

Hadronic Recoil Analysis and $B \rightarrow K^{(*)}vv$ at SuperB

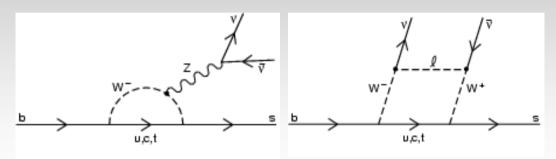
<u>Elisa Manoni</u> Università di Perugia and INFN Sez. Perugia

SuperB Physics workshop December 3, 2009

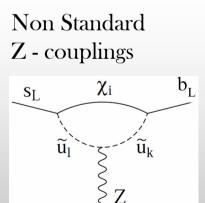
Outline

- Theoretical and Experimental status of $B \rightarrow K^{(*)} \nu \nu$
- * Hadronic Recoil Analysis Method and Implementation in Superb Fast Simulation
- * BaBar Full Simulation vs Fast Simulation in the BaBar configuration
- Comparison between SuperB Detector geometry # 1 (DG_1) and SuperB Detector geometry # 4 (DG_4)
 - Breco side
 - $B \rightarrow K^{(*)} \nu \nu$ signal side analysis
- * SuperB expected sensitivity on $B \rightarrow K^{(*)}\nu\nu$ branching fractions

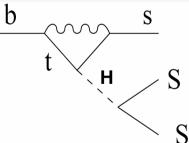
elisa manoni


INFN

WG II session, Physics workshop


Theoretical status

Standard Model diagrams



 $BR_{SM}(B \to K^* \nu \nu) = (6.8^{+1.0}_{-1.1}) \times 10^{-6} \quad \text{G.Altmannshofer et al.,}$ $BR_{SM}(B \to K \nu \nu) = (4.5 \pm 0.7) \times 10^{-6} \quad \text{TUM-HEP-709-09}$

* New physics effects: some examples

New sources of missing energy

Buchalla et al. hep-ph/0006136; Bird et al. hep-ph/0401195; Aliev et al. arXiv:0705.4542; Neubert at LLWI '09; Kim et al. arXiv:0904.0318;

* BR enhanced up to a factor 50 with respect to the SM expectations

Experimental Status

Belle experiment (Had Recoil, 535 million BB pairs)¹:

 $\mathcal{B}(B^{\pm} \to K^{\pm} \nu \overline{\nu}) < 1.4 \text{x} 10^{-5}$ $\mathcal{B}(B^{0} \to K_{s}^{0} \nu \overline{\nu}) < 1.6 \text{x} 10^{-4}$

 $\mathcal{B}(B^{\pm} \to K^{*\pm} \nu \overline{\nu}) < 1.4 \times 10^{-4}$

 $\mathcal{B}(\mathbf{B}^{0} \to \mathbf{K}^{0} \mathbf{v} \mathbf{v}) < 3.4 \mathrm{x} 10^{-4}$

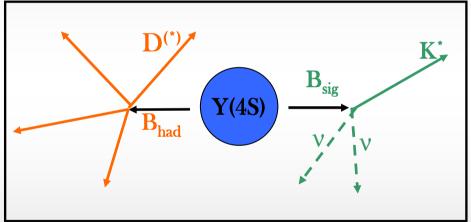
All the measurements are still consistent with the SM expectation (O(10⁻⁶))

- * BaBar (Had Recoil, 351 million BB pairs)²: $\mathcal{B}(B^{\pm} \rightarrow K^{\pm}\nu\overline{\nu}) < 4.2 \times 10^{-5}$
- * BaBar (Had+SL Recoil 454 million BB pairs)³: $\mathcal{B}(B^{\pm} \to K^{*\pm} \nu \overline{\nu}) < 8 \times 10^{-5}$ $\mathcal{B}(B^{0} \to K^{*0} \nu \overline{\nu}) < 12 \times 10^{-5}$ $\mathcal{B}(B \to K^{*} \nu \overline{\nu}) < 8 \times 10^{-5}$

K. F. Chen et al. [BELLE Collaboration], Phys. Rev. Lett. 99, 221802 (2007).
 ² H.Kim on behalf of the BaBar collaboration, arXiv:hep-ex/08052365 (2008).
 ³ B. Aubert et al. [BaBar collaboration], Phys.Rev.D78:072007,2008

elisa manoni

INFN



Hadronic Recoil Analysis: method

$e^+e^- \rightarrow Y(4S) \rightarrow B\overline{B}$

 B_{had} reconstruction: Full reconstruction of one
 B meson in hadronic (or semileptonic) decays

2. B_{sig} reconstruction: look for the signal B signature, i.e. a
K* not accompanied by additional (charged or neutral)
particles + missing energy

RECOIL TECHNIQUE @ b-FACTORIES \rightarrow search for rare decay with MISSING ENERGY (NOT FEASIBLE @ HADRONIC MACHINE) \rightarrow two examples of SuperB benchmark channels: $B \rightarrow TV$, $B \rightarrow K$

 \rightarrow two examples of SuperB benchmark channels: $B \rightarrow \tau \nu$, $B \rightarrow K^{(*)} \nu \nu$

elisa manoni

December 3, 2009

Hadronic Breco reconstruction philosophy

- Aim: collect as many as possible fully reconstructed B mesons in order to study the property of the recoil
- SemiExclusive reconstruction: search for $B \rightarrow D(^*)X$, with

X=n π mK pK_s q π^0 and n+m+r+q<6, without making requirements on intermediate resonances

- * Reoconstruction steps:
 - reconstruct $D \rightarrow hadrons$

- use D as a seed and add X to have a system compatible with the B hypotesys
- * Signal box defined by using: $m_{ES} = \sqrt{E_{beam}^{*2} - p_B^{*2}}$ $\Delta E = E_B^* - E_{beam}^*$
- * Sample of 1100 B decay modes, ordered by purity.
- * In events with multiple candidates, the best one is selected according to the smallest ΔE

elisa manoni

December 3, 2009

Hadronic Recoil Analysis in FastSim

use BaBar code, adapted to FastSim framework

- Breco side: limit the number of reconstructed modes channels according to their purity
 - Breco mode classification: neat : purity > 80%, $\varepsilon_{neat} \approx O(10^{-4})$ clean : 50% < purity < 80%, $\varepsilon_{clean} \approx O(10^{-3}-10^{-2})$ dirty : 8% < purity < 50%, $\varepsilon_{dirty} \approx O(10^{-2})$
 - in some BaBar analysis (i.e. $B \rightarrow \tau \nu$) only the cleanest Breco modes are used; same will be probably done with the high SuperB statistics
- \rightarrow reconstruct only neat+clean modes
- * Bsig side:

- $K^{*0}(K^{+}\pi) \nu \nu$
- $\tau^+\nu$, with $\tau^+ \rightarrow e^+\nu\nu$, $\mu^+\nu\nu$, $\pi^+\nu$, $\rho^+(\pi^+\pi^0)\nu$, $a_1^{++}(\rho^0\pi^+)\nu$

elisa manoni

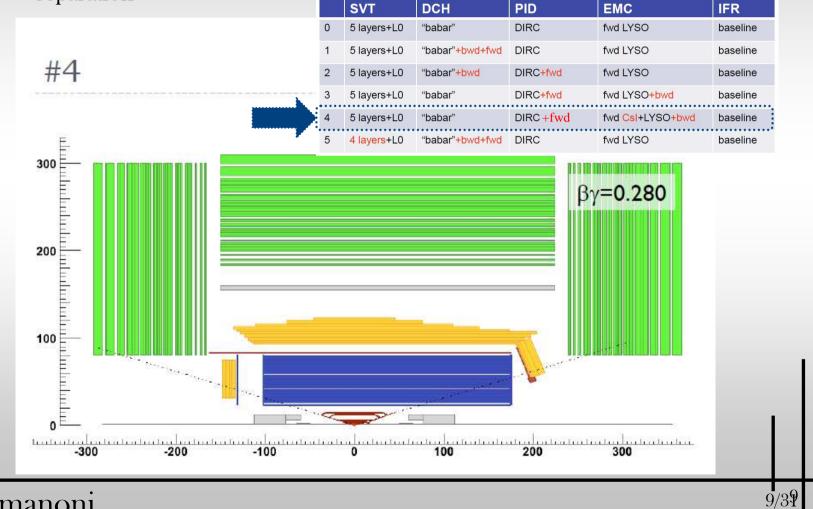
WG II session, Physics workshop

SuperB detector geometry : example I

DetectorGeometry_1

INFN

SVT_L0 + bwd and fwd DCH: gain in tracking and Breco reconstruction efficiencies


IWG II session, Physics workshop

SuperB detector geometry :example II

DetectorConfiguration_4

INFN

- SVT_L0 + fwd DIRC + bwd EMC: higher angular coverage and better K-π separation

Data Sample for this analysis

Hadronic Breco reconstruction implemented in SuperB Fast Simulation

* Background production (run in parallel for several analysis):

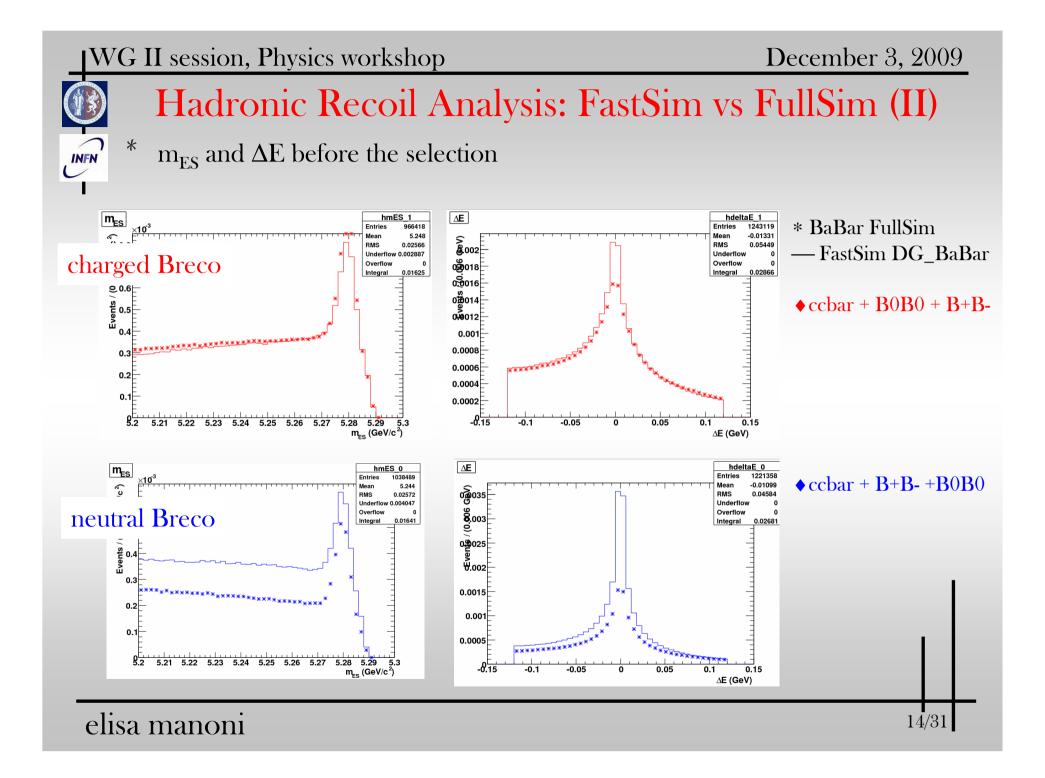
- generic MC samples,
- some machine background included
- 3 detector geometry: DG_BaBar, DG_1, DG_4 -
- * Signal MC ("private") production:
 - $B^+ \rightarrow K^+ \nu \nu, B^+ \rightarrow K^{*+} \nu \nu,$ $B^0 \rightarrow K^{*0} \nu \nu$
 - 3 detector geometry
 - 10⁶ generated events for each sample, for each DG

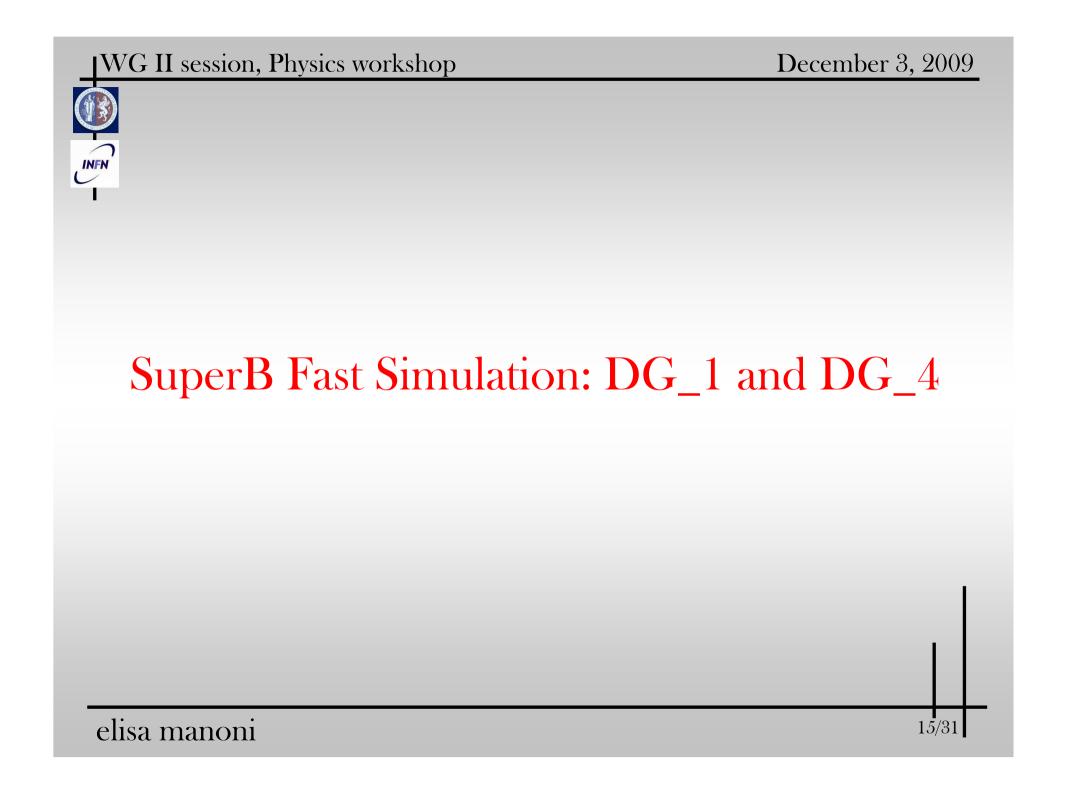
Detector Geometry	Generator	N requested	Analysis	Requestor	Status	N produced
DG_1	B0B0bar_generic	50x10^6	All	Dave	Complete	53.1 x10^6
DG_1	B+Bgeneric	50x10^6	All	Dave	Complete	49.4x10^6
DG_1	ccbar	50x10^6	DstD0ToKspipi, HadRecoil	Rolf, Elisa	Complete	49.9x10^6
DG_1	uds	100x10^6	HadRecoil	Elisa	Complete	49.9x10^6
DG_1	B+Btau_DX	1x10^6	BtoTauNu	Chih-hsiang	Complete	1x10^6
DG_4	B0B0bar_generic	50x10^6	All	Dave	Complete	48.3x10^6
DG_4	B+Bgeneric	50x10^6	All	Dave	Complete	48.7x10^6
DG_4	ccbar	50x10^6	HadRecoil	Elisa	Complete	49.8x10^6
DG_4	uds	100x10^6	HadRecoil	Elisa	Complete	49.3x10^6
DG_4	B+Btau_DX	Тхточь	BtoTauNu	Chin-hsiang	Complete	TXTU"6
DG_BaBar	B0B0bar_generic	50x10^6	HadRecoil	Elisa	Complete	50x10^6
DG_BaBar	B+Bgeneric	50x10^6	HadRecoil	Elisa	Complete	50x10^6
DG_BaBar	ccbar	50x10^6	DstD0ToKspipi, HadRecoil	Rolf, Elisa	Complete	50x10^6
DG_BaBar	B+Btau_DX	1x10^6	BtoTauNu	Chih-hsiang	Complete	1x10^6

Samples used

SuperB FastSim:

- B+B-, B0B0bar, ccbar MC samples (see slide 10)
- BaBar beams and detector geometry
- * BaBar FullSim, Run3:
 - B+B-: 49766000 gen. events
 - B0B0bar : 50556000 gen. events
 - ccbar : 83974000 gen. events
- * Differences in reconstructed Breco modes
 - BaBar FullSim: additive modes wrt FastSim, i.e. $B \rightarrow J/\psi X$, new D modes as seeds \rightarrow cut on B and D mode to reject most of them
 - BaBar FullSim: neat+clean+dirty sample \rightarrow cut on purity
- * Selection applied:
 - at least one reconstructed Breco; if #Breco > 1, best candidate $\leftrightarrow |\Delta E| \min$
 - -0.09<ΔE<0.05 GeV
 - 5.270<m_{ES}<5.288 GeV/c²


BI R.	
V,	
ALCON.	STILL ST
-	2
NFI	. /


Hadronic Recoil Analysis: FastSim vs FullSim (I)

charged	harged B0B0bar		Bp	Bm	ccbar	
Breco	FullSim	FastSim	FullSim	FastSim	FullSim	FastSim
≥ 1 Breco	0.0037	0.0054	0.0100	0.0115	0.0088	0.0079
deltaE cut	0.0028	0.0043	0.0081	0.0093	0.0063	0.0057
mES cut	0.0004	0.0007	0.0034	0.0032	0.0008	0.0007
$\epsilon_{ m Fast}/\epsilon_{ m Full}$	1.6	56	0.	95	0.9	94

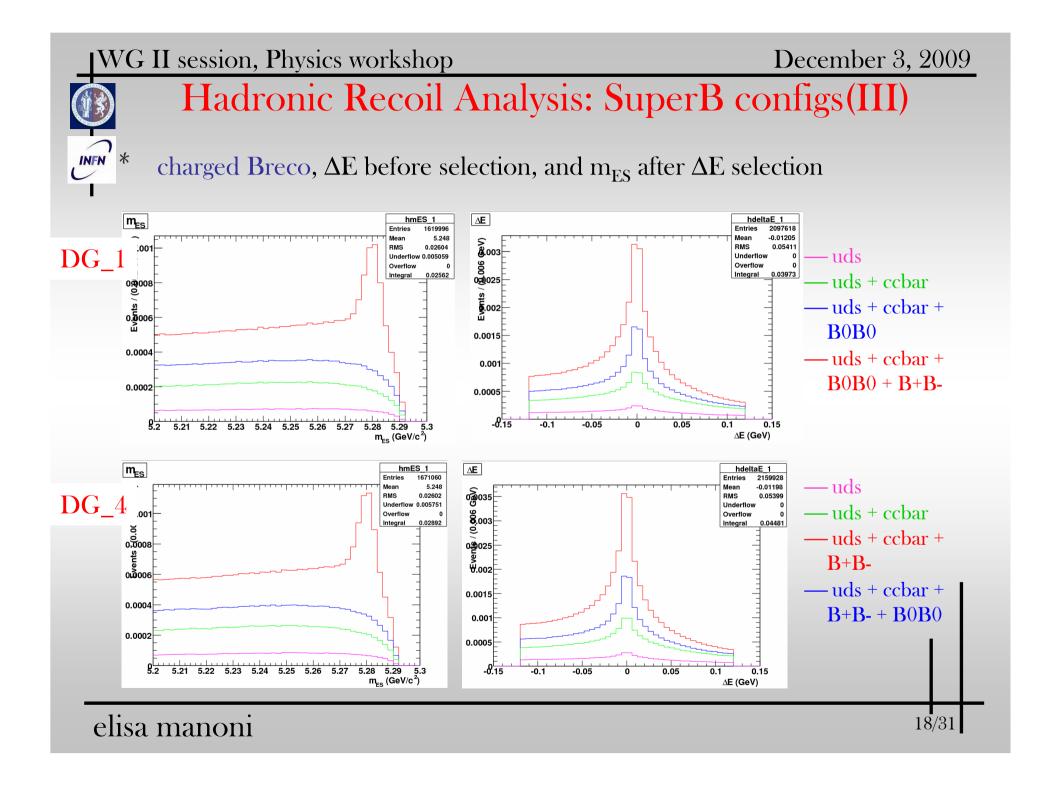
neutral	B0B0bar		Bp	Bm	ccbar	
Breco	FullSim	FastSim	FullSim	FastSim	FullSim	FastSim
≥ 1 Breco	0.0083	0.0133	0.0031	0.0057	0.0038	0.0054
deltaE cut	0.0070	0.0116	0.0025	0.0048	0.0029	0.0043
mES cut	0.0020	0.0028	0.0003	0.0006	0.0003	0.0005
$\epsilon_{ m Fast}/\epsilon_{ m Full}$	1.40		1.92		1.57	

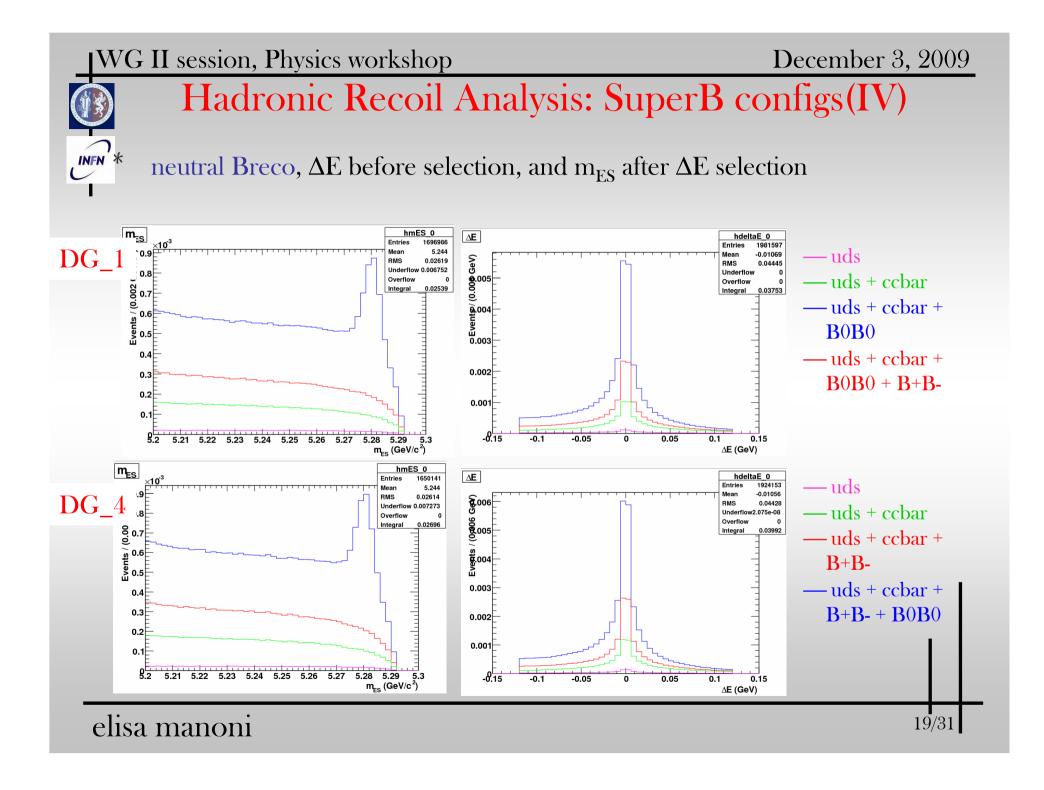
elisa manoni

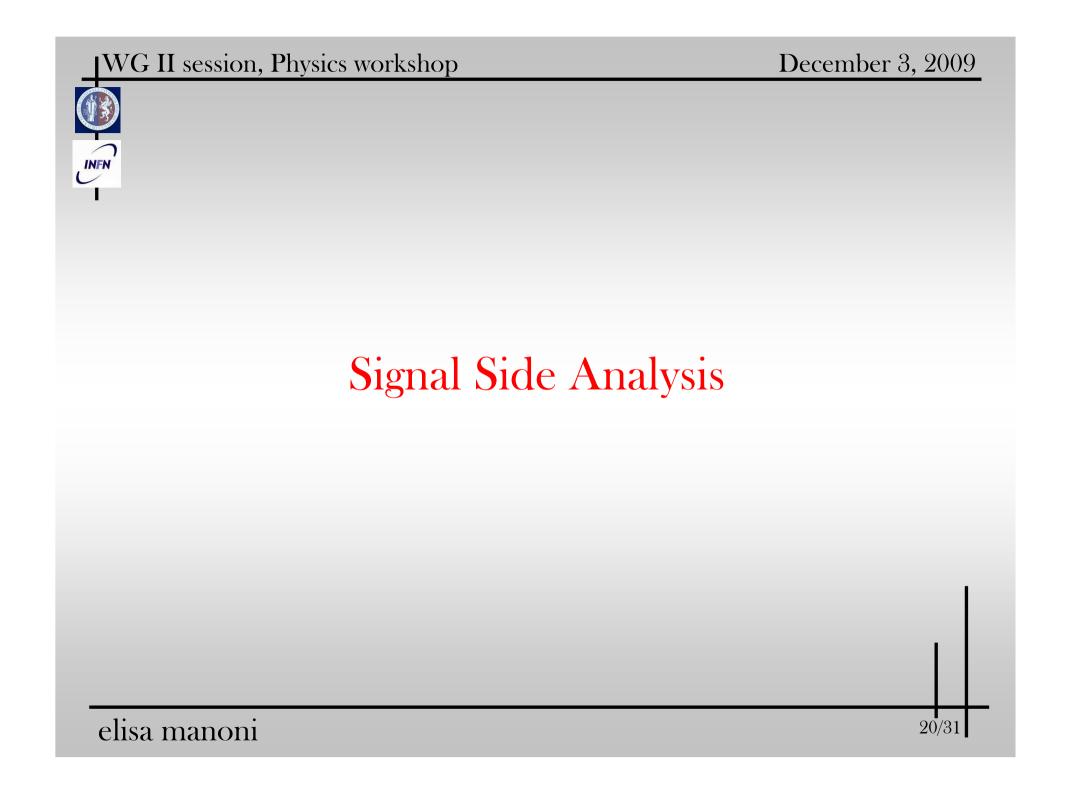
Hadronic Recoil Analysis: SuperB configs(I)

Efficiency table for charged reconstructed Breco

charged	B0B	0bar	Bp	<u>Bm</u>	ccl	oar	u	ds
Breco	DG_1	DG_4	DG_1	DG_4	DG_1	DG_4	DG_1	DG_4
≥ 1 Breco	0.0084	0.0089	0.0165	0.0174	0.0113	0.0120	0.0055	0.0058
deltaE cut	0.0067	0.0072	0.0135	0.0143	0.0081	0.0087	0.0038	0.0040
mES cut	0.0010	0.0011	0.0042	0.0043	0.0011	0.0012	0.0006	0.0006
$(\varepsilon_{\mathrm{DG4}}-\varepsilon_{\mathrm{DG1}})$	+5	.92	+3.7	<u>70%</u>	+5.6	61%	+3.()3%
$/\epsilon_{\rm DG1}$								




Hadronic Recoil Analysis: SuperB configs(II)


* Efficiency table for neutral reconstructed Breco

neutral	<u>B0B</u>	<u>0bar</u>	Bp	Bm	ccb	par	u	ds
Breco	DG_1	DG_4	DG_1	DG_4	DG_1	DG_4	DG_1	DG_4
≥ 1 Breco	0.0198	0.0202	0.0090	0.0092	0.0084	0.0086	0.0015	0.0015
deltaE cut	0.0174	0.0178	0.0077	0.0079	0.0068	0.0071	0.0011	0.0011
mES cut	0.0039	0.0039	0.0009	0.0009	0.0007	0.0007	0.0001	0.0001
$(\varepsilon_{\rm DG4}-\varepsilon_{\rm DG1})$	+1.7	7 <u>6%</u>	+1.45%		+2.16%		+2.79%	
$/\epsilon_{\rm DG1}$								

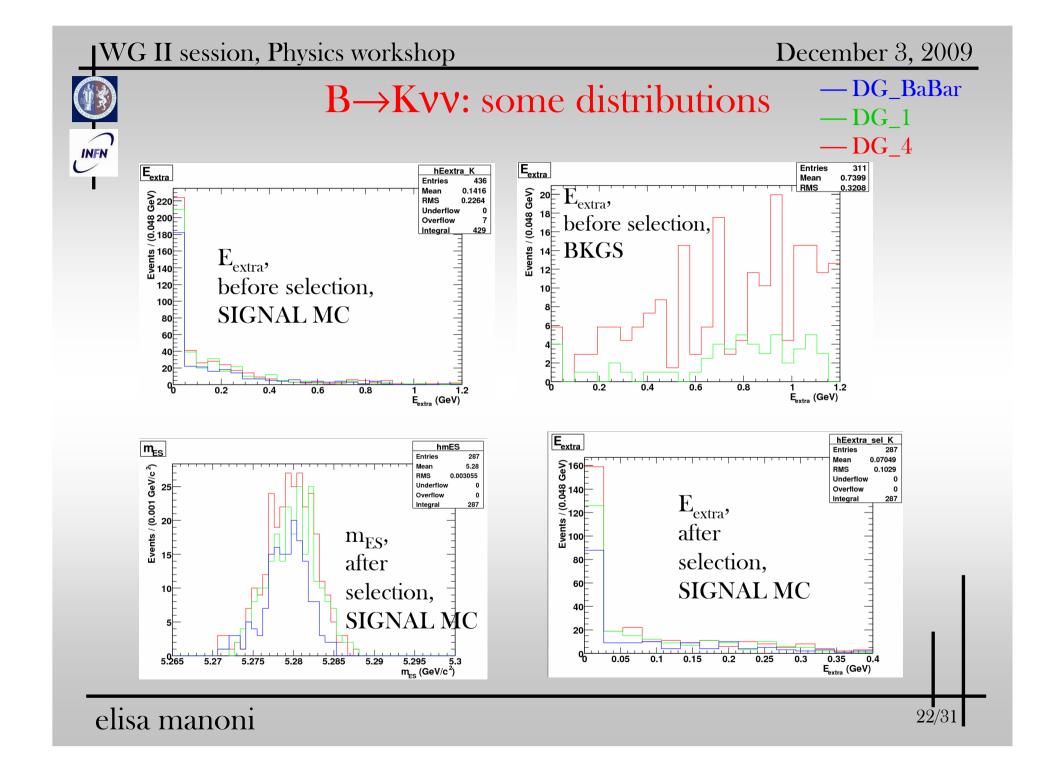
December 3, 2009

IWG II session, Physics workshop

$B \rightarrow Kvv:$ efficiency studies

- BaBar cut and count analysis
 - Selection:

$$\begin{split} & Q_{tag} = \pm 1 \\ & 5.270 \le m_{ES} \le 5.288 \text{ GeV/c}^2 \\ & |\cos\theta_{Breco,Thrust}| \le 0.85 \end{split}$$


K candidate from Bsig $|\cos\theta^*_{trk}| < 0.85$ $N_{extraTrk} < 3$ $E_{extra} < 0.4 \text{ GeV}$ $N_{\pi 0} = 0$ $p_K^B > 1.1 \text{Gev/c}$ $-0.85 < \cos\theta_{pmiss} < 0.9$

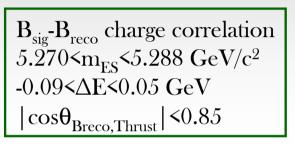
ε_{TOT} = 7.2 x 10⁻⁴ (no systematics or corrections included)

- reconstructed Breco modes = neat + clean + dirty
- * SuperB: applying BaBar cuts BUT N_{extraTrk}==0

	DG_BaBar	DG_1	DG_4	
ε _{tot, K}	$(1.63\pm0.13) \ge 10^{-4}$	$(2.36\pm0.15) \ge 10^{-4}$	$(2.87\pm0.17) \ge 10^{-4}$	
ε gain wrt DG_BaBar		+44.8%	+76.1%	
DG_BaBar				

elisa manoni

WG II session, Physics workshop


December 3, 2009

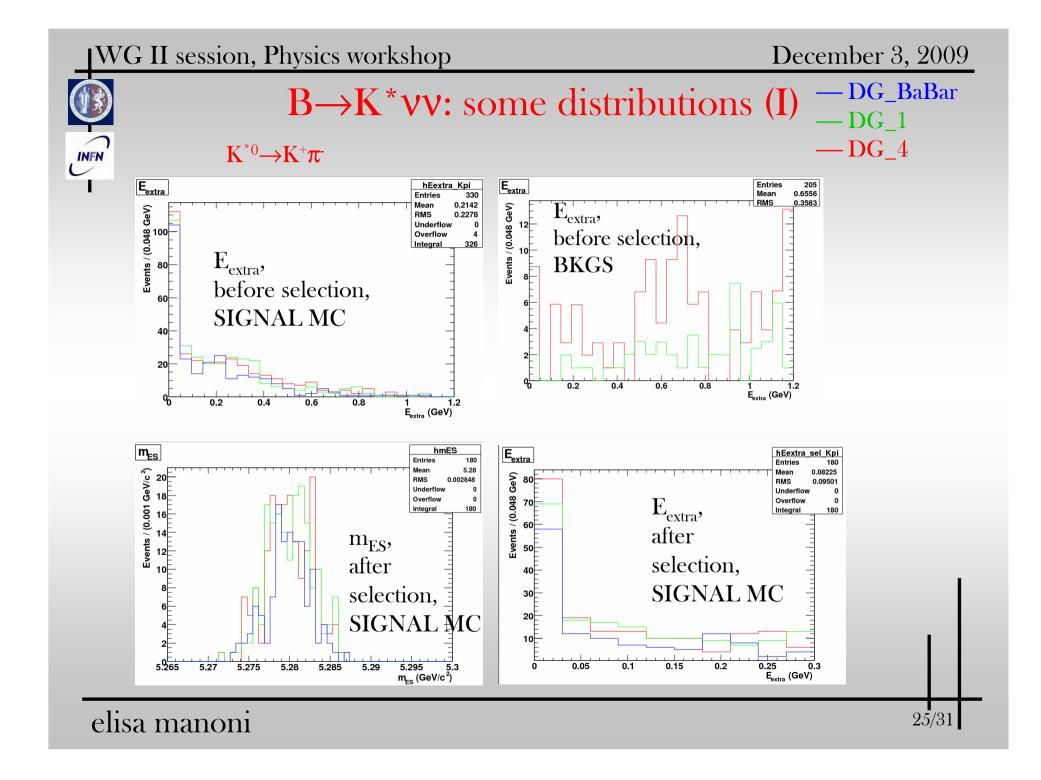
$B \rightarrow K^* \nu \nu$: efficiency studies (I)

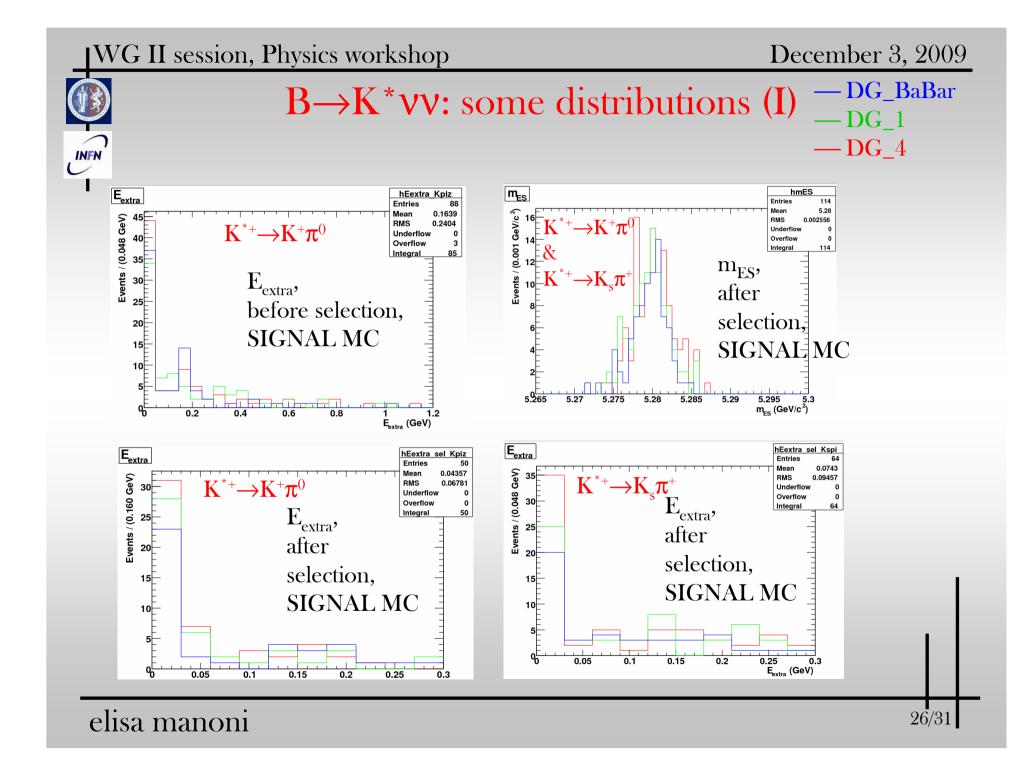
BaBar cut and count analysis

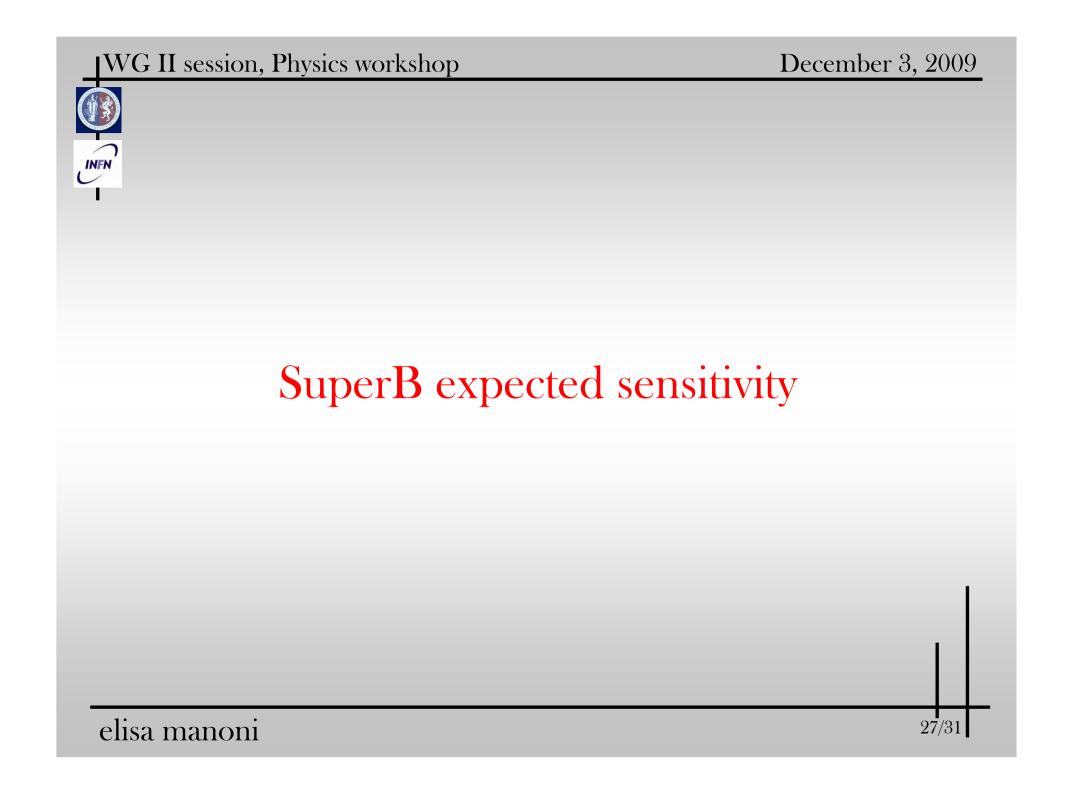
- Selection:

channel	selection criteria			
$K^{*\pm} \rightarrow K^{\pm} \pi^0$	$0.03 < R_2 < 0.70$			
	$0.004 < \left \cos\theta_{\rm thrust}^*\right < 0.84$			
	$0.84 < m_{K^*} < 0.95 \text{ GeV}/c^2$			
	$-0.78 < \cos\theta^*_{\rm miss} < 0.93$			
$K^{*\pm} \to K^0_s (\pi^+ \ \pi^-) \ \pi^{\pm}$	$0.0 < R_2 < 0.49$			
	$0.0 < \cos \theta^*_{\mathrm{thrust}} < 0.85$			
	$0.86 < m_{K^*} < 0.95 ~{ m GeV}/c^2$			
	$0.49 < m_{K_{c}^{0}} < 0.50 \text{ GeV}/c^{2}$			
	$-0.82 < \cos\theta^*_{\rm miss} < 0.82$			
$K^{*0} \to K^- \pi^+$	$0.06 < R_2 < 0.53$			
	$0.002 < \left \cos \theta_{\mathrm{thrust}}^*\right < 0.85$			
	$0.85 < m_{K^*} < 0.97 \text{ GeV}/c^2$			
	$-0.86 < \cos\theta^*_{\rm miss} < 0.90$			
E*miss+cp*miss>4.5GeV				

<u>reconstructed Breco</u>
 <u>modes = neat + clean + dirty</u>


$$\begin{split} & \epsilon_{\text{TOT}} \left(B^+ {\rightarrow} K^{*+} (K^+ \pi^0) \nu \nu \right) = 1.01 \text{ x } 10^{-4} \\ & \epsilon_{\text{TOT}} \left(B^+ {\rightarrow} K^{*+} (K_S \pi^+) \nu \nu \right) = 0.74 \text{ x } 10^{-4} \\ & \epsilon_{\text{TOT}} \left(B^0 {\rightarrow} K^{*0} (K^+ \pi) \nu \nu \right) = 1.74 \text{ x } 10^{-4} \\ & \text{(no systematics or corrections included)} \end{split}$$




 $B \rightarrow K^* \nu \nu$: efficiency studies (I)

SuperB: applying BaBar cuts BUT R_2 , m_{Ks} (not filled correctly at rootuple level)

	DG_BaBar	DG_1	DG_4
$\epsilon_{tot, K^*0(K+\pi-)}$	$(0.82 \pm 0.09) \times 10^{-4}$	(1.18 ± 0.10) x10-4	(1.20 ± 0.11) x10-4
ε gain wrt DG_BaBar		+42.7%	+45.2%
$\epsilon_{tot, K^*+(K+\pi 0)}$	(0.40 ± 0.06) x10 ⁻⁴	$(0.46 \pm 0.07) \times 10^{-4}$	(0.50 ± 0.07) x10 ⁻⁴
ε gain wrt DG_BaBar		+15.0%	+25.0%
$\epsilon_{tot, K^*+(Ks\pi^+)}$	$(0.43 \pm 0.07) \times 10^{-4}$	$(0.55 \pm 0.07) \times 10^{-4}$	$(0.64 \pm 0.08) \times 10^{-4}$
ε gain wrt DG_BaBar		+27.9%	+48.8%

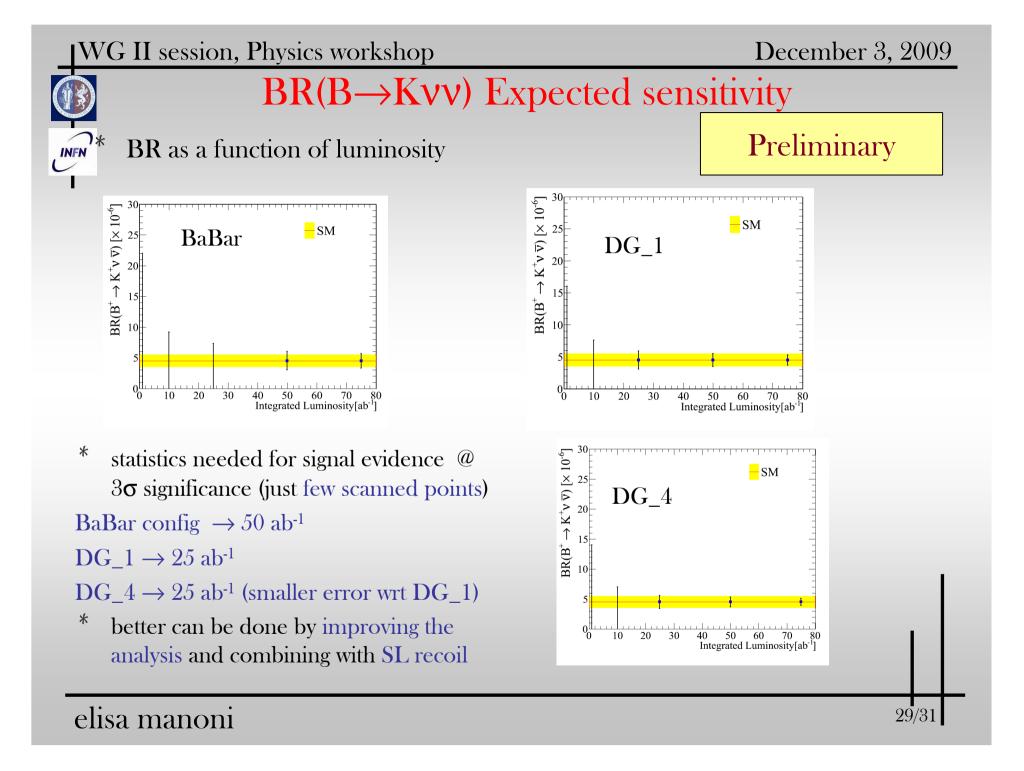
Method and uncertainties treatment

- FastSim : cut and count analysis (optimization done in BaBar)
- BaBar published result: results extracted by fitting Neural Network output

 \rightarrow not straightforward to extrapolate BaBar results in SuperB scenario

- * <u>Knunu</u>: applied same cut and count analysis as done in BaBar
- * Compare:

K*nunu:

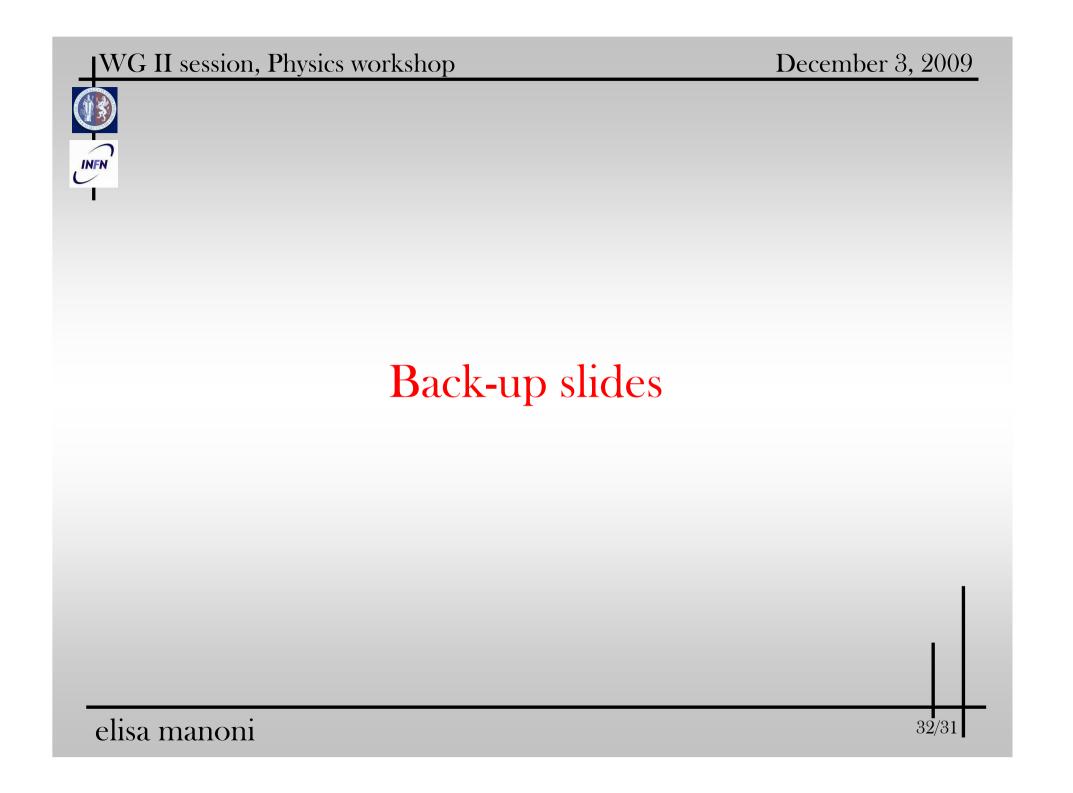

- BaBar results, scaling with lumi
- SuperB DG_1 configuration
- SuperB DG_4 configuration
- * start from BaBar efficiencies & Backgrounds, BaBar analysis technique
- * estimate a background reduction of 10%, use the efficiency gain evaluated by comparing DG_BaBar and DG_1/DG_4

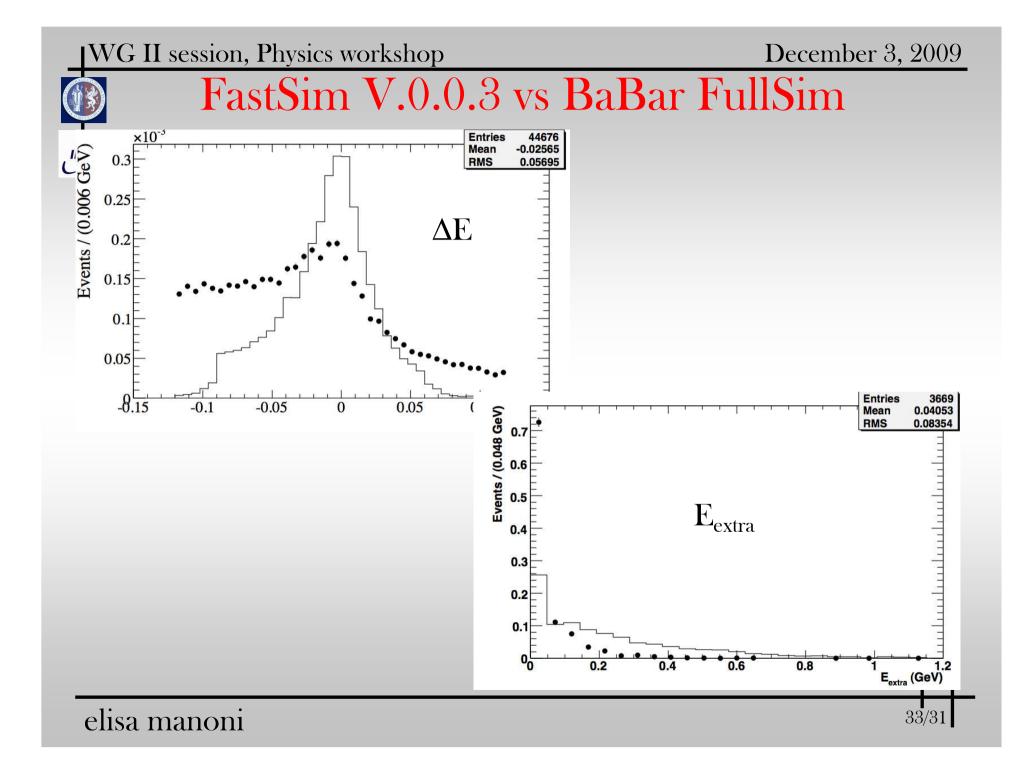
* Systematic uncertainties

BaBar: systematics largely dominated by MC statistics; Syst. error expected to go down with: 1/sqrt(MC stat) ~ 1/sqrt(Luminosity)

SuperB: assume a syst. error equal to the stat. error;

elisa manoni


Conclusions


Hadronic Breco reconstruction provide high statistic and clean samples

- \rightarrow searches of Bsig channels with invisible particles feasible in the recoil
- * $B \rightarrow K^{(*)}vv$: one of the SuperB benchmark channels
- * Hadronic Recoil Analysis Method and Superb Fast Simulation
- * Generic background and signal MC samples production performed
- * comparison with BaBar FullSim:
 - quite good agreement for charged Breco, still some wok to do for the neutral
- * test SuperB detector geometry configuration
 - DG_4 gives higher statistics wrt DG_1, but also higher background contamination
 - DG_4 selection variables may be more discriminant \rightarrow more statistics needed
- * SuperB expected sensitivity on $B \rightarrow K^{(*)} \nu \nu$ branching fractions
 - extrapolation for $K^*\nu\nu$ not straightforward
 - evidence for $B \rightarrow Kvv$ signal @ 25ab⁻¹ (assuming SM BR, HAD cut and count analysis only)

elisa manoni

INFN

Bkg efficiency, before signal side selection

Knunu

- BRR) bz = 5e-07 bp : 5.44e-06 cc : 5.8e-07
- DG1) bz = 3.59848e-07(-28%) bp = 4.87854e-06(-10%) cc = 8.4e-07(+45%)
- DG4) bz = 3.52697e-07 (-29%) bp = 5.23614e-06 (-4%) cc = 7.83133e-07 (+35%)

* Kstar0nunu

- BRR) bz = 1.88e-06 bp : 3.5e-06 cc : 3e-07
- DG1) bz = 1.36364e-06 (-27%) bp = 1.78138e-06 (-49%) cc = 4.4e-07 (+47%)
- DG4) bz = 1.53527e-06 (-19%) bp = 2.25873e-06 (-35%) cc = 4.21687e-07 (+40%)

* Kstarpnunu

- Kspi

```
BRR) bz = 9.4e-07 bp : 6.6e-06 cc : 8e-07
DG1) bz = 1.00379e-06 (+7%) bp = 6.33603e-06 (-4%) cc = 9.4e-07 (+17%)
DG4) bz = 1.20332e-06 (+28%) bp = 6.55031e-06 (-1%) cc = 1.1245e-06 (+40%)
- Kpiz
BRR) bz = 9.4e-07 bp : 6.6e-06 cc : 8e-07
DG1) bz = 1.13636e-07 (-88%) bp = 9.7166e-07 (-85%) cc = 2.4e-07 (-70%)
DG4) bz = 1.24481e-07 (-87%) bp = 1.00616e-06 (-84%) cc = 3.21285e-07 (-60%)
```