = +∞

∑

◆ The longitudinal signal at the PU electrode is given by

◆ For the case of the parabolic amplitude distribution

€ 

g0 ˆ z ( ) =
2

π
τ b

2
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2 1− ˆ z 2( )

€ 

Sz0 t ,ϑ( ) = 8 Ib e j pΩ0 t e− j pϑ J2 p π B( )
p π B( )2

p = −∞

p = +∞

∑
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EFFECT OF THE PERTURBATION (7/10)

€ 

Klp
m =

128 Ib mωs

Ω0
2 ˆ V T h cosφs τ b

4 j
Zl p( )

p
Jm pΩ0 ˆ τ ( ) Jm l Ω0 ˆ τ ( ) ˆ τ d ˆ τ 

ˆ τ = 0

ˆ τ = +∞

∫

€ 

Jm
2 a x( ) x dx

0

X

∫ =
X 2

2
ʹ J m a X( )[ ] 2

+
1
2

X 2 −
m2

a2

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ Jm

2 a X( )

€ 

x Jm a x( )
0

X

∫ Jm b x( )dx =
X

a2 − b2 aJm b X( )Jm +1 a X( ) −bJm a X( )Jm +1 b X( )[ ]

€ 

a2 ≠ b2

◆ Low order eigenvalues and eigenvectors of the matrix can be found
quickly by computation, using the relations

◆ The case of a constant inductive impedance is solved in the next
slides, and the signal at the PU shown for several superimposed turns
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EFFECT OF THE PERTURBATION (8/10)

�
�

g11

f

�13

�

S13

�
�

g13

f

�22

�

S22

�
�

g22

f

�11

�

S11

Signal observed 
at the PU electrode

€ 

+τ b /2

€ 

−τ b /2

DIPOLE mode QUADRUPOLE mode
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EFFECT OF THE PERTURBATION (9/10)

f

�24

�

S24

�
�

g24

f

�33

�

S33

�
�

g33

◆ The spectrum of mode mq

is peaked at

and extends

€ 

fq ≈
q + 1
2 τ b

€ 

~ ± τ b
−1

€ 

0 ≤ k < + ∞

◆ There are q nodes on
these “ standing-wave ”
patterns

SEXTUPOLE mode
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EFFECT OF THE PERTURBATION (10/10)

Observations in the CERN SPS in 2007

(Garnier-Laclare’s) theory

�

S22

� �

S11
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TRANSVERSE:
LOW-INTENSITY
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SINGLE PARTICLE TRANSVERSE MOTION (1/3)

◆ A purely linear synchrotron oscillation around the synchronous particle is
assumed (with no coherent oscillations)

€ 

˙ ̇ τ +ωs
2 τ = 0

€ 

τ = ˆ τ cos ωs t +ψ0( )

€ 

x = ˆ x cos ϕx t( )[ ]

◆ For the transverse betatron oscillation, the equation of unperturbed
motion, e.g. in the horizontal plane, is written as

◆ The horizontal betatron frequency is given by

€ 

x 2 +
˙ x 2

˙ ϕ x
2 = ˆ x 2

€ 

˙ ϕ x = Qx Ω

with

€ 

η = −
ΔΩ /Ω0

Δp / p0

=
˙ τ 

Δp / p0

ξx =
ΔQx / Qx0

Δp / p0

=
ʹQx

Qx0

Chromaticity
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SINGLE PARTICLE TRANSVERSE MOTION (2/3)

€ 

Qx p( ) = Qx0 1+ ξx
Δp
p0

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

€ 

⇒

€ 

ϕx = Qx0 Ω0 t − τ( ) +ωξ x
τ + ϕx0

€ 

ωξ x
= Qx0Ω0

ξx

η

Horiz. chromatic 
frequency

€ 

Ω p( ) =Ω0 1−η Δp
p0

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

€ 

⇒

€ 

˙ ϕ x = Qx Ω ≈Qx0 Ω0 1− ˙ τ 1− ξx

η

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

and
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SINGLE PARTICLE TRANSVERSE MOTION (3/3)

◆ In the presence of electromagnetic fields induced by the beam, the
equation of motion writes

  

€ 

˙ ̇ x − ˙ ̇ ϕ x
˙ ϕ x

˙ x + ˙ ϕ x
2 x = Fx =

e
γ m0

! 
E + ! v ×

! 
B [ ] x

t ,ϑ =Ω0 t − τ( )( )

When following the particle along its trajectory

◆ In the absence of perturbation, the horizontal coordinate satisfies

€ 

˙ ̇ x − ˙ ̇ ϕ x
˙ ϕ x

˙ x + ˙ ϕ x
2 x = 0
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SINGLE PARTICLE TRANSVERSE SIGNAL (1/2)

◆ The horizontal signal induced at a perfect PU electrode (infinite bandwidth)
at angular position in the ring by the off-centered test particle is given by

€ 

sx t ,ϑ( ) = e ˆ x cos ϕx( ) δ t − τ − ϑ
Ω0

−
2kπ
Ω0

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

k = −∞

k = +∞

∑
€ 

ϑ

€ 

sx t ,ϑ( ) = sz t ,ϑ( ) x t( ) = sz t ,ϑ( ) ˆ x cos ϕx( )

€ 

⇒

◆ Developing into exponential functions and using relations given
in the longitudinal course, yields

€ 

cos ϕx( )

€ 

sx t ,ϑ( ) =
eΩ0

4π
ˆ x e j Qx 0 Ω0 t + ϕ x 0( ) j −m Jm, x p, ˆ τ ( ) e j ω pm t + mψ0 − pϑ[ ]

p , m = −∞

p , m = +∞

∑

+ c.c.

€ 

ω pm = pΩ0 + mωsComplex conjugate
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SINGLE PARTICLE TRANSVERSE SIGNAL (2/2)

with

€ 

Jm, x p, ˆ τ ( ) = Jm p + Qx0( ) Ω0 −ωξ x[ ] ˆ τ { }

€ 

⇒

€ 

sx ω ,ϑ( ) =
eΩ0

4π
ˆ x e jϕ x 0

j−m Jm, x p, ˆ τ ( ) δ ω − p + Qx 0( )Ω0 + mωs[ ]{ } e j mψ0 − pϑ( )

p , m = −∞

p , m = +∞

∑ + c.c.

◆ The spectrum is a line spectrum at frequencies

€ 

p + Qx0( )Ω0 + mωs

◆ Around every betatron line , there is an infinite number of
synchrotron satellites m

◆ The spectral amplitude of the mth satellite is given by

◆ The spectrum is centered at the chromatic frequency
€ 

p + Qx0( )Ω0

€ 

Jm, x p, ˆ τ ( )

€ 

ωξ x
= Qx0Ω0

ξx

η
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STATIONARY DISTRIBUTION (1/2)

◆ In the absence of perturbation, and are constants of the motion

◆ Therefore, the stationary distribution is a function of the peak amplitudes
only

◆ No correlation between horizontal and longitudinal planes is assumed
and the stationary part is thus written as the product of 2 stationary
distributions, one for the longitudinal phase space and one for the
horizontal one

€ 

ˆ x 

€ 

ˆ τ 

€ 

Ψx0 ˆ x , ˆ τ ( )

€ 

Ψx0 ˆ x , ˆ τ ( ) = f0 ˆ x ( ) g0 ˆ τ ( )

€ 

g0 ˆ τ ( ) ˆ τ d ˆ τ 
ˆ τ = 0

ˆ τ = +∞

∫ =
1

2π

€ 

f0 ˆ x ( ) ˆ x dˆ x 
ˆ x = 0

ˆ x = +∞

∫ =
1

2π
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STATIONARY DISTRIBUTION (2/2)

◆ Since on average, the beam center of mass is on axis, the horizontal
signal induced by the stationary distribution is null

€ 

Sx0 t ,ϑ( ) = Nb
ˆ x = 0

ˆ x = +∞

∫
ϕ x 0 = 0

ϕ x 0 = 2π

∫
ˆ τ = 0

ˆ τ = +∞

∫
ψ0 = 0

ψ0 = 2π

∫ f0 ˆ x ( ) g0 ˆ τ ( ) sx t ,ϑ( ) ˆ x ˆ τ dˆ x d ˆ τ dϕx 0 dψ0

= 0
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◆ In order to get some dipolar fields, density perturbations that
describe beam center-of-mass displacements along the bunch are
assumed

◆ The mathematical form of the perturbations is suggested by the single-
particle signal

PERTURBATION DISTRIBUTION (1/3)

€ 

ΔΨx

€ 

sx t ,ϑ( ) =
eΩ0

4π
ˆ x j −m Jm, x p, ˆ τ ( ) e j ϕ x 0 + mψ0( ) e − j pϑ e j p + Qx 0( )Ω0 + mω s[ ] t

p , m = −∞

p , m = +∞

∑

+ c.c.

§ Low-intensity

€ 

Δωcm
x =ωc − mωs <<ωs

Coherent betatron
frequency shift to be determined€ 

ΔΨx = hm ˆ x , ˆ τ ( ) e − j ϕ x 0 + mψ0( ) e j Δω cm
x t
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PERTURBATION DISTRIBUTION (2/3)

◆ In the time domain, the horizontal signal takes the form (for a single value
m)

Fourier   transform

€ 

σ x, m p( ) = j −m

ˆ x = 0

ˆ x = +∞

∫
ˆ τ = 0

ˆ τ = +∞

∫ hm ˆ x , ˆ τ ( ) Jm, x p, ˆ τ ( ) ˆ x 2 dˆ x ˆ τ d ˆ τ with
€ 

Sx ω ,ϑ( ) = 2 π 2 Ib e− j pϑ σ x, m p( ) δ ω − p + Qx0( )Ω0 +ωc[ ]{ }
p = −∞

p = +∞

∑
€ 

Sx t ,ϑ( ) = 2 π 2 Ib e− j pϑ σ x, m p( ) e j p + Qx 0( )Ω0 +ω c[ ] t

p = −∞

p = +∞

∑
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PERTURBATION DISTRIBUTION (3/3)

§ High-intensity

€ 

ΔΨx = hm ˆ x , ˆ τ ( ) e − j ϕ x 0 + mψ0( ) e j Δω cm
x t

m
∑
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TRANSVERSE IMPEDANCE

  

€ 

! 
E + ! v ×

! 
B [ ] x

t ,ϑ( ) =
− jβ
2π R

Zx ω( ) Sx ω ,ϑ( ) e jω t dω∫

All the properties of the electromagnetic 
response of a given machine to a passing particle is 

gathered into the transverse impedance (complex 
function => in Ω / m)
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EFFECT OF THE PERTURBATION (1/10)

€ 

Ψx ˆ x , ϕx 0 , ˆ τ , ψ0 , t( ) = Ψx0 + ΔΨx

◆ Vlasov equation

€ 

∂Ψx

∂ t
+
∂Ψx

∂ ˆ x 
ˆ ˙ x + ∂Ψx

∂ϕx0

˙ ϕ x 0 +
∂Ψx

∂ ˆ τ 
ˆ ˙ τ + ∂Ψx

∂ψ0

˙ ψ 0 = 0

€ 

j hm ˆ x , ˆ τ ( ) e − j ϕ x 0 + mψ0( ) Δωcm
x e j Δωcm

x t

m
∑ = −

df0 ˆ x ( )
dˆ x 

g0 ˆ τ ( ) ˆ ˙ x 

€ 

⇒

€ 

Ψx = f0 ˆ x ( ) g0 ˆ τ ( ) + hm ˆ x , ˆ τ ( ) e − j ϕ x 0 + mψ0( ) e j Δωcm
x t

m
∑

€ 

⇒ Linearized Vlasov equation

€ 

∂Ψx

∂ t
= −

df0 ˆ x ( )
dˆ x 

g0 ˆ τ ( ) ˆ ˙ x 

€ 

⇒



Elias Métral, La Sapienza University, Rome, Italy, June 3-5, 2019                                                               74

EFFECT OF THE PERTURBATION (2/10)

◆ The expression of can be drawn from the single-particle horizontal
equation of motion

€ 

ˆ ˙ x 

€ 

ˆ ˙ x = d
d t

ˆ x ( ) =
d
d t

x 2 +
˙ x 
˙ ϕ x

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

1/ 2

= Fx
˙ x 

ˆ x ˙ ϕ x
2

€ 

⇒€ 

˙ x 
ˆ x ˙ ϕ x

= − sin ϕx( )

€ 

ˆ ˙ x = −
sin ϕx( )

˙ ϕ x
Fx
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EFFECT OF THE PERTURBATION (3/10)

€ 

Fx = −
j e β π Ib

R γ m0

Zx p( )σ x, m p( ) e − j pΩ0 t − τ( ) e j p + Qx 0( )Ω0 +ω c[ ] t

p = −∞

p = +∞

∑

◆ Using the definition of the transverse impedance, the force can be written

€ 

p + Qx0( )Ω0 +ωc

◆ Developing the into exponential functions, keeping then only the
slowly varying term, making the approximation and using
the relations and one from the longitudinal course,
yields

€ 

sin ϕx( )

€ 

˙ ϕ x ≈Qx0 Ω0

€ 

J −m − x( ) = Jm x( )

€ 

ˆ ˙ x = − e π Ib

2 γ m0 c Qx0

Zx p( )σ x,m p( ) jm Jm, x p, ˆ τ ( ) e − j ϕ x 0 + mψ0( ) e j Δωcm
x t

p , m = −∞

p , m = +∞

∑
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EFFECT OF THE PERTURBATION (4/10)

€ 

⇒ For each mode m, one has

€ 

j hm ˆ x , ˆ τ ( ) Δωcm
x =

e π Ib

2 γ m0 c Qx0

Zx p( )σ x p( ) jm Jm, x p, ˆ τ ( )
p = −∞

p = +∞

∑ df0 ˆ x ( )
dˆ x 

g0 ˆ τ ( )

€ 

σ x p( ) = σ x, m p( )
m
∑with

Spectrum amplitude 
at frequency              

€ 

p + Qx0( )Ω0 +ωc

Multiplying both sides by and integrating over

€ 

ˆ x 2

€ 

ˆ x 

€ 

⇒

€ 

j Δωcm
x

ˆ x = 0

ˆ x = +∞

∫ hm ˆ x , ˆ τ ( ) ˆ x 2 dˆ x = − e Ib

2 γ m0 c Qx0

Zx p( )σ x p( ) jm Jm, x p, ˆ τ ( )
p = −∞

p = +∞

∑ g0 ˆ τ ( )

using the relation

€ 

df0 ˆ x ( )
dˆ x 

ˆ x 2 dˆ x 
ˆ x = 0

ˆ x = +∞

∫ = − 2 f0 ˆ x ( ) ˆ x dˆ x 
ˆ x = 0

ˆ x = +∞

∫ = −
1
π



Elias Métral, La Sapienza University, Rome, Italy, June 3-5, 2019                                                               77

EFFECT OF THE PERTURBATION (5/10)

€ 

hm ˆ x , ˆ τ ( ) ˆ x 2 dˆ x 
ˆ x = 0

ˆ x = +∞

∫ = g0 ˆ τ ( ) ˆ x m ˆ τ ( )

Averaged peak betatron amplitude

◆ Note that the horizontal stationary distribution disappeared and only the
longitudinal one remains => Only the beam center of mass is important
(in our case). This should also be valid for the perturbation, which can be
written

€ 

⇒ Final form of the equation of coherent motion of a single bunch:

€ 

j Δωcm
x ˆ x m ˆ τ ( ) = −

e Ib

2 γ m0 c Qx0

Zx p( )σ x p( ) jm Jm, x p, ˆ τ ( )
p = −∞

p = +∞

∑

Contribution from all 
the modes m

€ 

Δωcm
x =ωc − mωs
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EFFECT OF THE PERTURBATION (6/10)

with

€ 

σ x, m p( ) = j −m

ˆ x = 0

ˆ x = +∞

∫
ˆ τ = 0

ˆ τ = +∞

∫ hm ˆ x , ˆ τ ( ) Jm, x p, ˆ τ ( ) ˆ x 2 dˆ x ˆ τ d ˆ τ 

= j −m

ˆ τ = 0

ˆ τ = +∞

∫ Jm, x p, ˆ τ ( ) g0 ˆ τ ( ) ˆ x m ˆ τ ( ) ˆ τ d ˆ τ 

◆ Coherent modes of oscillation at low intensity (i.e. considering only a
single mode m)

€ 

j Δωcm
x ˆ x m ˆ τ ( ) = −

e Ib

2 γ m0 c Qx0

Zx p( )σ x, m p( ) jm Jm, x p, ˆ τ ( )
p = −∞

p = +∞

∑

Multiplying both sides by and integrating over

€ 

j −m Jm, x l, ˆ τ ( ) g0 ˆ τ ( ) ˆ τ 

€ 

ˆ τ 
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EFFECT OF THE PERTURBATION (7/10)

€ 

Δωcm
x σ x, m l( ) = Klp

x, m σ x, m p( )
p = −∞

p = +∞

∑

Klp
x, m =

j e Ib

2 γ m0 c Qx0

Zx p( ) Jm, x l, τ̂( )
τ̂ =0

τ̂ =+∞

∫ Jm, x p, τ̂( ) g0 τ̂( ) τ̂ dτ̂

◆ Following the same procedure as for the longitudinal plane, the horizontal
coherent oscillations (over several turns) of a “water-bag ” bunch
interacting with a constant inductive impedance are shown in the next
slides for the first head-tail modes

€ 

g0 ˆ τ ( ) = 4 / π τ b
2( )

€ 

⇒

* Note that the index x has been removed for clarity
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EFFECT OF THE PERTURBATION (8/10)
13.x=Q

22
bb ttt

££-

DIPOLE QUADRUPOLE

€ 

fξ x
=
ξx

η
Qx0 f0

€ 

χx =ωξ x
τ b =10

€ 

ωξ x
= 0

€ 

Qx0 = x.13
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EFFECT OF THE PERTURBATION (9/10)
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EFFECT OF THE PERTURBATION (10/10)

(Laclare’s) theory

�

S66
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REMINDER OF THE PROCEDURE: BOTH L & T
◆ Start with the single particle motion => Harmonic oscillator + beam-induced

electromagnetic force (L or T)
◆ Look at the single particle signal => Line spectrum with an infinite number

of synchrotron satellites m (centered at 0 for L and at the chromatic
frequency for T)

◆ Consider a distribution of particles (particle density in phase space) and
express it as a sum of a stationary distribution + a perturbation

◆ The beam-induced electromagnetic force can be expressed through the
impedance (complex function of frequency) for both L and T

◆ Study the effect of the impedance on the stationary distribution (for L) => A
new fixed point is obtained, with a dependency on the bunch intensity of
the synchronous phase, incoherent frequency, effective (total) voltage and
bunch length

◆ Around the new fixed point (for L), write the perturbation => Coherent with
respect to the satellite number m

◆ Apply the Vlasov equation to first order => One ends up with an eigen-
value system to solve

◆ The result is an infinite number of modes of oscillation mq
azimuthal

radial
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APPROXIMATE FORMULAE: SACHERER FORMULAE (1/4)
◆ Finding the eigenvalues and eigenvectors of a complex matrix by computer

can be difficult in some cases, and a simple approximate formula for the
eigenvalues is useful in practice to have a rough estimate

§ Assuming sinusoidal modes

the difference signal from a beam position monitor has the form

€ 

pm t( ) =
cos m +1( ) π t /τ b[ ], m even

sin m +1( ) π t /τ b[ ], m odd

⎧ 
⎨ 
⎪ 

⎩ ⎪ 

€ 

Δ − signal∝ pm t( ) e j χx t /τ b + 2π kQx0( )

For the kth revolution
χ x =ωξx

τb

Total phase shift between head and tail
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APPROXIMATE FORMULAE: SACHERER FORMULAE (2/4)

§ The function ,

where is the Fourier transform of ,

is a good approximation of the power spectrum

€ 

pm ω −ωξ x( ) pm t( ) e jωξx t

hm,m ω −ωξx( ) = pm ω −ωξx( )
2

hm,m ω( )≈ σ mm ω( )
2

hm,m ω( ) =
τb

2

2π 4 m +1( )
2 1+ −1( ) m cos ω τb( )

ωτb /π( ) 2
− m +1( )

2⎡
⎣⎢

⎤
⎦⎥

2
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APPROXIMATE FORMULAE: SACHERER FORMULAE (3/4)
◆ Making this approximation, it can be shown that the Sacherer formulae

are obtained

§ In longitudinal

§ In transverse

Δωm,m
l =

m
m +1

×
j Ibωs

3B3 V̂T h cosφs

×
Zl p( )

p
⎡

⎣
⎢

⎤

⎦
⎥

m,m

eff

Zl p( )
p

⎡

⎣
⎢

⎤

⎦
⎥

m,m

eff

=

Zl ω p
l( )

p
hm,m ω p

l( )
p=−∞

p=+∞

∑

hm,m ω p
l( )

p=−∞

p=+∞

∑
ω p

l = p Ω0 + mωs

Δωm,m
x,y = m +1( )

−1 j eβ Ib

4π R Bm0 γQx0,y0Ω0

Zx,y
eff( )m,m

Zx,y
eff( )m,m

=

Zx,y ω p
x,y( ) hm,m ω p

x,y −ωξx ,y( )
p=−∞

p=+∞

∑

hm,m ω p
x,y −ωξx ,y( )

p=−∞

p=+∞

∑
ω p

x,y = p +Qx0,y0( ) Ω0 + mωs
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APPROXIMATE FORMULAE: SACHERER FORMULAE (4/4)

Power spectrum  Pick-up (Beam Position Monitor) signal 

€ 

hm,m ω −ωξ x( )

xξ
ωω −

One particular turn 

Time 

0=m 1=m0=m
1=m

2=m

 ΔR-signal 

Time 

 ΔR-signal 



Elias Métral, La Sapienza University, Rome, Italy, June 3-5, 2019                                                               88

COUPLED-BUNCH INSTABILITIES: BOTH L & T

◆ In the case of M equi-populated equi-spaced bunches

§ M possible coupled-bunch modes n (from 0 to M – 1)

§ Mode n corresponds to a phase shift between 2 adjacent bunches of

§ The single-bunch eigenvalue is extended to the coupled-bunch
regime by making the following modifications

• Ib => M Ib
• l => n + l M

• p => n + p M

◆ As concerns Sacherer formulae => Only change: sum over the coupled-
bunch mode spectrum (see above, instead of the single-bunch spectrum)

2 π n
M
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MITIGATIONS (1/6)

◆ Electronic dampers

§ Used for coupled-bunch instabilities (both L & T) and intra-bunch
instabilities with long bunches => Work very well

§ Not used yet for intra-bunch instabilities with short bunches =>
Bandwidth issue. Intense studies since several years to develop a
transverse wide-band damper in SPS and promising results have been
reached

Kicker 

Electronics 

  Beam  
0ϑ 1ϑ

Pick-up 
ϑ
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MITIGATIONS (2/6)

=> All these instabilities will / should be cured in the future with dampers!

§ Example of studies in the SPS in 2016

Courtesy of J.D. Fox et al. 
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MITIGATIONS (3/6)

◆ Landau damping => Generate
a (controlled) tune spread such
that the coherent tune shift
remains inside the spread (in
fact inside a stability
diagram)

C
ou

rte
sy

 o
f O

. B
ru

ni
ng
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§ In longitudinal: use the nonlinearity of the RF bucket => It can be
shown that

MITIGATIONS (4/6)

Im
−1 ω( ) = Δωm,m

l
Im ω( ) =

τ̂ 2m

ω −mωs τ̂( )
dg0 τ̂( )

dτ̂0

∞

∫ dτ̂

τ̂ 2m dg0 τ̂( )
dτ̂0

∞

∫ dτ̂

÷
÷
ø

ö
ç
ç
è

æ D
S

l
mm,Re

w

÷
÷
ø

ö
ç
ç
è

æ D
S

l
mm,Im

w

 
-1 -0.5 0.5 1 1.5 2 

-0.8 

-0.6 

-0.4 

-0.2 

l
mm

m
S ,

4 wD³

smww =( )Sm s -= ww

Sacherer
stability criterion

1 2 3 4 5

S = 1+
5
3

tan2φs
⎛

⎝
⎜

⎞

⎠
⎟
π 2

16
h B( ) 2

ωs

Full spread between the 
centre and the edge of the bunch
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§ In transverse: use controlled nonlinearities (e.g. Landau octupoles) =>
It can be shown that (e.g. in the horizontal plane)

MITIGATIONS (5/6)

Im ω( ) = − dJx
Jx= 0

+∞

∫ dJy
Jy= 0

+∞

∫
Jx

∂f Jx, Jy( )
∂Jx

ω −ωx Jx, Jy( ) − mωs

ωx Jx, Jy( ) = ω0 + a Jx + b Jy

Im
−1 ω( ) = Δωm,m

x

Transverse actions

Example of the LHC at 7 TeV with
nominal transverse emittance
and maximum current in the
Landau octupoles

Gaussian, a < 0 Gaussian, a > 0

Up to 6 σ

Up to 3.2 σ



Elias Métral, La Sapienza University, Rome, Italy, June 3-5, 2019                                                               94

◆ Linear coupling

§ Can have a beneficial effect if asymmetries between the 2 transverse
planes (different impedances, chromaticities, etc.) => Sharing of the
instability growth rates and frequency spreads

§ Detrimental effect in case there is nothing to gain from one plane (two
identical planes) and coupling is too strong => Loss of Landau
damping (coherent tune outside of tune spread)

§ Stabilization of the PS low-energy instability by linear coupling
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MITIGATIONS (6/6)
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TRANSVERSE:
HIGH-INTENSITY
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€ 

j Δωcm
x ˆ x m ˆ τ ( ) = −

e Ib

2 γ m0 c Qx0

Zx p( )σ x p( ) jm Jm, x p, ˆ τ ( )
p = −∞

p = +∞

∑

◆ Reminder: general equation of coherent motion considering the
contributions from all the modes m

◆

◆ Dividing both sides by and summing over m

Multiplying both sides by and integrating over

€ 

j −m Jm, x l, ˆ τ ( ) g0 ˆ τ ( ) ˆ τ 

€ 

ˆ τ 

Δωcm
x σ x, m l( ) = Klp

x, m σ x p( )
p=−∞

p=+∞

∑

€ 

⇒

Δωcm
x

σ x l( ) = εx j Zx p( )⎡⎣ ⎤⎦Mlp
x σ x p( )

p=−∞

p=+∞

∑



Elias Métral, La Sapienza University, Rome, Italy, June 3-5, 2019                                                               97

Mlp
x = 2 B 1

ωc

ωs

−mm
∑ Jm, x l, τb

2
u

⎛

⎝
⎜

⎞

⎠
⎟

0

1

∫ Jm, x p, τb

2
u

⎛

⎝
⎜

⎞

⎠
⎟ u duwith

(assuming a water-bag for the stationary distribution, as before)

εx =
e Ib

4 π γ m0 c Qx0 Bωs
and

§ Method to solve this equation

• Assume a real coherent betatron frequency shift measured in
incoherent synchrotron frequency unit

• Look for the eigenvalues of the matrix

• Scale the intensity parameter in order to adjust the eigenvalue
to unity

j Zx p( ) Mlp
x⎡⎣ ⎤⎦

εx

ωc /ωs = ω −ωx0( ) /ωs
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◆ Case of a constant (vertical) inductive impedance

-4 -2 0 2 4

-4

-2

0

2

- j Z y(p) ϵ

R
e
[
w
c
-
w
y0

w
s

]
R

e
ω
−
ω

y0
(

)/
ω

s

x = − j Zy 0( ) εy
Also noted sometimes 

– j Z ε later
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◆ Case of a Broad-Band resonator impedance

€ 

α =
ωr

2 Q
€ 

ω r =ωr 1− 1
4Q2
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⎛
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§ ~ SPS case: fr τb = 2.8

0 1 2 3 4 5
-5
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-1

0

- j Z y(p) ϵ
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e
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R
e
ω
−
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y0
(

)/
ω

s
TMCI: Transverse Mode-

Coupling Instability
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◆ Another possibility to solve this problem is to use a decomposition on
the low-intensity eigenvectors (as proposed by Garnier in 1987)

◆ Using this formalism, the effect of a transverse damper was recently
added

◆ Remark: 2 other codes (Vlasov solvers) including the transverse
damper were developed in the recent years

§ A. Burov developed a Nested Head-Tail Vlasov Solver (NHTVS)
with transverse damper in 2014

§ N. Mounet solved Sacherer integral equation with transverse
damper, using a decomposition over Laguerre polynomials of
the radial functions (DELPHI code, 2015)

* Sacherer integral equation was also solved using a decomposition over Laguerre
polynomials of the radial functions by Besnier in 1974 and Y.H. Chin in 1985 in the
code MOSES

Without transverse damper
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◆ Damping time of a transverse damper

§ The damper gain G is defined by , where is the

change of the slope produced by a measured displacement ,

assuming the same at the PU and the kicker. After one

turn, the displacement has been corrected by

=> => Damping time:

§ Averaging over all the possible betatron phases at the PU position (as

the tune cannot be an integer):

G =
Δϑ
x
βx Δϑ

βx −value

x

Δx = βx Δϑ = G x

dx
dt

=
G x
T0

= G f0 x τ damper =
1

G f0

τ damper =
2

G f0

=
nd

f0

Damping time 
in # of turns
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◆ Decomposition on the low-intensity modes (following Garnier1987) +
adding a (perfect) transverse damper => GALACTIC

σ x l( ) = aij
i , j
∑ σ x, ij l( ) ωc

ωs

akl = H x aij

Hkl, ij
x = k δki δlj

+ Δωckl
p=−∞

p=+∞

∑ σ x,kl
* p( ) − j

Zx p( )
Zx 0( )

+ δp0
Fdamper f0

nd ωs − x 2 π ωs B( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
σ x, ij p( )

Eigenvalue solution of 
the low-intensity eigenvalue 

problem with constant inductive 
impedance

Complex conjugate

- Fdamper = 0 => No damper
- Fdamper = + j => Resistive damper
- Fdamper = + 1 => Reactive damper
- nd = Damper damping time (in # of turns)

Eigenvector solution of 
the low-intensity eigenvalue 

problem with constant inductive 
impedance
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§ Check between the 2 methods =>

Laclare1987: 
Eigenvalue problem without 

decomposition (without damper)

Decomposition on the low-intensity 
Eigenvectors following Garnier1987 

formalism (without damper)

-4 -2 0 2 4

-4

-2

0

2

- j Z y(p) ϵ

R
e
[
w
c
-
w
y0

w
s

]

1) Constant inductive impedance

x = − j Zy 0( ) εy

Comparison 
with DELPHI

Courtesy of D. Amorim
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e
(Δ
Q
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s

0 1 2 3 4 5
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-0.5
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0.5

1.0

x

Im
(Δ
Q

)/
Q
s

Laclare1987 
in black

See also IPAC19 paper
(https://ipac2019.vrws.de/papers/mopgw087.pdf)
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Laclare1987: 
Eigenvalue problem without 

decomposition (without damper)

Decomposition on the low-intensity 
Eigenvectors following Garnier1987 

formalism (without damper)

2) Broad-Band impedance fr τb = 2.8
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Q’ = 0

Courtesy of D. Amorim

0 1 2 3 4 5
-4

-3

-2

-1

0

1

2

x

R
e
(Δ
Q
)/
Q
s

0 1 2 3 4 5
-1.0

-0.5

0.0

0.5

1.0

x

Im
(Δ
Q

)/
Q
s

Laclare1987 
in black

See also IPAC19 paper
(https://ipac2019.vrws.de/papers/mopgw087.pdf)
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Laclare1987: 
Eigenvalue problem without 

decomposition (without damper)

Decomposition on the low-intensity 
Eigenvectors following Garnier1987 

formalism (without damper)

2) Broad-Band impedance fr τb = 2.8
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Q’ = 0

Courtesy of D. Amorim
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e j ωR + jωi( ) t = e jωR t e
t
τ

UNSTABLE

See also IPAC19 paper
(https://ipac2019.vrws.de/papers/mopgw087.pdf)
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Courtesy of B. Salvant

Past comparison between MOSES and HEADTAIL simulations 
(for a Gaussian longitudinal distribution)
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RESONATOR IMPEDANCE + TRANSVERSE DAMPER:  
CASE OF THE (BROAD-BAND) SPS  

With transverse damper  
(-reactive, 50 turns) in red 

With transverse damper 
(reactive, 50 turns) in red 
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RESONATOR IMPEDANCE + TRANSVERSE DAMPER:  
CASE OF THE (BROAD-BAND) SPS  

With transverse damper (reactive) in red: 25, 50 and 100 turns 
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100 turns 

Q’ = 0
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RESONATOR IMPEDANCE + TRANSVERSE DAMPER:  
CASE OF THE (BROAD-BAND) SPS  
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With transverse damper  
(-resistive, 50 turns) in red 

With transverse damper 
(resistive, 50 turns) in red 

Q’ = 0
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RESONATOR IMPEDANCE + TRANSVERSE DAMPER:  
CASE OF THE (BROAD-BAND) SPS  

With transverse damper (resistive) in red: 25, 50 and 100 turns 
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50 turns 
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25 turns 
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100 turns 

Q’ = 0
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RESONATOR IMPEDANCE + TRANSVERSE DAMPER:  
CASE WITH fr × taub = 0.8 (instead of 2.8 before) 

With transverse damper  
(-reactive, 50 turns) in red 

With transverse damper 
(reactive, 50 turns) in red 
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RESONATOR IMPEDANCE + TRANSVERSE DAMPER:  
CASE WITH fr × taub = 0.8 (instead of 2.8 before) 

With transverse damper  
(-resistive, 50 turns) in red 

With transverse damper 
(resistive, 50 turns) in red 
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RESONATOR IMPEDANCE + TRANSVERSE DAMPER:  
CASE WITH fr × taub = 0.8 (instead of 2.8 before) 
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With transverse damper (resistive) in red: 25, 50 and 100 turns 
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RESONATOR IMPEDANCE + TRANSVERSE DAMPER:  
CASE WITH fr × taub = 0.8 (instead of 2.8 before) & Q’ = + 7 

With transverse damper 
(reactive, 50 turns) in red 
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With transverse damper 
(resistive, 50 turns) in red 
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RESONATOR IMPEDANCE + TRANSVERSE DAMPER:  
CASE WITH fr × taub = 0.8 (instead of 2.8 before) & Q’ = - 7 

With transverse damper 
(reactive, 50 turns) in red 
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With transverse damper 
(resistive, 50 turns) in red 
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◆ Destabilising effect of the resistive transverse damper (e.g. with 50
turns) for Q’ = 0 => Where does the instability come from?
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See also IPAC18
paper
(https://espace.cern.ch/be
-dep-
workspace/abp/HSC/Meet
ings/THPAF048.pdf)
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§ Mode 0 (1st radial mode) only
=> Stable
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§ Mode -1 (1st radial mode) only
=> Stable
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§ Instability appears when both
modes -1 and 0 (with only 1st

radial mode) are considered

§ => This is the interaction
between modes -1 and 0
through the damper which
creates the instability

§ The “coupling” between the 2
modes pushes apart the
instability growth rates and as
the lowest one is 0, it becomes
negative
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§ If one looks at the matrix to be diagonalized, it can be
approximated by (with x = - j Z ε)

−1 − 0.23 j x
− 0.55 j x − 0.92 x + 0.48 j

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟



Elias Métral, La Sapienza University, Rome, Italy, June 3-5, 2019                                                               123

§ If one looks at the matrix to be diagonalized, it can be
approximated by (with x = - j Z ε)

§ N.B.: Would be for a + reactive damper

−1 − 0.23 j x
− 0.55 j x − 0.92 x + 0.48 j

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

Introduced by the 
transverse (+ resistive) 

damper

+ 0.48
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+ 0.48 j
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+
0.48
100

j i.e. almost no damper
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+ 0.48
i.e. using a 

REACTIVE damper
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+ 2 × 0.48
i.e. using a 

REACTIVE damper 2 
times stronger
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◆ Simple formula for the intensity threshold in the case of a bunch
interacting with a Broad-Band impedance in the long-bunch regime (as for
the SPS case before), considering only the mode-coupling between the 2
adjacent modes overlapping the maximum of the resonator impedance

 

“Long-bunch” regime:  

€ 

τ b >> 0.5 / f r
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€ 

τ b = 0.5 / fr
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§ Using hm,n ω −ωξx( ) = pm
* ω −ωξx( ) pn ω −ωξx( )

hm,n ω( ) =
τb

2

π 4 m +1( ) × n +1( ) × Fm
n

× ωτb /π( ) 2
− m +1( )

2{ }
−1
× ωτb /π( ) 2

− n +1( )
2{ }

−1

Fm even
n even = −1( ) m + n( ) /2

× cos2 ωτb / 2[ ]

Fm even
n odd =

−1( ) m + n +3( ) /2

2 j
× sin ωτb[ ]

Fm odd
n even =

−1( ) m + n +1( ) /2

2 j
× sin ωτb[ ]

Fm odd
n odd = −1( ) m + n +2( ) /2

× sin2 ωτb / 2[ ]

=>
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§ In longitudinal

§ In transverse

Δωm,n
l =

m
m +1

×
j Ibωs

3B3 V̂T h cosφs

×
Zl p( )

p
⎡

⎣
⎢

⎤

⎦
⎥

m,n

eff

Zl p( )
p

⎡

⎣
⎢

⎤

⎦
⎥

m,n

eff

=

Zl ω p
l( )

p
hm,n ω p

l( )
p=−∞

p=+∞

∑

hm,m ω p
l( )

p=−∞

p=+∞

∑
ω p

l = p Ω0 + mωs

Δωm,n
x,y = m +1( )

−1 j eβ Ib

4π R Bm0 γQx0,y0Ω0

Zx,y
eff( )m,n

Zx,y
eff( )m,n

=

Zx,y ω p
x,y( ) hm,n ω p

x,y −ωξx ,y( )
p=−∞

p=+∞

∑

hm,m ω p
x,y −ωξx ,y( )

p=−∞

p=+∞

∑
ω p

x,y = p +Qx0,y0( ) Ω0 + mωs
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Nb, th
y ∝

fr

Zy

η Qy εL 1+
fξy

fr

"

#
$

%

&
'

Try to decrease the 
impedance and/or increase 
the resonance frequency => 

Impedance reduction 
campaign

Change the optics to increase 
the betatron tune (decrease the beta 

function at critical impedances) and/or go 
further away from transition => New 

optics needed

Increase the beam 
longitudinal emittance

(when possible)

- Increase the 
chromatic frequency

- Chromaticity jump in 
case transition has 

to be crossed

§ Simple formula for TMCI
(with the 2 assumptions):
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Nb, th
y ∝

fr

Zy

η Qy εL 1+
fξy

fr

"

#
$

%

&
'

Try to decrease the 
impedance and/or increase 
the resonance frequency => 

Impedance reduction 
campaign

Change the optics to increase 
the betatron tune (decrease the beta 

function at critical impedances) and/or go 
further away from transition => New 

optics needed

Increase the beam 
longitudinal emittance

(when possible)

- Increase the 
chromatic frequency

- Chromaticity jump in 
case transition has 

to be crossed

* No dependence on Qs!
** It is the same formula as for coasting beams (with peak values)!

§ Simple formula for TMCI
(with the 2 assumptions):
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§ Ex.1 => In the PS: a fast vertical single-bunch instability is observed (with
high-intensity bunches) when transition is crossed and when no
longitudinal emittance blow-up is applied before transition

S, DR, DV signals

Time (10 ns/div)
~ 700 MHz

Head stable
Tail unstable
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=> Instability suppressed by increasing the longitudinal emittance
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§ Ex.2 => In the SPS

0.8=yx0»yx

Instability (initially) 
suppressed by increasing 

the chromaticity

ms7periodn Synchrotro »
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1st trace (in red) = turn 2 Last trace = turn 150 Every turn shown

0.14=yx

Head Tail

Þ Travelling-wave pattern along the bunch
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1st trace (in red) = turn 2 Last trace = turn 150 Every turn shown

2.04=yx
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• γt was recently modified in the SPS to increase the TMCI intensity
threshold above the foreseen intensities for the future upgrade

• Simple rough estimate of γt for machines made of simple FODO cells:

² Approximating the machine radius by the bending radius, yields

² Inserting this in the definition of αp (and then expressing γt) yields

=> If one wants to modify γt, (increase or decrease its value)
one should modify the horizontal tune

Dx ≈
ρ

Qx
2

γ t ≈Qx
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• TMCI intensity threshold with the old (Q26) optics at injection: ~ 1.7 1011 p/b

• Predictions going from Q26 to the new (Q20) optics:

² Q26:

² Q20:

=> A gain of a factor 0.0362 / 0.0162 ≈ 2.2 in the intensity threshold
was expected

η Qy = 0.6210−3 × 26.13 ≈ 0.0162 γ t = 22.8

γ t =18η Qy =1.8010−3 × 20.13 ≈ 0.0362
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• Measurements
=> Good agreement with simple formula

Gain of a factor 
4.5 / 1.7 ≈ 2.6

Courtesy of B. Salvant et al. Courtesy of H. Bartosik et al.
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• Very good agreement between measurements and simulations
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Courtesy of H. Bartosik et al.
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◆ Landau damping for TMCI: with vs. without Transverse Damper
See also https://cds.cern.ch/record/2674776/files/CERN-ACC-NOTE-
2019-0018.pdf

(~ LHC case – “short-bunch regime” – zero chromaticity)
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LONGITUDINAL:
HIGH-INTENSITY
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◆ Reminder: general equation of coherent motion considering the
contributions from all the modes m

◆

◆ Dividing both sides by and summing over m

€ 

j Δωcm j −m gm ˆ τ ( ) ˆ τ = 2π Ib mωs

Ω0
2 ˆ V T h cosφs

dg0

d ˆ τ 
Zl p( )

pp = −∞

p = +∞

∑ Jm pΩ0 ˆ τ ( )σ p( )

Multiplying both sides by and integrating over

€ 

ˆ τ 

€ 

Jm l Ω0 ˆ τ ( )

€ 

⇒ Δωcm σ m l( ) = Klp
m σ p( )

p=−∞

p=+∞

∑

Δωcm
x

σ l( ) = εlong j
Zl p( )

p
⎡

⎣
⎢

⎤

⎦
⎥Mlp σ p( )

p=−∞

p=+∞

∑
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Mlp = 2 B m
ωc

ωs

−mm
∑ Jm p π B u( )

0

1

∫ Jm l π B u( ) u duwith

εlong =
4 Ib

π 2 B3 V̂T h cosφs

and

◆ Or, decomposition on the low-intensity modes (following Garnier1987)
=> GALACLIC
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§ Check between the 2 methods => Broad-Band resonator impedance
above transition

€ 

α =
ωr

2 Q

€ 

ω r =ωr 1− 1
4Q2

Zl ω( ) =
Rs

1+ j Q ω
ωr

−
ωr

ω

⎛

⎝
⎜

⎞

⎠
⎟

Gl t( ) =
ωr Rs

Q
e −α t cos ωr t( ) − α

ωr

sin ωr t( )
⎡

⎣
⎢

⎤

⎦
⎥
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§ Check between the 2 methods => Broad-Band resonator impedance
above transition

Laclare1987 in black fr τb = 2.8

See also https://ipac2019.vrws.de/papers/mopgw087.pdf
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◆ Case of a Broad-Band resonator impedance                      
(above transition) => Comparison between macroparticle tracking 
simulations…

See also IPAC19 paper
(https://ipac2019.vrws.de/papers/mopgw089.pdf)

Longitudinal 
“microwave instability”

Bunch lengthening 
due to PWD (Potential-

Well Distortion)

M. Migliorati

fr τb = 2.8
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◆ Case of a Broad-Band resonator impedance                      
(above transition) => Comparison between macroparticle tracking 
simulations…

fr τb = 2.8

See also IPAC19 paper
(https://ipac2019.vrws.de/papers/mopgw089.pdf)

M. Migliorati
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◆ Case of a Broad-Band resonator impedance                      
(above transition) => Comparison between macroparticle tracking 
simulations and GALACLIC in black

fr τb = 2.8

See also IPAC19 paper
(https://ipac2019.vrws.de/papers/mopgw089.pdf)

M. Migliorati
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◆ Case of a Broad-Band resonator impedance

§ The threshold (mode-coupling) is reached when ,

which can be re-written

using

§ This is the Keil-Schnell-Boussard criterion (i.e. the Keil-Schnell
criterion for coasting beams applied with peak values for bunched
beams as proposed by Boussard). Note that PWD leads to different
thresholds below and above transition

εlong
th Zl p( )

p
p = 0

≈ 0.8

Δp
p0

⎛

⎝
⎜

⎞

⎠
⎟

FWHH

2

≥
10
3π

Ib,peak

β 2 Etotal / e( ) η
Zl p( )

p
0

Ib,peak =
3 Ib

2 B
Δp
p0

⎛

⎝
⎜

⎞

⎠
⎟

FWHH

2

=
ωs

2 τb
2

2η 2

fr τb = 2.8
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◆ Case of a Broad-Band resonator impedance

§ The threshold (mode-coupling) is reached when ,

which can be re-written

using

§ This is the Keil-Schnell-Boussard criterion (i.e. the Keil-Schnell
criterion for coasting beams applied with peak values for bunched
beams as proposed by Boussard). Note that PWD leads to different
thresholds below and above transition

εlong
th Zl p( )

p
p = 0

≈ 0.8

Δp
p0

⎛

⎝
⎜

⎞

⎠
⎟

FWHH

2

≥
10
3π

Ib,peak

β 2 Etotal / e( ) η
Zl p( )

p
0

Ib,peak =
3 Ib

2 B
Δp
p0

⎛

⎝
⎜

⎞

⎠
⎟

FWHH

2

=
ωs

2 τb
2

2η 2

fr τb = 2.8

* No dependence on Qs!
** The same formula can also be obtained by considering only the mode-coupling
between the 2 adjacent modes overlapping the maximum of the resonator
impedance
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◆ Case of a constant inductive impedance => Comparison between
macroparticle tracking simulations…

See also IPAC19 paper
(https://ipac2019.vrws.de/papers/mopgw089.pdf)

M. Migliorati
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◆ Case of a constant inductive impedance => Comparison between
macroparticle tracking simulations and GALACLIC in black (no instability)

See also IPAC19 paper
(https://ipac2019.vrws.de/papers/mopgw089.pdf)

M. Migliorati
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CONCLUSION
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◆ Low-intensity (for both Longitudinal and Transverse)

§ Each mode can be treated individually
§ Eigen-value system to be solved in general
§ Solution can be approximated by Sacherer formula
§ Landau damping used to stabilize these instabilities

• From the non-linearity of the RF bucket in L
• From external (controlled) nonlinearities in T: (Landau) octupoles
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◆ Low-intensity (for both Longitudinal and Transverse)

§ Each mode can be treated individually
§ Eigen-value system to be solved in general
§ Solution can be approximated by Sacherer formula
§ Landau damping used to stabilize these instabilities

• From the non-linearity of the RF bucket in L
• From external (controlled) nonlinearities in T: (Landau) octupoles

◆ High-intensity (for both Longitudinal and Transverse)

§ The modes cannot be treated independently => Mode influencing
and mode-coupling

§ 2 “new” Vlasov solvers
• GALAC-TIC in transverse
• GALAC-LIC in longitudinal

§ In the case of a Broad-Band resonator impedance and in the long-
bunch regime, the same formulae as for coasting beams are
recovered (using the peak values) in both L and T
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◆ Good understanding of impedance-induced beam instabilities BUT
what is usually missing is a precise model of the machine impedance
(e.g.: huge effort in the CERN SPS machine => Now the transverse
impedance model can reproduce very well all the observables!)
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◆ Good understanding of impedance-induced beam instabilities BUT
what is usually missing is a precise model of the machine impedance
(e.g.: huge effort in the CERN SPS machine => Now the transverse
impedance model can reproduce very well all the observables!)

◆ FURTHERMORE, in a machine like the LHC, not only all the mechanisms
have to be understood separately, but (ALL) the possible interplays
between the different phenomena need to be analyzed in detail as
they can play important roles in the beam stability

§ Linear (Q’) and nonlinear (Q”) chromaticity
§ Landau octupoles (and other nonlinearities) or RFQs (under study)
§ Transverse damper (using realistic models)
§ Space charge
§ Beam-beam: head-on and long-range
§ Electron cloud
§ Linear coupling strength
§ Tune separation between the transverse planes (bunch by bunch)
§ Tune split between the two beams (bunch by bunch)
§ Transverse beam separation between the two beams
§ Noise, etc.


