Andreas Crivellin TTP Karlsruhe

A-terms and

 a right-handed W coupling in the MSSMEffects of right-handed charged currents on the determinations of |Vub| and |Vcb|. Andreas Crivellin arXiv:0907.2461 [hep-ph]

Supersymmetric renormalisation of the CKM matrix and new constraints on the squark mass matrices.
Andreas Crivellin and Ulrich Nierste. Phys.Rev.D79:035018,2009. arXiv:0810.1613 [hep-ph]
Chirally enhanced corrections to FCNC processes in the generic MSSM Andreas Crivellin and Ulrich Nierste. arXiv:0908.4404 [hep-ph]

Outline:

n The SUSY flavour-problem and the squark mass matrix
n Non-decouling chirality-changing SQCD selfenergies
n Flavour firom SUSY?
n Flavour-changing self-energies and FCNC
processes
$\left(D, B_{s,}, B_{d,} K\right.$ mixing and b-sy)
n Right-handed W-coupling and the determination of $V_{\text {ub }}$ and $V_{\text {cb. }}$

SUSY flavour problem

n Squark mass matrices are not necessarily diagonal in the same basis as the quark mass matrices
\Rightarrow Quark-squark-gluino vertex is in general flavour-changing

Dangerously large flavour-mixing in FCNC processes because of the strong coupling constant.

Squark mass matrix

Chirality conserving, flavour non-diagonal

Chirality flipping and flavour non-diagonal

Chirality flipping, flavour diagonal, but $O(1)$ for large $\tan (\beta)$

$$
\tan (\beta)=\mathrm{v}_{\mathrm{u}} / \mathrm{v}_{\mathrm{d}}
$$

Squark mass matrix

 is hermitian$$
W^{\tilde{q} \uparrow} M_{\tilde{q}}^{2} W^{\tilde{q}}=M_{\tilde{q}}^{2(D)}
$$

Parameterization:

In the convention of: F. Gabbiani, E. Gabrielli, A. Masiero and L. Silvestrini, Nucl. Phys. B 477 (1996) 321 [arXiv:hep-ph/9604387].

$$
M^{\tilde{q} 2}=\left(\begin{array}{ll}
M_{L L}^{\tilde{q} 2} & M_{L R}^{\dot{q} 2} \\
M_{\mathrm{LR}}^{\mathrm{q}^{2}} & M_{\mathrm{RR}}^{\tilde{\tilde{q}} 2}
\end{array}\right)
$$

with

Mass insertion approximation

(L.J. Hall, V.A. Kostelecky and S. Raby, Nucl. Phys. B 267 (1986) 415.)
n Diagonalize the quark mass matrices:
$\mathrm{U}_{\mathrm{L}}^{(0) \mathrm{q} \dagger} \mathrm{m}_{\mathrm{q}}^{(0)} \mathrm{U}_{\mathrm{R}}^{(0) \mathrm{q}}=\mathrm{m}_{\mathrm{q}}^{(\mathrm{D})}$
n Carry out the same rotation on the squark fields \Rightarrow super-CKM basis
n Render the vertices flavour-diagonal and treat the off-diagonal elements as perturbations.

Define dimensionless quantity:

$$
\delta_{i \mathrm{i}}^{\overline{\mathrm{A} A B}}=\frac{\Delta_{\mathrm{i}}^{\overline{\mathrm{i} A B}}}{\sum_{\mathrm{s}=1}^{6}\left(\frac{M_{\mathrm{q}}^{2}}{6}\right)_{\mathrm{ss}}^{2}}
$$

Chirality-changing self energy:

Chirally enhanced part in the mass insertion approximation:

$$
\begin{aligned}
& \text { Mass renormalization: } \\
& \mathrm{m}_{\mathrm{q}_{\mathrm{i}}}=\mathrm{v}_{\mathrm{q}} \mathrm{Y}^{\mathrm{q}_{\mathrm{i}}}+\sum_{\mathrm{fi}}^{\mathrm{qLR}}+\delta \mathrm{m}_{\mathrm{q}_{\mathrm{i}}}
\end{aligned}
$$

Renormalization of the CKM matrix

In the SM: A. Denner and T. Sack, RENORMALIZATION OF THE QUARK MIXING MATRIX, Nucl. Phys. B 347 (1990) 203.

$$
\begin{aligned}
& V_{\mathrm{CKM}}^{(0)}=\mathrm{U}_{\mathrm{L}}^{\mathrm{u}(0)} \mathrm{U}_{\mathrm{L}}^{\mathrm{d}(0)} \rightarrow \mathrm{V}_{\mathrm{CKM}}=\left(1+\Delta \mathrm{U}_{\mathrm{L}}^{\mathrm{ut}}\right) \mathrm{V}_{\mathrm{CKM}}^{(0)}\left(1+\Delta \mathrm{U}_{\mathrm{L}}^{\mathrm{d}}\right) \\
& \Delta \mathrm{U}_{\mathrm{L}}^{q}=\left(\begin{array}{ccc}
0 & \frac{1}{\mathrm{~m}_{2}} \Sigma_{12}^{q \mathrm{LR}} & \frac{1}{\mathrm{~m}_{3}} \Sigma_{13}^{q \mathrm{LR}} \\
\frac{-1}{\mathrm{~m}_{2}} \Sigma_{21}^{q \mathrm{RL}} & 0 & \frac{1}{\mathrm{~m}_{3}} \Sigma_{23}^{q \mathrm{LR}} \\
\frac{-1}{\mathrm{~m}_{3}} \Sigma_{31}^{q \mathrm{RL}} & \frac{-1}{\mathrm{~m}_{3}} \Sigma_{32}^{q \mathrm{RL}} & 0
\end{array}\right) \Longrightarrow \text { Antihermitian correction }
\end{aligned}
$$

Flavour from SUSY

Borzumati, Farrar, Polonsky, Thomas 1998/1999, Ferrandis, Haba 2004
n CKM matrix is the unit Matrix at tree-level
${ }_{n}$ Only the third generation Yukawa coupling is not zero

All other elements are generated radiatively!

Features of the model

n Explains small masses and mixing angles via a loop-suppression.
n Minimal flavour-violating with respect to the first two generations.
n RG invariant.
n Deviations from MFV if the third generation is involved.
n Solves the SUSY flavour and the SUSY CP problem.
> \square
> Verifiable predictions for SuperB

Example: V ${ }_{\text {ub }}$ from SUSY

Results and comparison

quantity	needed size	bound from FCNC	
$\delta_{13}^{\mathrm{dLR}}$	0.001	0.15,	$\mathrm{~B}_{\mathrm{d}}$ mixing
$\delta_{23}^{\mathrm{dLR}}$	0.01	0.06,	$\mathrm{~b} \longrightarrow \mathrm{~s} \gamma$
$\delta_{13}^{\mathrm{uLR}}$	0.027		--
$\delta_{23}^{\mathrm{LLR}}$	0.27		--

Bounds calculated with $m_{\text {squark }}=m_{\text {gluino }}=1000 \mathrm{GeV}$

Improvement of FCNC analysis nessecary:

Self energies can be of $O(1)$ in the flavour conserving case, and have to be resummed.
M.S. Garena, D. Garcia, U.Nierste and C.E.M.Wagner, [arXiv:hep-ph/9912516].

They are still of $O(1)$ in the flavour violating case, when the mixing angle is divided out.

Two- or even three-loop processes can be of the same order as the LO process!

Effect of including the selfenergies in $\triangle F=2$ processes

Constraints on $\left(\delta_{L R}\right)_{23}$ from B_{s} mixing

$\mathrm{M}_{1,2 \mathrm{~L} / \mathrm{R}}^{\tilde{q}}=2 \mathrm{M}_{3 \mathrm{~L} / \mathrm{R}}^{\tilde{q}}=1 \mathrm{TeV}$
$\square m_{\tilde{\mathrm{g}}}=2000 \mathrm{GeV}$
$m_{\tilde{\mathrm{g}}}=1500 \mathrm{GeV}$

$m_{\tilde{\mathrm{g}}}=1000 \mathrm{GeV}$

Constraints on $\delta_{\text {LR }}$ from D, B, and K mixing

$b \rightarrow s y$

Two-loop effects enter only if also $m_{b} \mu \cdot \tan (\beta)$ is large.

Behavior of the branching ratio for $\delta_{23}^{\mathrm{dLR}}$

\square experimentally allowed range
\square $\mathrm{m}_{\mathrm{b}} \mu \tan (\beta)=0 \mathrm{TeV}$

$m_{b} \mu \tan (\beta)=30 T e V$

Constraint

S
on δ_{23} from $b \rightarrow s y$ $\tan (\beta)=50$

■

$$
\mathrm{m}_{\tilde{\mathrm{g}}}=2000 \mathrm{GeV}
$$

$$
m_{\tilde{\mathrm{g}}}=1500 \mathrm{GeV}
$$

$$
\mathrm{m}_{\tilde{g}}=1000 \mathrm{GeV}
$$

$$
\mathrm{m}_{\tilde{\mathrm{g}}}=500 \mathrm{GeV}
$$

Motivation for a right-handed W coupling

n 2.2σ discrepancy between the inclusive and exclusive determination of V_{cb}
2.5-2.7 σ deviation from the SM expectation in $\mathrm{B} \rightarrow \mathrm{TV}$

Tree-level processes. Commonly believed to be free of NP. (Charged Higgs contribution to $\mathrm{B} \rightarrow \mathrm{v}$ is destrukiv.)

Notoriously difficult to explain the deviations from the SM

Genuine vertexcorrection

n Left-handed coupling suppressed because of gauge cancellation.
n Right-handed coupling not suppressed!

Right-handed charged currents

Exclusive decays

n Process proportional to the vector-current: VL=V-VR
n Process proportional to the axial vector-current: $\mathrm{V}-\mathrm{V}+\mathrm{VR}$

Inclusive decays
n $V_{u b}: V L_{=}=V$
${ }_{\mathrm{n}} \mathrm{V}_{\mathrm{cb}}: \mathrm{V} \mathrm{L}=\mathrm{V}+0.56 \mathrm{VR}$
Dassinger, Feger, Mannel:
Complete Michel Parameter Analysis of
inclusive semileptonic $b \rightarrow c$ transition

Effects of a right-handed Wcoupling on V_{ub}

Effects of a right-handed Wcoupling on V_{cb}

Connection to Single Top Production

\uparrow
Feynman diagrams contributing to Single Top production

Integrated Luminosity necessary to discover Single Tops

Plehn, Rauch, Spannowsk: 0906.1803

Conclusions

n Radiative generations of light fermion masses and mixing angles solves the SUSY flavour and the SUSY CP Problem.
\longmapsto Verifiable predictions for SuperB.
n Chirally enhanced corrections must be taken into account in FCNC processes.
n The MSSM can generate a right-handed Wcoupling.
\longmapsto SuperB could find $N P$ in $V_{u b}$ and $\mathrm{V}_{\text {cb }}$.

