
b-tagging efficiency determination on data

- determination of b-tagging trigger efficiency on single jet
 - $ightharpoonup t\overline{t}$ (semileptonic):
 - tag one side, study the other
 - b-tagging not needed to extract the signal
 - only few dozens/hundreds events in 10-100 pb⁻¹
 - di-jets:
 - plenty of events
 - enrich in *b*-jets (non isolated μ +jet)
 - measure b-tagging efficiency using pTrel (fitting pTrel distributions) or system8.

b-tagging efficiency determination on data: system8

Event Selection

- Using Jets with an associated muons: Muon Jets (MJ)
 ~20% B-mesons decay semileptonically
- Need different event topologies: different HF content
 dijets (Δφ(jj)>2.5) enriched of bb direct production (DT)

System 8

- Relies on 2 taggers (track based and muon) and 2 samples (MJ n and subsample DT p with opposite track based tagged jet)
- Allows to solve 8 equations with 8 unknowns:
- · Solved analytically
 - Minuit used to estimate statistical errors
- n_{Tr,µ} = number of events passing track based or muon tag
- ε, r = efficiency for b (light) quarks
- β, α = efficiency sample dependency for b and light quarks
- k_b, k_{cl} = correlation between muon tag and track based efficiency for b and light quarks
- Two samples must have different b-content, two efficiencies must be different: avoid triviality

d	$n = n_b + n_{cl}$
	$p = p_b + p_c$
	$n_{\mu} = \varepsilon^{\mu} \ n_b + \ r^{\mu} \ n_{cl}$
	$p_{\mu} = \varepsilon^{\mu} \ p_b + r^{\mu} \ p_{cl}$
	$n_{Tr} = \varepsilon^{Tr} \ n_b + r^{Tr} n_{cl}$
	$p_{Tr} = \beta \ \varepsilon^{Tr} \ p_b + \alpha \ r^{Tr} p_{cl}$
	$n_{all} = k_b \varepsilon^\mu \varepsilon^{Tr} n_b + k_{cl} r^\mu r^{Tr} n_{cl} \label{eq:nall}$
s	$p_{all} = k_b \beta \varepsilon^{\mu} \varepsilon^{Tr} p_b + k_{cl} \alpha r^{\mu} r^{Tr} p_{cl}$

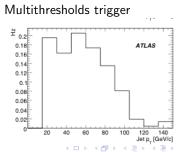
- · For this study:
 - All coefficients set to 1
 - Track based tagger: w > 4.

5

Efficiency error of about $\sim~5\%$ with 15k muon-jet_events.

b-tagging efficiency determination on data: trigger aspects

Dedicated trigger to select only useful events (bandwith for calibration trigger is small $\sim~1Hz).$ Match L2 muon (mu4) with jet RoI (J10) \rightarrow purity moved from 20% (L1_MU4_J10) to about 80% (L2_mu4_J10_matched)


Further evolution: combination of different jet thresholds in order to get an "almost" uniform distribution on the jet $E_T \rightarrow b$ -tagging efficiency can be determined with similar efficiency over a large E_T interval.

L2_mu4_J10

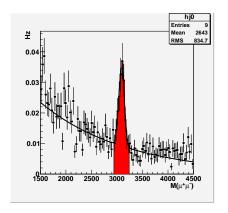
2 0.7
0.6
0.5
0.4
0.3
0.2
0.1

100 120

Jet p_ [GeV/c]

b-tagging efficiency on data: further developments

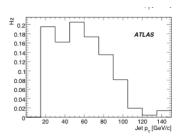
Enhance $b\bar{b}$ fraction:


- ▶ J/psi
 - pros: the signal events only contains b-jets and non b-jets (without secondary vertices)
 - cons: lower statistics (w.r.t. semileptonic)
- ▶ $D\ell$ ($D^0\ell$ first option to investigate)
 - pros: the signal events only contains b-jets (with very good approximation). Tag and probe possible!
 - cons: lower statistics (w.r.t. semileptonic), no specific trigger to enhance this contribution

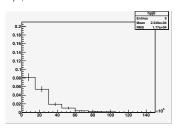
Explore different "systemN" options

b-tagging efficiency on data: J/ψ

First study using dijets sample filtered with one "true" muon

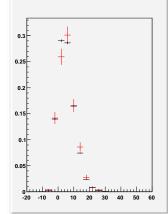

- 0.12 Hz in the peak (the only usable statistics)
- 0.21 Hz under the peak

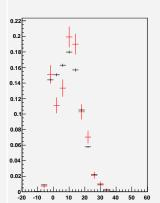
b-tagging efficiency on data: J/ψ


 p_T distribution of the jet containing the J/ψ .

Multithresholds trigger

Contribution only at low p_T .





b-tagging efficiency on data: bias on J/Psi jets?

(Bianca)

jets having a J/Psi in the cone all jets
IP3D IP3D+SV1

b-tagging efficiency on data: J/Psi

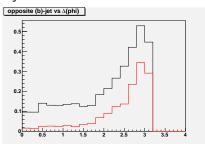
System8-like analysis with J/Psi doesn't seem very promising (mainly because of the statistical argument).

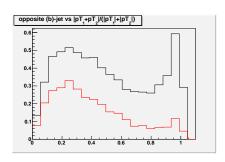
Other option would be to perform a pTrel-like analysis using the J/Psi proper time distribution (back-ground substracted). Same problem as pTrel (with lower statistics): MC parametrization.

b-tagging efficiency on data: systemN

Possible extensions:

- ▶ use more sub-samples (>2) with different purities
- use samples with cascade semileptonic decay

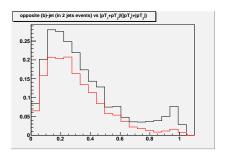

This requires Minuit implementation of system8 (work started by Elisa).



b-tagging efficiency on data: use back-to-back jets?

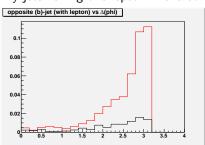
This question can be rephrased to: why people decide to use system8 instead of tagging very tightly one jet and looking to the opposite jet? Take one *b*-jet and look to the flavor of other jets (*b* light)

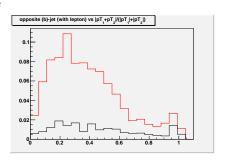
All jets



b-tagging efficiency on data: use back-to-back jets?

This question can be rephrased to: why people decide to use system8 instead of tagging very tightly one jet and looking to the opposite jet? Take one *b*-jet and look to the flavor of other jets (*b* light)


Only 2 jets in the event



b-tagging efficiency on data: use back-to-back jets?

This question can be rephrased to: why people decide to use system8 instead of tagging very tightly one jet and looking to the opposite jet? Take one *b*-jet and look to the flavor of other jets (*b* light)

Only jets having one lepton in the cone

