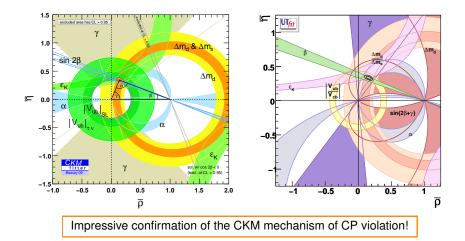
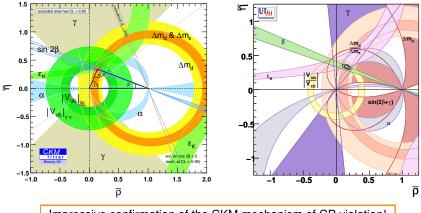
# Testing SUSY Flavour Models at SuperB based on arXiv:0909.1333 [hep-ph]

#### David M. Straub

in collaboration with W. Altmannshofer, A. J. Buras, S. Gori and P. Paradisi


T31, Physik-Department, Technische Universität München


XI Super*B* Workshop Frascati, December 1, 2009

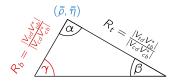


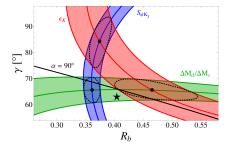
- 1 Hints for New Physics?
- 2 The SUSY flavour problem & flavour models
- 3 Flavour models & B decays: numerical results







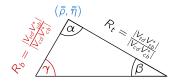

Impressive confirmation of the CKM mechanism of CP violation!

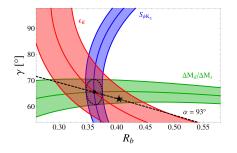

With some small tensions ....

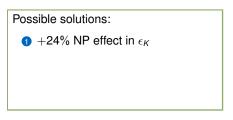
 Recent theoretical improvements in ε<sub>K</sub> expose some tensions in the UT analysis [Lunghi & Soni,

Buras & Guadagnoli]

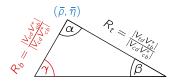
- Look at ε<sub>K</sub>, S<sub>ψK<sub>S</sub></sub> (sin 2β), ΔM<sub>d</sub>/ΔM<sub>s</sub> in the R<sub>b</sub>-γ plane
- *R<sub>b</sub>*, γ can be obtained from tree-level processes

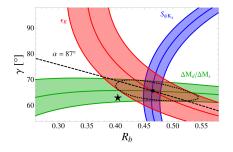


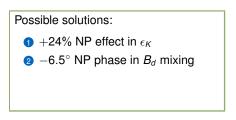





 Recent theoretical improvements in ε<sub>K</sub> expose some tensions in the UT analysis [Lunghi & Soni,

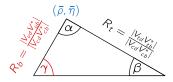
Buras & Guadagnoli]

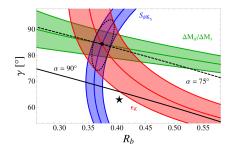

- Look at ε<sub>K</sub>, S<sub>ψK<sub>S</sub></sub> (sin 2β), ΔM<sub>d</sub>/ΔM<sub>s</sub> in the R<sub>b</sub>-γ plane
- *R<sub>b</sub>*, γ can be obtained from tree-level processes







- Recent theoretical improvements in ε<sub>κ</sub> expose some tensions in the UT analysis [Lunghi & Soni, Buras & Guadagnoli]
- Look at ε<sub>K</sub>, S<sub>ψKs</sub> (sin 2β), ΔM<sub>d</sub>/ΔM<sub>s</sub> in the R<sub>b</sub>-γ plane
- *R<sub>b</sub>*, *γ* can be obtained from tree-level processes

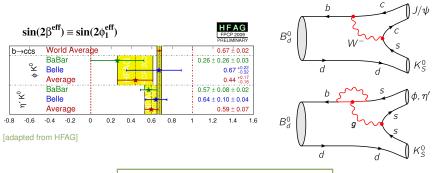







- Recent theoretical improvements in ε<sub>K</sub> expose some tensions in the UT analysis [Lunghi & Soni, Buras & Guadagnoli]
- Look at ε<sub>K</sub>, S<sub>ψK<sub>S</sub></sub> (sin 2β), ΔM<sub>d</sub>/ΔM<sub>s</sub> in the R<sub>b</sub>-γ plane
- *R<sub>b</sub>*, γ can be obtained from tree-level processes



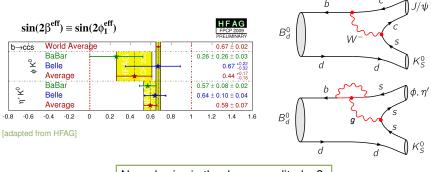



Possible solutions: 1 +24% NP effect in  $\epsilon_K$ 2 -6.5° NP phase in  $B_d$  mixing 3 -22% NP effect in  $\Delta M_d / \Delta M_s$ (requiring  $\alpha \sim 74^\circ$ )

# $\sin 2\beta_{eff}$ tensions

- In the SM, mixing-induced CP asymmetries in  $B_d \rightarrow \psi K_S$ ,  $\phi K_S$ ,  $\eta' K_S$  all  $\approx \sin 2\beta$
- $B_d \rightarrow \psi K_S$  dominated by tree level,  $\phi K_S$  and  $\eta' K_S$  are loop-induced

Data indicate 
$$\mathcal{S}_{\phi K_S} < \mathcal{S}_{\eta' K_S} < \mathcal{S}_{\psi K_S}$$




New physics in the decay amplitudes?

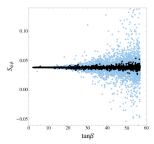
# $\sin 2\beta_{eff}$ tensions

- In the SM, mixing-induced CP asymmetries in  $B_d \rightarrow \psi K_S$ ,  $\phi K_S$ ,  $\eta' K_S$  all  $\approx \sin 2\beta$
- $B_d \rightarrow \psi K_S$  dominated by tree level,  $\phi K_S$  and  $\eta' K_S$  are loop-induced

Data indicate 
$$\mathcal{S}_{\phi K_S} < \mathcal{S}_{\eta' K_S} < \mathcal{S}_{\psi K_S}$$



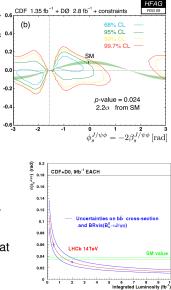
New physics in the decay amplitudes?


Can only be resolved at SuperB

# CP violation in B<sub>s</sub> mixing

- $S_{\psi\phi}$ : mixing-induced CP asymmetry in  $B_s \rightarrow J/\psi\phi$
- $S_{\psi\phi} = \sin 2(\beta_s + \phi_{B_s}^{\sf NP})$
- $S_{\psi\phi}^{\rm SM}pprox 0.035$

Recent Tevatron data favour 0.20  $\leq S_{\psi\phi} \leq$  0.98


## New physics in the Bs mixing phase?



 Sizable S<sub>ψφ</sub> impossible in MFV MSSM

 $\Delta \Gamma_s \, [\mathrm{ps}^{-1}]$ 

 Will be measured at LHCb



Main goals of our analyis:

- 1 Find well-motivated SUSY models which can generate large effets in  $S_{\psi\phi}$
- 2 Check whether  $S_{\phi K_S}$  anomaly and UT tensions can be solved as well

Main goals of our analyis:

- **1** Find well-motivated SUSY models which can generate large effets in  $S_{\psi\phi}$
- 2 Check whether  $S_{\phi K_S}$  anomaly and UT tensions can be solved as well
- 3 How can Super B help distinguish between these models?

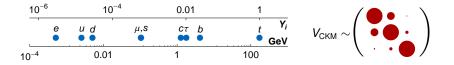


# 2 The SUSY flavour problem & flavour models

S Flavour models & B decays: numerical results

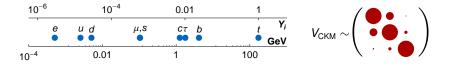


#### The SUSY flavour problem


- Most of the 105 additional parameters in the MSSM violate flavour
- O(1) values are strongly disfavoured by the excellent agreement of the SM with the flavour data

#### Possible solutions

#### Decoupling


- Sfermion mass scale very high
- Clashes with the gauge hierarchy problem
- 2 Degeneracy
  - Sfermion masses nearly degenerate
  - Arises in models with low-scale SUSY breaking
  - Partly spoiled by RG evolution
- 3 Alignment
  - Quark and squark mass matrices aligned

Flavour violation is highly non-generic already in the SM!



The two problems should be related!

## Flavour violation is highly non-generic already in the SM!



The two problems should be related!

#### Minimal Flavour Violation (MFV)

- Yukawa couplings are the only sources of flavour violation
- Effective theory
- Pragmatic approach
- Pessimistic phenomenology

#### Flavour Models

- Flavour structure of Yukawa couplings and soft terms generated by spontaneous breaking of a flavour symmetry
- Ambitious approach
- Diverse phenomenology

# SUSY flavour models

Main idea: hierarchies in Yukawa couplings generated by spontaneous breakdown of flavour symmetry (horizontal symmetry, family symmetry)

- · Generalization of the Froggat-Nielsen mechanism
- Yukawa hierarchies explained by different powers of small  $\epsilon$ :

Possible to relate Yukawa matrices and sfermion mass matrices/trilinear couplings

SUSY flavour models can explain the origin of the hierarchies in the Yukawa couplings *and* solve the SUSY flavour problem

Many different viable models exist, with abelian or non-abelian flavour symmetries

## The SUSY CP problem

O(1) values for many of the O(50) phases in the MSSM are strongly disfavoured by experimental bounds, in particular EDMs

## **Common solution in Flavour Models:**

- CP is conserved in the "underlying" theory
- CP broken spontaneously by flavon VEVs
- Flavour-blind CP violation suppressed

## The SUSY CP problem

O(1) values for many of the O(50) phases in the MSSM are strongly disfavoured by experimental bounds, in particular EDMs

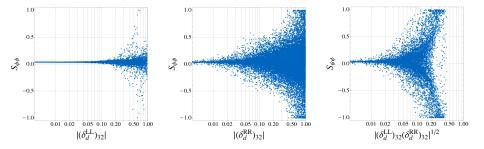
## **Common solution in Flavour Models:**

- CP is conserved in the "underlying" theory
- CP broken spontaneously by flavon VEVs
- Flavour-blind CP violation suppressed

## Applying the same approach to MFV: [Paradisi & DS, 0906.4551]

- The MFV principle does not forbid new phases beyond the CKM
- Assume CP conservation in the limit of flavour blindness
- CP violated by MFV-compatible terms breaking the flavour blindness
- Viable but interesting CP-phenomenology

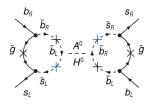
## Abelian vs. Non-abelian

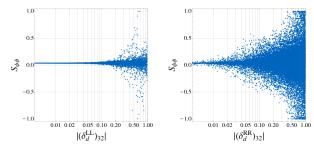

- In most non-abelian models, 1st & 2nd generatio sfermions are approximately degenerate
  - ▶ Suppressed contributions to 1  $\leftrightarrow$  2 transitions, in particular  $D^0 \overline{D}^0$  mixing
- In abelian models, sfermions of different generations need not be degenerate
  - O(1) 1-2 mass splitting leads to  $O(\lambda)$   $(\delta_u^{LL})_{12}$  in the SCKM basis
  - Large effects in  $D^0 \overline{D}^0$  mixing

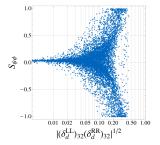
## Chirality structure of flavour violating terms

- Different flavour symmetries lead to different patterns of flavour violation
- Mass insertions:  $M_{\tilde{d}}^2 = \text{diag}(\tilde{m}^2) + \tilde{m}^2 \begin{pmatrix} \delta_d^{LL} & \delta_d^{LR} \\ \delta_d^{RL} & \delta_d^{RR} \end{pmatrix}$
- $\delta^{LL}$ ,  $\delta^{RR}$ ,  $\delta^{LR}$  fixed by the flavour symmetry (up to O(1) factors)

How to generate large NP effects in  $S_{\psi\phi}$ ?


- LR MIs strongly constrained by  $b 
  ightarrow s \gamma$
- Sizable effects in  $S_{\psi\phi}$  possible in particular with simultaneous LL and RR MIs
- LL MIs are always generated by RG effects even if vanishing at the GUT scale





# $S_{\psi\phi}$ vs. mass insertions

How to generate large NP effects in  $S_{\psi\phi}$ ?

- LR MIs strongly constrained by  $b 
  ightarrow s \gamma$
- Sizable effects in  $S_{\psi\phi}$  possible in particular with simultaneous LL and RR MIs
- LL MIs are always generated by RG effects even if vanishing at the GUT scale





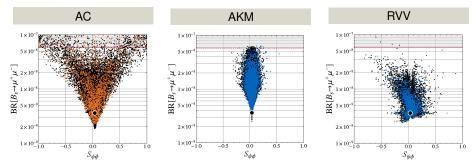


4 representative flavour models with different chirality structures in the  $\tilde{d}$  sector:

| AC model         | AKM model                 | RVV model [Ross,        | $\delta$ LL model     |
|------------------|---------------------------|-------------------------|-----------------------|
| [Agashe, Carone] | [Antusch, King, Malinsky] | Velasco-Sevilla, Vives] | [e.g. Hall, Murayama] |
| <i>U</i> (1)     | <i>SU</i> (3)             | <i>SU</i> (3)           | $(S_3)^3$             |
| Large, O(1) RR   | Only CKM-like RR          | CKM-like LL & RR        | Only CKM-like LL      |
| mass insertions  | mass insertions           | mass insertions         | mass insertions       |

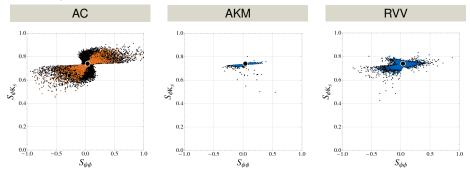
$$\begin{split} \delta_d^{LL} &\sim \begin{pmatrix} \cdot & 0 & 0 \\ 0 & \cdot & \lambda^2 \\ 0 & \lambda^2 & \cdot \end{pmatrix} \quad \delta_d^{LL} \sim \begin{pmatrix} \cdot & 0 & 0 \\ 0 & \cdot & 0 \\ 0 & 0 & \cdot \end{pmatrix} \quad \delta_d^{LL} \sim \begin{pmatrix} \cdot & \lambda^3 & \lambda^2 \\ \lambda^3 & \cdot & \lambda \\ \lambda^2 & \lambda & \cdot \end{pmatrix} \\ \delta_d^{RR} &\sim \begin{pmatrix} \cdot & 0 & 0 \\ 0 & \cdot & 1 \\ 0 & 1 & \cdot \end{pmatrix} \quad \delta_d^{RR} \sim \begin{pmatrix} \cdot & \lambda^3 & \lambda^3 \\ \lambda^3 & \cdot & \lambda^2 \\ \lambda^3 & \lambda^2 & \cdot \end{pmatrix} \\ \delta_d^{RR} \sim \begin{pmatrix} \cdot & \lambda^3 & \lambda^3 \\ \lambda^3 & \cdot & \lambda^2 \\ \lambda^3 & \lambda^2 & \cdot \end{pmatrix} \\ \delta_d^{RR} \sim \begin{pmatrix} \cdot & \lambda^3 & \lambda^3 \\ \lambda^3 & \cdot & \lambda^2 \\ \lambda^3 & \lambda^2 & \cdot \end{pmatrix} \\ \delta_d^{RR} \sim \begin{pmatrix} \cdot & \lambda^3 & \lambda^2 \\ \lambda^3 & \cdot & \lambda^2 \\ \lambda^3 & \lambda^2 & \cdot \end{pmatrix} \\ \delta_d^{RR} \sim \begin{pmatrix} \cdot & 0 & 0 \\ 0 & \cdot & 0 \\ 0 & 0 & \cdot \end{pmatrix} \end{split}$$

[cf. also Calibbi et al. (2009)] 1 Hints for New Physics?


2 The SUSY flavour problem & flavour models

3 Flavour models & B decays: numerical results




# $B_{ m s} ightarrow \mu^+ \mu^-$ vs. $S_{\psi \phi}$

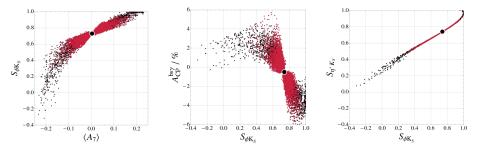
- Both observables can deviate significantly from the SM in all 3 models
- large  $S_{\psi\phi} \Rightarrow$  large BR( $B_s \rightarrow \mu^+ \mu^-$ ) in the AC and AKM models
- Correlation arises from dominance of Higgs penguin contributions



- Orange points: UT tension solved through contribution to  $\Delta M_d / \Delta M_s$
- Blue points: UT tension solved through contribution to  $\epsilon_K$
- Scan ranges:  $m_0 < 2$  TeV,  $M_{1/2} < 1$  TeV,  $|A_0| < 3m_0$ ,  $5 < \tan \beta < 55$ , O(1) parameters varied within  $[\frac{1}{2}, 2]$

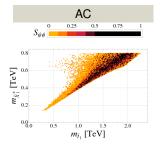
- In the AC model, both  $S_{\phi K_S}$  and  $S_{\psi \phi}$  can have large effects, but a simultaneous *enhancement* of  $S_{\psi \phi}$  and *suppression* of  $S_{\phi K_S}$  (as indicated by the data) is impossible
- S<sub>φKs</sub> nearly SM-like in AKM and RVV models

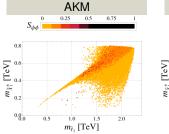


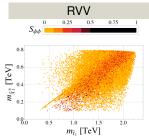

- Orange points: UT tension solved through contribution to  $\Delta M_d / \Delta M_s$
- Blue points: UT tension solved through contribution to  $\epsilon_K$
- Scan ranges:  $m_0 < 2$  TeV,  $M_{1/2} < 1$  TeV,  $|A_0| < 3m_0$ ,  $5 < \tan \beta < 55$ , O(1) parameters varied within  $[\frac{1}{2}, 2]$

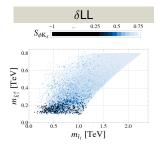
 $S_{\phi K_{
m S}}$  vs.  $S_{\psi \phi}$ 

# Model with purely left-handed currents


Pattern of NP effects in the  $\delta$ LL model:


- No large effects in S<sub>ψφ</sub>
- Large, correlated effects in  $S_{\phi K_S}$ ,  $S_{\eta' K_S}$ ,  $A_{CP}(b \to s\gamma)$ ,  $\langle A_{7,8} \rangle$
- $\langle A_{7,8} \rangle$ : T-odd CP asymmetries in  $B \to K^* \ell^+ \ell^-$





• Scan ranges:  $m_0 < 2$  TeV,  $M_{1/2} < 1$  TeV,  $|A_0| < 3m_0$ ,  $5 < \tan \beta < 55$ , O(1) parameters varied within  $[\frac{1}{2}, 2]$ 

# LHC vs. flavour









- Large effects in  $S_{\psi\phi}$  even possible for spectra beyond the LHC reach in the models with RH currents
- Large effects in  $S_{\phi K_S}$  not possible for spectra beyond the LHC reach in the  $\delta$ LL model

# "DNA-Flavour Test" at SuperB

|                                          | GMSSM | AC  | RVV2 | AKM | $\delta LL$ | FBMSSM |                |
|------------------------------------------|-------|-----|------|-----|-------------|--------|----------------|
| $S_{\phi K_S}$                           | ***   | *** | ••   |     | ***         | ***    |                |
| $A_{CP} (B \rightarrow X_s \gamma)$      | ***   |     |      |     | ***         | ***    | SunorR         |
| $B  ightarrow K^{(*)}  u ar{ u}$         | ••    |     |      |     |             |        | <b>Suber</b> R |
| $\tau \to \mu \gamma$                    | ***   | *** | ***  |     | ***         | ***    |                |
| $D^0-ar{D}^0$                            | ***   | *** |      |     |             |        | SuperB         |
| $A_{7,8}(B \rightarrow K^* \mu^+ \mu^-)$ | ***   |     |      |     | ***         | ***    | VS.            |
| $A_9(B  ightarrow K^* \mu^+ \mu^-)$      | ***   |     |      |     |             |        | Hicp           |
| $S_{\psi\phi}$                           | ***   | *** | ***  | *** |             |        | <i>LHCb</i>    |
| $B_{ m S}  ightarrow \mu^+ \mu^-$        | ***   | *** | ***  | *** | ***         | ***    | гнср           |
| €K                                       | ***   |     | ***  | *** |             |        |                |
| $K^+  ightarrow \pi^+  u ar{ u}$         | ***   |     |      |     |             |        |                |
| $K_L \rightarrow \pi^0 \nu \bar{\nu}$    | ***   |     |      |     |             |        |                |
| $\mu  ightarrow oldsymbol{e} \gamma$     | ***   | *** | ***  | *** | ***         | ***    |                |
| $\mu + N \rightarrow e + N$              | ***   | *** | ***  | *** | ***         | ***    |                |
| d <sub>n</sub>                           | ***   | *** | ***  | *** | ••          | ***    |                |
| d <sub>e</sub>                           | ***   | *** | ***  | ••  |             | ***    |                |
| $(g-2)_{\mu}$                            | ***   | *** | ***  | ••  | ***         | ***    |                |