First implementation of an acceptance check in the GEANT4 HERD Monte Carlo simulation.

Lorenzo Pacini, lorenzo.pacini@fi.infn.it, 03/06/2019

Content

Brief description of the calorimeter in the MC.

First acceptance implemented.

- Validation of the geometrical factor using Sullivan formula.
- Example of external configuration.
- Test of the GGS sphere generation.

Second acceptance implemented.

- Geometrical factor of the default acceptance.
- Geometrical factors with different configurations.
- External config. File.

MC Calorimeter (06/2019)

◆ 21 vertical layers, 21×21 crystals (for the bigger layers), crystal side: 3 cm.

 \blacklozenge Horizontal gap, || x = 0.8 cm, horizontal gap || y = 0.4 cm, vertical gap || z = 0.4 cm, bigger gaps = 1.5 cm.

- Maximum x length = $21^{*}(3+0.8) - 0.8 = 79$ cm = LX

- Maximum y length = $21^{*}(3+0.4) - 3^{*}0.4 + 1.5^{*}2 = 73.2$ cm = LY

- Maximum z length = $21^{*}(3+0.4) - 3^{*}0.4 + 1.5^{*}2 = 73.2$ cm. = LZ

З

Purpose an acceptance check

- ◆ In order to simulate an isotropic flux, a large generation surface will be used.
- A lot of generated particles are out of the detector acceptance, so:
 - A large amount of data are not useful for the most of the studies (which require particles inside acceptance).
 - The computing time is not optimized.
- Acceptance check:
 - Simulate only particle generated inside an acceptance.
 - The number of discarded particles is saved, thus it is possible to compute the geometrical factor of the detector.
- Two acceptance categories are defined in ParametricGeo (HerdSoftware).
- The latter take into account the calorimeter (calo) only so far.
- ◆ The latter are configurable by external data-cards.

First MC accpetnace

First MC acceptance, named "MCCaloAcc1", includes particles entering from the top surface.

◆ It is larger than the "true acceptance" in order to include possible contamination due to out of acceptance particles.

◆ For the MC acceptance all the surfaces (including the top one) are approximated as recatangle.

This acceptance requires:

- the trajectory intercepts the top square: 85x80 cm
 (LX+6 × LY+6.8) at Z = 0 cm
- the trajectory intercepts the same rectangle placed in the middle of the calorimeter, Z = 36.6 cm (LZ/2)21 vertical layers, 21x21 crystals (for the bigger layers), crystal side: 3 cm.

Plane generation surface

The generation plane must be large enough to include all the possible trajectories in acceptance.

◆ Z quote = 50 cm, X width = Y width = 350 cm (>160*2cm), Θ = [0,90]; φ = [0,360]

Gemetrical factor of this acc.

 \blacklozenge GF computed with the Sullivan formula: 9716.33 cm²sr

♦ With the MC, using geantino @ 10 GeV:

• GF of the generation plane: Area* $\pi = 384845$ cm²sr

• GF of MCCaloAcc1: (Nsel/Ntot) * $A\pi = (9730 \pm 31) \text{ cm}^2\text{sr}$

Test with different generation plane:

- Z quote = 25 cm \rightarrow GF = (9730 \pm 31) cm²sr
- Z quote = 100 cm \rightarrow GF = (9716 \pm 31) cm²sr
- Z quote = 0 cm \rightarrow GF = (9757 \pm 31) cm²sr
- ${\small { \bullet } }$ Z quote = 100 cm, XY 1000x1000 cm $^2 \rightarrow$ GF = (9743 \pm 31) cm $^2 sr$

MCCaloAcc1 configuration file.

Is it possible to configure the parameters which define the MCCaloAcc1 using the geometry data-card of GGS (option - gd). Here an example which configure the default values (only for example, since the geometry data-card is not needed if the parameters are equal to the default ones):

/herd/geometry/parametric/acceptance/MCCaloAccType 1
/herd/geometry/parametric/acceptance/caloTOPXwidth 85
/herd/geometry/parametric/acceptance/caloTOPZquote 3
/herd/geometry/parametric/acceptance/caloBOTTOMXwidth 85
/herd/geometry/parametric/acceptance/caloBOTTOMYwidth 80
/herd/geometry/parametric/acceptance/caloBOTTOMYwidth 80

The default unit for the width and quote is [cm].

Test the spherical generation of GGS.

Second MC acceptance: MCCaloAcc2

- \blacklozenge Selecting particles with a shower length in the Enlarged Calo $>\sim$ 20 X0.
- \bullet "Enlarged Calo" is a box with the height = 80 cm, and the edge defined by the top plane (80x85 cm²).
- \clubsuit LYSO X0 ~ 1.16 cm \rightarrow 20 X0 ~ 23.2 cm in crystals.
- ◆ Using 27 cm assuming ~20% of "passive" material, so far this material is vacuum.
- In summary "MCCaloAcc2" requires:
 - the trajectory intercepts the top or lateral surfaces of the enlarged cube: 85×80×80 cm³.
 - the trajectory length in enlarged
 calo (85×80×80 cm³) is > 27 cm,

Entrance and exit points

Test: only X left (X negative) and Y left (Y negative) surfaces are activated as entrance surfaces Gen. position
Entrace point on calo

GF of MCCaloAcc2

- No analytical analysis available.
- \bullet The generation surface is a sphere, R = 200 cm, center = center of the calo, GF sphere: 1579136 cm²sr.
- GF of MCCaloAcc2 = (76687 \pm 77) cm²sr ~ 7.7 m²sr.
- \bullet Test using the TOP surface as the entrance surface: GF: (15775 \pm 15) cm²sr \sim 1.6 m²sr.

 \blacklozenge Testing shower length = 0, requiring the entrance point on the top surface:

- GF expected = $80 \times 85 \times \pi = 21362 \text{ cm}^2 \text{sr}$.
- GF measured with the MC = (21364 \pm 21) cm²sr \sim 2.1 m²sr
- Same test with the bottom surface: (21355 \pm 21) cm²sr.
- Same test with Y right surface: (21360 \pm 21) cm²sr. (Y right \rightarrow (21360 \pm 21) cm²sr)

Same test with X left (and right) surface.

- GF expected = $80 \times 80 \times Pi = 20106 \text{ cm}^2 \text{sr}$.
- GF measured with the MC = (20122 \pm 20) cm²sr. (X right \rightarrow (20096 \pm 20) cm²sr)

MCCaloAcc2 config file

An example which configures the default values of MCCaloAcc2

/herd/geometry/parametric/acceptance/MCCaloAccType 2 /herd/geometry/parametric/acceptance/caloShowerLenght 27 /herd/geometry/parametric/acceptance/caloTOPXwidth 85 /herd/geometry/parametric/acceptance/caloTOPYwidth 80 /herd/geometry/parametric/acceptance/caloTOPZquote 3 /herd/geometry/parametric/acceptance/caloBOTTOMXwidth 85 /herd/geometry/parametric/acceptance/caloBOTTOMYwidth 80 /herd/geometry/parametric/acceptance/caloBOTTOMZquote -76 /herd/geometry/parametric/acceptance/selectTOPcalo 1 /herd/geometry/parametric/acceptance/selectBOTTOMcalo 0 /herd/geometry/parametric/acceptance/selectXLEFTcalo 1 /herd/geometry/parametric/acceptance/selectXRIGHTcalo 1 /herd/geometry/parametric/acceptance/selectYLEFTcalo 1 /herd/geometry/parametric/acceptance/selectYRIGHTcalo 1

 \blacklozenge If shower length is = 0, shower length check is not applied

 \blacklozenge NOTE: the TOP and BOTTOM planes must be equal otherwise the algorithm can not work properly so far. $_{13}$

Conclusion

- Two MC acceptance categories has been defined.
- MCCaloAcc1:
 - It is validated using Sullivan formula.
 - The generation surface can be a plane or a sphere.
 - The GGS sphere generation is also validated.
- MCCaloAcc2
 - Validated observing the entrance and exit points
 - GF with different configurations are consistent each others.
- Both the acceptances using external can be configure using external-data-card. Please see the wiki page for further description: https://git.recas.ba.infn.it/herd/HerdSoftware/wikis/User's%20manual/Acceptance%20check%20in%20MC
- About 10^{7} geantinos are simulated with the MCCaloAcc2, and shower length = 0, to measure the geometrical acceptance of the calorimeter with different requirements.

Plane generation test

Shpere gen. Test

♦ No acceptance check.

🔶 Geantino.

♦ R = 200 cm

 \diamond Center = center of the Calo (0,0,-36.6)

Shpere gen. Test: particle in a circle

Gen. position in acc.

[160] 지 140

140 120 100

> 80 60

40

20

 \diamond Acceptance check: single circular plane: center (0,0,0), R = 60cm.

🔶 Geantino.

♦ R = 200 cm

 \diamond Center = center of the Calo (0,0,-36.6)

Expected acc: pi*Aplane = 35530 cm2sr Calculated (Nsel/Ngen * pi * Ahemisphere) = 4535/100000 * 789568 = 35800+-500!

