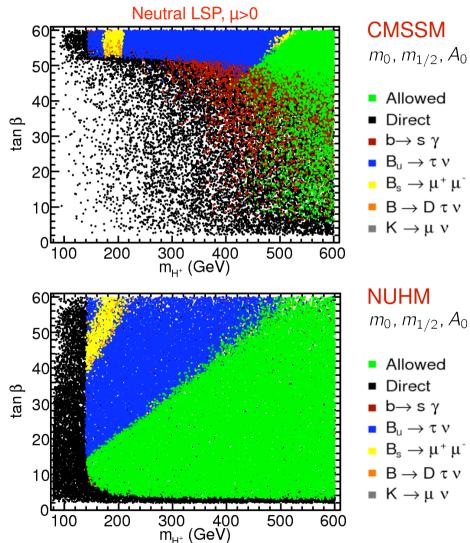
Benchmark for flavour physics

• Work done for valencia document: (c.f IRC requirement): Working on SPS (LHC benchmark) point

Pa	arameters for the		SPS1a	SPS4	SPS5
	SPS points	$\mathcal{R}(B \to X_s \gamma)$	0.919 ± 0.03	8 0.248	0.848 ± 0.081
		$\mathcal{R}(B \to \tau \nu)$	0.968 ± 0.00	07 0.436	0.997 ± 0.003
SPS1a:	$m_0 = 100 \text{GeV}, m_{1/2} = 250 \text{GeV}, (7)$	$\mathcal{R}(B \to X_s l^+ l^-)$	0.916 ± 0.00	0.917	0.995 ± 0.002
	$A_0 = -100 \text{GeV}, \tan \beta = 10, \mu > 0$	$\mathcal{R}(B \to K \nu \overline{\nu})$	0.967 ± 0.967	N 0.972	0.994 ± 0.001
SPS4:	$m_0 = 400 \text{GeV}, m_{1/2} = 300 \text{GeV},$	$\mathcal{B}(B_d \to \mu^+ \mu^-)/10^-$	10 1.631 ± 0.03	88 16.9	1.979 ± 0.012
	$A_0 = 0, \tan \beta = 50, \mu > 0,$	$\mathcal{R}(\Delta m_s)$	1.050 ± 0.00	01 1.029	1.029 ± 0.001
SPS5:	$m_0 = 150 \text{GeV}, m_{1/2} = 300 \text{GeV},$ $A_0 = -1000, \tan \beta = 5, \mu > 0.$	$\mathcal{B}(B_s \to \mu^+ \mu^-)/10^{-1}$	9 2.24 ± 0.06	63 29.3	3.427 ± 0.018
	$A_0 = -1000, \tan \beta = 5, \mu > 0.$	$\mathcal{R}(K \to \pi^0 \nu \overline{\nu})$	0.973 ± 0.00	01 0.977	0.994 ± 0.001

• SPS points are mSUGRA type (flavour blind)


The main effect comes from:

Large tan β effect, Higgs mass splitting effect, Non-degenerated squark mass (namely light R-stop)

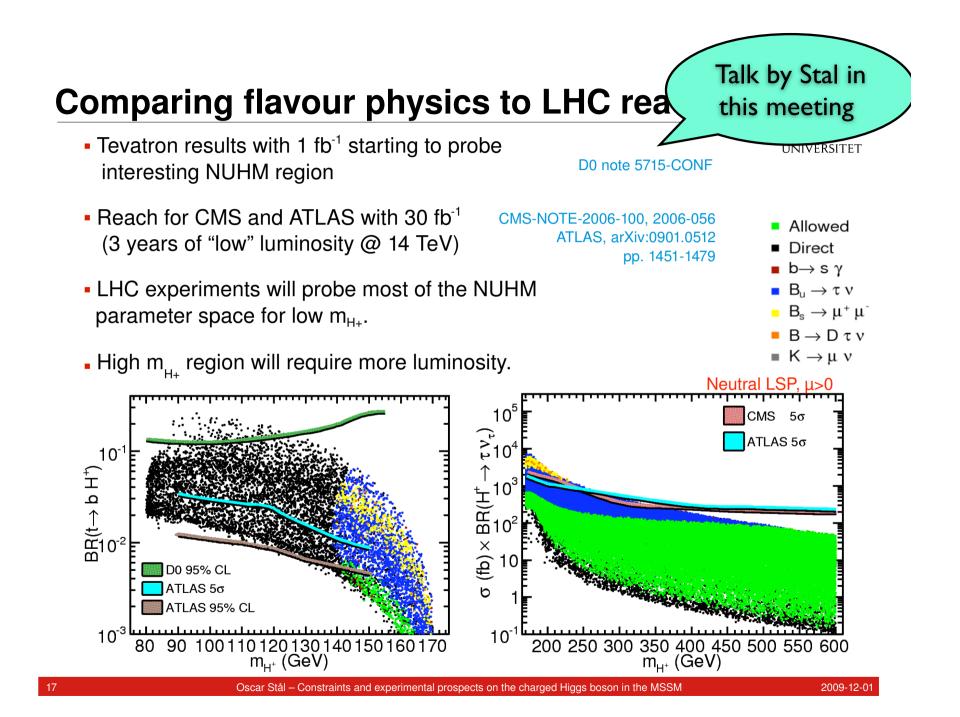
The main effect goes to limited observables:

 \rightarrow Some more detailed $B \to \tau \nu, B \to X_s \gamma$ (and some LHCb channels) works in this meeting...

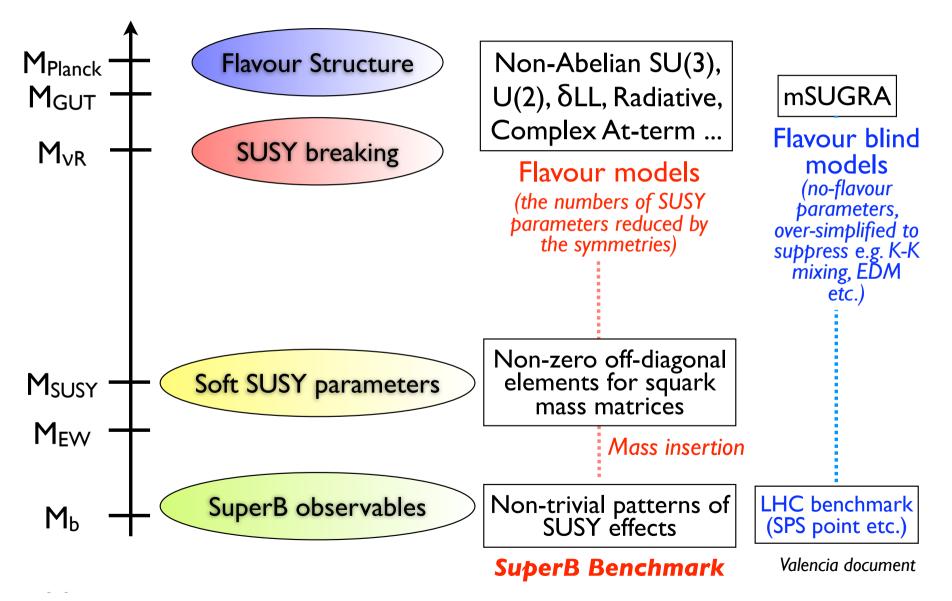
Talk by Stal in this meeting UNIVERSITET

 m_0 , $m_{1/2}$, A_0 , sign (μ) , taneta

- Allowed - High tan β "tail" excluded Direct by comb. flavor constraints ∎ b→sγ $\blacksquare B_u \to \tau \nu$
 - $m_{H^+}\gtrsim$ 400 GeV


NUHM

 $m_0, m_{1/2}, A_0, \mu, m_A, \tan\beta$

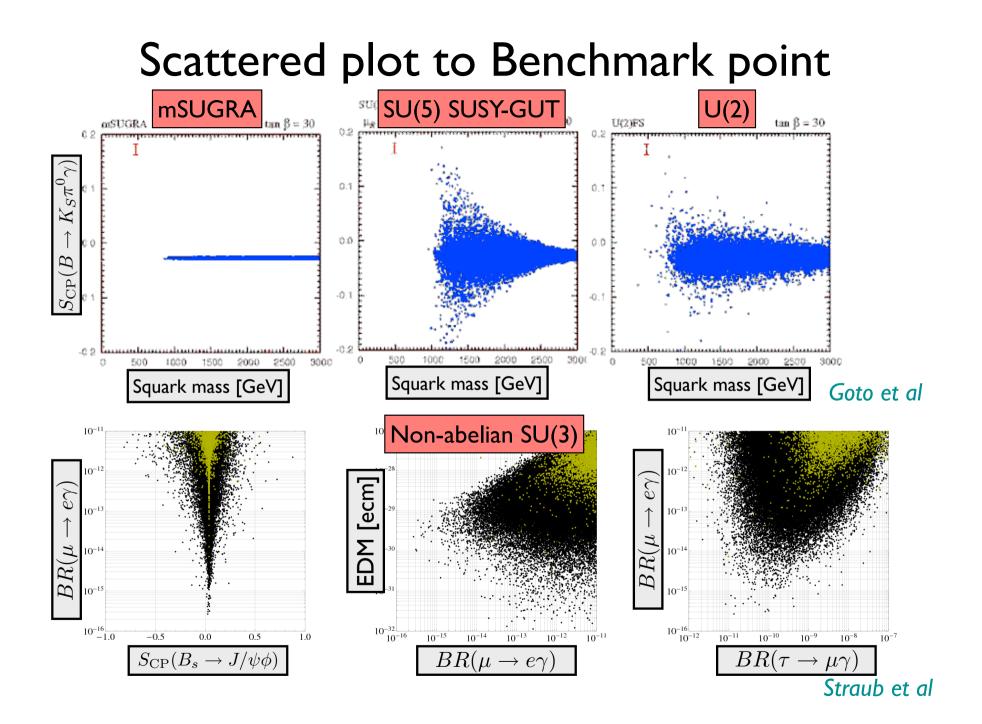

- Large exclusion from flavor.
- $b \rightarrow s \gamma$ Low mass H+ only for $\blacksquare B_u \rightarrow \tau \nu$ intermediate tan β . $B_s \rightarrow \mu^+ \mu^-$

$$m_{H^+}\gtrsim 1$$
35 GeV

2009-12-01

SUSY SuperB Benchmark (flavour non-blind)

In this meeting...


• 5 flavour models are selected to start with.

U(2) model (Goto), Non-abelian SU(3) model (Straub, Vives), Radiative model (Crivellin), Complex Atterm model (Hofer), MIA approach (Silvestrini, Ciuchini)

• Each model still contains a few free parameters. Person in charge will choose a representative parameter set (benchmark point) and produce the prediction for the SuperB observables.

Co-relation among different observables must be carefully studied. The SUSY particle mass spectrum should be produced (useful for the interplay with the high- p_T SUSY search).

Discussions continue on Wiki...

- Listing the SuperB observables (and it's sensitivity at SuperB) *Ciuchini*
- Defining common low-energy parameterization (mass insertion, Super-CKM basis etc) *Crivellin, Kou, Goto*
- Strategy to select the benchmark points *Goto*, *Straub*, *Vives*
- Tools to produce the SUSY mass spectrum Vives, Kou (to contact to experts)
- etc.....

For the next meeting...

Number should be produced!!!

	(delta, delta, delta, delta, delta)	B-> tau nu	(B-> K* gamma)CP	(B-> phi Ks)CP	B -> K* nu nu	!
mSUGRA1	(0.1,0,0,0,0)	?%	?%	?%	?%	
mSUGRA2	(0.3,0,0,0,0)	?%	?%	?%	?%	
SUSY- GUT1	(0.1,0,1,0,0)	?%	?%	?%	?%	
SUSY- GUT2	(0.3,0,0,1,0)	?%	?%	?%	?%	
U(2)1	(1,0,1,1,0)	?%	?%	?%	?%	

Benchmark point for given models (proposal)