TOWARD SUPER-B: QED LOGS IN $B \to X_s \ell \ell$ & USES OF $B \to \tau \nu$

ENRICO LUNGHI INDIANA UNIVERSITY

SUPER-B, FRASCATI

DEC 3, 2009

OUTLINE

(1) Precision calculations of inclusive $b \rightarrow sll$ decays:

- Present status of SM predictions and NP implications
- Electromagnetic corrections: issues and resolution (preliminary)

(2) UT fit without semileptonic decays:

- Present status of the UT fit and hints for NP
- ♀ Impact of a determination of $B \rightarrow \tau \nu$ with super-B precision

PART 1: $INCLUSIVE B \rightarrow SLL$

T. Huber, E.L., M. Misiak and D. Wyler, hep-h/0512066 T. Huber, T. Hurth and E.L., arXiv:0712.3009 T. Huber, T. Hurth and E.L., in preparation [Misiak; Buras, Munz; Bobeth, Misiak, Urban; Asatryan, Asatrian, Greub, Walker; Ghinculov, Hurth, Isidori, Yao; Bobeth, Gambino, Gorbahn, Haisch; Huber, Lunghi, Misiak, Wyler]

$$\mathcal{L}_{eff} = \frac{4G_F}{\sqrt{2}} V_{tb} V_{tq}^* \left[\sum_{i=1}^{10} C_i Q_i + \frac{V_{ub} V_{uq}^*}{V_{tb} V_{tq}^*} \sum_{i=1}^{2} C_i (Q_i - Q_i^u) + \sum_{\substack{i=3 \\ \text{for QED corrections}}}^6 C_{iQ} Q_{iQ} + C_b Q_b \right]$$
for QED corrections
$$\Lambda_{\text{QCD}} \qquad \text{few} \times \Lambda_{\text{QCD}} \qquad m_b \qquad m_{W,Z} \qquad m_{\text{NP}}$$
non-perturbative perturbative

• Magnetic & chromo-magnetic

$$Q_{7} = \frac{c}{16\pi^{2}} m_{b} (\bar{q}_{L} \sigma^{\mu\nu} b_{R}) F_{\mu\nu}$$
$$Q_{8} = \frac{g}{16\pi^{2}} m_{b} (\bar{q}_{L} \sigma^{\mu\nu} T^{a} b_{R}) G^{a}_{\mu\nu}$$

• Semileptonic $Q_{9} = (\bar{q}_{L}\gamma_{\mu}b_{L})\sum(\bar{\ell}\gamma^{\mu}\ell)$ $Q_{10} = (\bar{q}_{L}\gamma_{\mu}b_{L})\sum(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell)$

GENERAL CONSIDERATIONS

$$\Gamma\left[\bar{B} \to X_{s}\ell^{+}\ell^{-}\right] = \Gamma\left[\bar{b} \to X_{s}\ell^{+}\ell^{-}\right] + O\left(\frac{\Lambda_{QCD}^{2}}{m_{b}^{2}}, \frac{\Lambda_{QCD}^{3}}{m_{b}^{3}}, \frac{\Lambda_{QCD}^{2}}{m_{c}^{2}}, \ldots\right)$$

$$\text{local OPE, optical theorem}$$

$$\text{HQET}$$

quark-hadron duality

Phase space cuts introduce sensitivity to new scales, the rate becomes less inclusive and new non-perturbative effects appear

(I) $q^2 = (p_{\ell^+} + p_{\ell^-})^2$ cut to remove $B \to X_s(J/\psi, \psi') \to X_s\ell^+\ell^$ background

(II) $M_{X_s} < [1.8, 2]$ GeV cut to remove the double semileptonic $b \to c \ell^- \bar{\nu} \to s \ell^- \ell^+ \bar{\nu} \nu$ background CUTS

- $oldsymbol{low: 1 GeV^2 < q^2 < 6 GeV^2 }$
- high: $q^2 > 14.4 \ GeV^2$
- Model resonances with data
- Away from resonances expansion in 1/mc²

• Hadronic invariant mass:

- high-q² region unaffected
- Experiments correct using Fermi motion model
- Leading power SCET suggests cuts are universal (same for b→sll and b→ulv)

STATUS IN THE SM

- Known at NNLO in QCD and NLO in QED
- Double differential rate:

- Standard approach: normalization to the full $B \rightarrow X_u \ell v$ rate
- At high-q² it is convenient to normalize to the $B \rightarrow X_u \ell \nu$ rate with the same q2 cut: $\mathcal{R}(s_0) = \int_{s_0}^1 d\hat{s} \frac{d\Gamma(\bar{B} \rightarrow X_s \ell^+ \ell^-)}{d\hat{s}} / \int_{s_0}^1 d\hat{s} \frac{d\Gamma(\bar{B}^0 \rightarrow X_u \ell \nu)}{d\hat{s}}$

STATUS IN THE SM

• SM predictions for the branching ratios: $\mathcal{B}_{\mu\mu}^{\text{low}} = (1.59 \pm 0.14) \times 10^{-6}$

 $\mathcal{B}_{ee}^{\text{low}} = (1.64 \pm 0.14) \times 10^{-6}$

scale, α_s/m_b , m_t

 $\mathcal{B}_{\mu\mu}^{\text{high}} = (2.4 \pm 0.7) \times 10^{-7}$ $\mathcal{B}_{ee}^{\text{high}} = (2.1 \pm 0.6) \times 10^{-7}$

m_b-3 parameters, scale

 $(\mathcal{B}_{\ell\ell}^{\text{high}})_{\text{exp}} = (4.4 \pm 1.2) \times 10^{-7}$

• New normalization: $\mathcal{R}(14.4 \text{GeV}^2)_{\mu\mu} = 2.29 \times 10^{-3} (1 \pm 0.13)$ $\mathcal{R}(14.4 \text{GeV}^2)_{ee} = 1.94 \times 10^{-3} (1 \pm 0.16)$ V_{ub}

- Experimental world averages: $(\mathcal{B}_{\ell\ell}^{\text{low}})_{\text{exp}} = (1.60 \pm 0.51) \times 10^{-6}$
- Forward-Backward asymmetry:

$$\begin{aligned} \left(q_0^2\right)_{\mu\mu} &= (3.50 \pm 0.12) \text{ GeV}^2 \quad \left(q_0^2\right)_{ee} = (3.38 \pm 0.11) \text{ GeV}^2 \\ \left(\bar{\mathcal{A}}_{\mu\mu}\right)_{\text{bin1}} &= [-9.1 \pm 0.9]\% \qquad \left(\bar{\mathcal{A}}_{ee}\right)_{\text{bin1}} = [-8.1 \pm 0.9]\% \\ \left(\bar{\mathcal{A}}_{\mu\mu}\right)_{\text{bin2}} &= [7.8 \pm 0.8]\% \qquad \left(\bar{\mathcal{A}}_{ee}\right)_{\text{bin2}} = [8.3 \pm 0.6]\% \\ \text{ dominant uncertainty: scale} \end{aligned}$$

MODEL INDEPENDENT NP REACH

- C_7 constrained by b \rightarrow s γ
- $C_7 > 0$ excluded in MFV 0
- pink ellipses are 0 allowed ranges in the most general MSSM $((\delta_{23}^{d,u})_{LL,RR} \neq 0)$

[Lee,Ligeti,Stewart,Tackmann]

10

QED LOGS: OVERVIEW

• The *rate is proportional to* $\alpha_{em}^2(\mu^2)$. Without QED corrections the scale μ is undetermined $\rightarrow \pm 4\%$ uncertainty

- Focus on corrections enhanced by large logarithms:
 - 0
 - $lpha_{
 m em} \log(m_\ell/m_b)$

 $\alpha_{\rm em} \log(m_W/m_b) \sim \alpha_{\rm em}/\alpha_s$ [WC, RG running] [Bobeth, Gambino, Gorbahn, Haisch] [Matrix Elements]

• The differential rate is not IR safe with respect to photon emission the results in the presence of a physical collinear logarithm, $\log(m_\ell/m_b)$

$$\mathbf{virtual} = \frac{A_{\text{soft+collinear}}}{\epsilon^2} + \frac{B_{\text{collinear}} + B_{\text{soft}}}{\epsilon} + C$$
$$\mathbf{real} = -\frac{A_{\text{soft+collinear}}}{\epsilon^2} - \frac{B'_{\text{collinear}} + B_{\text{soft}}}{\epsilon} + C'$$
$$\int dq^2 \left(B_{\text{collinear}} - B'_{\text{collinear}} \right) = 0$$

COMPARISON TO EXPERIMENTS

 Theory include all bremsstrahlung photons into the X_s system:

• *Experiment (fully inclusive, Super-B only)* One B is identified; on the other side only the two leptons are reconstructed:

 Experiment (Xs system reconstructed as a sum over exclusive states): At BaBar (Belle) photons with energies smaller than 30 (20) MeV are not resolved. Photons emitted inside a small cone (35x50 mrad) around the electrons are identified and included in the event reconstruction. Events with any other photon (E > 30 (20) MeV and outside of the cone) are vetoed.

Note: at BaBar (Belle) photons inside the cone are (are not) included in the definition of the q²

• Measured rates are sensitive to the soft photon cutoff and to the size of the cone

COMPARISON TO EXPERIMENTS

- Use BaBar b→sll MonteCarlo to study the effects of the photon cuts [Many thanks to Kevin Flood, Owen Long and Chris Schilling]
- Inclusive b→sll events are obtained combining fully inclusive events with M_{Xs} > 1.1 GeV with B->K^(*) ll exclusive samples to cover the low M_{Xs} (high q² region):

- Spectator effects are described using a Fermi motion model [Ali,Hiller]
- The Xs system is hadronized with JetSet
- Photons are modeled using PHOTOS (hard cut-off for $E_{\gamma} = 150 \text{ eV}$)

COMPARISON TO EXPERIMENTS

 PHOTOS generates photons with large multiplicity. Most of the energy is carried by a single photon:

• Comparison between event sets generated with and without PHOTOS yields:

NUMERICAL RESULTS

• Impact of real photon emission on integrated observables (in bracket the analytical result - without charmonium effects):

$$\begin{array}{c} \mu\mu & ee \\ ee \\ 10w \ q^2 & +1.5\% \ (+2.0\%) & +3.6\% \ (+5.2\%) \\ high \ q^2 & -4.4\% \ (-6.8\%) & -12.9\% \ (-17.6\%) \end{array}$$

- Good agreement taking into account that the MC sample contains events with multiple photon emissions
- Inclusion of the leading photon into the q² leads to integration over IR safe regions of the phase space and log-enhanced QED corrections vanish
- The weights of the K and K* samples relatively to the Xs (M_{Xs} > 1.1 GeV) one have to be supplemented externally (not built in the MC). We find:

 $X_{K}^{ee} = (8 \pm 2)\% \qquad \qquad X_{K}^{\mu\mu} = (11 \pm 2)\%$ $X_{K^{*}}^{ee} = (15 \pm 3)\% \qquad \qquad X_{K^{*}}^{\mu\mu} = (25 \pm 4)\%$ $X_{X_{s}(M_{X_{s}} > 1.1 \text{GeV})}^{\ell\ell} = 100\% - X_{K}^{\ell\ell} - X_{K^{*}}^{\ell\ell}$

INTERPRETATION

• Fully inclusive (analytical) vs sum over exclusive (BaBar/Belle):

	$low(\mu\mu)$	low(ee)	$high(\mu\mu)$	high(ee)
• Fully inclusive	1.59 x 10 ⁻⁶	1.64 x 10 ⁻⁶	2.4 x 10 ⁻⁷	2.1 x 10 ⁻⁷
BaBar	-(7.5±0.2)%	-(13.5±0.2)%	-(5.2±0.1)%	-(0.7±0.3)%
Belle	-(8.4±0.2)%	-(13.4±0.2)%	-(6.2±0.1)%	-(8.1±0.1)%

- We have checked that inclusion of the second most energetic photon in the cone does not affect the above results
- Effect induced by the soft photon cut (30/20 MeV for BaBar/Belle)
- Order of magnitude of the effect agrees with Sudakov double log:

$$\sigma_{\text{measured}} \simeq \sigma_0 \left(1 - \frac{\alpha_{\text{em}}}{\pi} \log \frac{m_b^2}{m_\ell^2} \log \frac{m_b^2}{E_{\text{cut}}^2} \right) \Rightarrow \sigma_0 \left| \exp \left[-\frac{\alpha_{\text{em}}}{2\pi} \log \frac{m_b^2}{m_\ell^2} \log \frac{m_b^2}{E_{\text{cut}}^2} \right] \right|^2$$

• The MC sample contains events with up to 12 photons: Sudakov resummation is effectively implemented

ALTERNATIVE SELECTION

- Previous results obtained using the following cuts:
 - $\ \ \mu^{+}\mu^{-}$ final state $\rightarrow E_{\gamma} < 30 \text{ MeV}$
 - e^+e^- final state $\rightarrow E_{\gamma} < 30$ MeV or γ_1 in a (35,50) mrad cone around e^\pm
- Alternative possibility:
 - Construct $m_{ES} = \sqrt{E_{beam}^2 \vec{P}_B^2}$ and $\Delta E = E_B E_{beam}$ for each event
 - Impose $m_{ES} > 5.2 \text{ GeV}$ and $|\Delta E| < 100 \text{ MeV}$
 - Note that $p_B = (E_B, \vec{P}_B)$ is the reconstructed B meson momentum in the colliding electrons COM frame

 - $\mu^+\mu^-$ final state $\rightarrow p_B = p_{X_s} + p_{\mu^+} + p_{\mu^-}$ e^+e^- final state $\rightarrow p_B = p_{X_s} + p_{e^+} + p_{e^-} + p_{\gamma}$ $E_{\gamma} > 30 \text{ MeV \& in the cone}$

	$low(\mu\mu)$	low(ee)	$\operatorname{high}(\mu\mu)$	high(ee)
Fully inclusive	1.59 x 10 ⁻⁶	1.64 x 10 ⁻⁶	2.4 x 10 ⁻⁷	2.1 x 10 ⁻⁷
BaBar (alternative)	-(5.5±0.2)%	-(10.4±0.2)%	-(2.7±0.1)%	-(2.8±0.3)%
Belle (alternative)	-(5.5±0.2)%	-(8.9±0.2)%	-(2.7±0.1)%	-(3.5±0.1)%

PART 2: UT WITHOUT SEMILEPTONIC DECAYS

E.L. and A. Soni, arXiv:0903.5059 J. Laiho, E.L., R. van de Water, arXiv:0910.2928 E.L. and A. Soni, arXiv:0912.0002 Pay tribute to: UTfit CKMfitter Buras, Guadagnoli

UNITARITY TRIANGLE

• Present status of the Unitarity Triangle fit:

• Note the ubiquitous use of $|V_{cb}|$ for the individual constraints

STATUS OF VXB

• Presently we have discrepancies at the $(1-2)\sigma$ level between exclusive and inclusive determinations of $|V_{cb}|$ and $|V_{ub}|$

 $|V_{cb}|_{\text{excl}} = (38.6 \pm 1.2) \times 10^{-3}$ $|V_{cb}|_{\text{incl}} = (41.31 \pm 0.76) \times 10^{-3}$

• $b \rightarrow c$:

- Error on exclusive V_{cb} from D* data rescaled to take into account bad experimental χ²
- Inclusive calculation quite mature (NNLO and α_s/m_b² not in fit yet)
- Issues with violation of quarkhadron duality (D and D* represent 70% of the spectrum)

• $b \rightarrow u$:

 $|V_{ub}|_{\text{excl}} = (34.2 \pm 0.37) \times 10^{-4}$ $|V_{ub}|_{\text{incl}} = (40.3 \pm 1.5^{+2.0}_{-2.5}) \times 10^{-4}$

- Inclusive calculation is sensitive to non-local effects (Shape function)
- New NNLO corrections seem to push the |V_{ub}| to higher central values (!)

REMOVING VXB

- $|V_{ub}|$ not essential to the fit (main effect is to favor NP in ε_K rather than in B_d mixing)
- $|V_{cb}|$ seems essential to ε_K , $B \rightarrow \tau v$ and ΔM_{Bs} : $\Delta M_{B_s} = \chi_s f_{B_s}^2 \hat{B}_{B_s} A^2 \lambda^4$ $|\varepsilon_K| = 2\chi_{\varepsilon} \hat{B}_K \kappa_{\varepsilon} \eta \lambda^6 \left(A^4 \lambda^4 (\rho - 1) \eta_2 S_0(x_t) + A^2 \left(\eta_3 S_0(x_c, x_t) - \eta_1 S_0(x_c) \right) \right)$ $BR(B \rightarrow \tau \nu) = \chi_{\tau} f_B^2 A^2 \lambda^6 (\rho^2 + \eta^2)$
- The interplay of these constraints allows to drop V_{cb}, while still constraining new physics in K mixing:

 $\begin{aligned} |\varepsilon_K| &\propto \hat{B}_K \ (f_{B_s} \hat{B}_s^{1/2})^{-4} \ f(\rho, \eta) \\ |\varepsilon_K| &\propto \hat{B}_K \ \text{BR}(B \to \tau \nu)^2 \ f_B^{-4} \ g(\rho, \eta) \end{aligned}$

REMOVING VXB

X:	$ \widehat{B}_K $	$ V_{cb} $	$\left f_{B_s}\widehat{B}_s^{1/2}\right $	$ \mathrm{BR}(B\to\tau\nu) $	f_B
$\delta X:$	4%	$\left 2.5\%\right $	5%	26%	5%
$\delta \varepsilon_K$:	4%	10%	20%	52%	20%

2 FIT W/OUT SEMILEPTONIC DECAYS

SUPERB EXPECTATIONS

$\delta_{\tau} = \delta BI$	$R(B \to \tau)$	$\delta_{s} = \delta(f)$	$B_s $	$\overline{B_s}$)	
$\delta_{ au}$ δ_{s}	$p_{\rm SM}$	$\theta_d \pm \delta \theta_d$	p_{θ_d}	$\theta_d/\delta\theta_d$	
*26% *5%	20%	$-(8.9\pm4.2)^{\circ}$	89%	2.1σ	$\int_{0.6}^{0.7} \frac{\delta f_{Bs} \sqrt{B_s}}{\delta BR(B \rightarrow \tau \nu) = 10\%}$
*26% 2.5%	3.5%	$-(9.6\pm3.5)^{\circ}$	88%	2.7σ	$0.6 \qquad 0.6 \qquad 0.6 \qquad \delta f_{Bs} \sqrt{B_s} = 2.5\% \& \delta BR(B \to \tau \nu) = 10\%$
*26% 1%	0.1%	$-(10.1\pm2.9)^{\circ}$	87%	3.4σ	0.5 current uncertainties
10% *5%	1%	$-(8.8\pm2.7)^{\circ}$			$\overline{\eta}_{_{0.4}}$
3% *5%	0.04%	$-(8.8\pm2.2)^{\circ}$	89%	4.0σ	0.3
$10\% \ 2.5\%$		$-(9.2\pm2.5)^{\circ}$			$\Delta M_s / \Delta M_d + \alpha + \beta + \gamma$
	0.004%	$-(9.6 \pm 2.2)^{\circ}$			
$\frac{3\%}{200}$ $\frac{2.5\%}{100}$		$-(9.1\pm2.1)^{\circ}$			$\overline{ ho}$
3% 1%	0.0001%	$-(9.4\pm1.9)^{\circ}$	86%	5.0σ	

- Even modest improvements on B→τν have tremendous impact on the UT fit (10 ab⁻¹ → 10%; 50 ab⁻¹ → 3%)
- Interplay with reduced errors on B_s mixing can produce a 5σ effect
- Fit is completely clean

CONCLUSIONS

(1) Inclusive b→sll decays

- Calculations are approaching the "end-of-the-road"
- Electromagnetic corrections: effect of BaBar & Belle treatment of soft and collinear photons *seems* to have very large impact (7-13%)
- **QED** effects on H_T and H_L ($\Gamma = H_T + H_L$) are at the top of the TODO list

(2) UT fit without semileptonic decays

- As long as V_{xb} determinations remain problematic, removing semileptonic decays allows to cast the UT fit as a clean & high-precision tool to identify new physics
- Super-B level precision on $B \rightarrow \tau v$ coupled with improvements on the lattice determination of $f_{B_s} \hat{B}_s^{1/2}$ can test the SM at the 5 σ level

BACKUP SLIDES

$$\mathcal{L}_{eff} = \frac{4G_F}{\sqrt{2}} V_{tb} V_{tq}^* \left[\sum_{i=1}^{10} C_i Q_i + \frac{V_{ub} V_{uq}^*}{V_{tb} V_{tq}^*} \sum_{i=1}^{2} C_i (Q_i - Q_i^u) + \sum_{\substack{i=3 \\ \text{for QED corrections}}}^6 C_{iQ} Q_{iQ} + C_b Q_b \right]$$
for QED corrections
$$\Lambda_{\text{QCD}} \qquad \text{few} \times \Lambda_{\text{QCD}} \qquad m_b \qquad m_{W,Z} \qquad m_{\text{NP}}$$
non-perturbative perturbative

Current-current:

$$Q_1 = (\bar{q}_L \gamma_\mu T^a c_L) (\bar{c}_L \gamma^\mu T^a b_L)$$
$$Q_2 = (\bar{q}_L \gamma_\mu c_L) (\bar{c}_L \gamma^\mu b_L)$$

$$Q_1^u = (\bar{q}_L \gamma_\mu T^a u_L) (\bar{u}_L \gamma^\mu T^a b_L)$$
$$Q_2^u = (\bar{q}_L \gamma_\mu u_L) (\bar{u}_L \gamma^\mu b_L)$$

ŰL,CL

dL

W

$$\mathcal{L}_{eff} = \frac{4G_F}{\sqrt{2}} V_{tb} V_{tq}^* \left[\sum_{i=1}^{10} C_i Q_i + \frac{V_{ub} V_{uq}^*}{V_{tb} V_{tq}^*} \sum_{i=1}^{2} C_i (Q_i - Q_i^u) + \sum_{\substack{i=3 \\ \text{for QED corrections}}}^6 C_{iQ} Q_{iQ} + C_b Q_b \right]$$
for QED corrections
$$\Lambda_{\text{QCD}} \qquad \text{few} \times \Lambda_{\text{QCD}} \qquad m_b \qquad m_{W,Z} \qquad m_{\text{NP}}$$
non-perturbative perturbative

• QCD penguins:

$$Q_{3} = (\bar{q}_{L}\gamma_{\mu}b_{L})\sum(\bar{q}\gamma^{\mu}q)$$

$$Q_{4} = (\bar{q}_{L}\gamma_{\mu}T^{a}b_{L})\sum(\bar{q}\gamma^{\mu}T^{a}q)$$

$$Q_{5} = (\bar{q}_{L}\gamma_{\mu_{1}}\gamma_{\mu_{2}}\gamma_{\mu_{3}}b_{L})\sum(\bar{q}\gamma^{\mu_{1}}\gamma^{\mu_{2}}\gamma^{\mu_{3}}q)$$

$$Q_{6} = (\bar{q}_{L}\gamma_{\mu_{1}}\gamma_{\mu_{2}}\gamma_{\mu_{3}}T^{a}b_{L})\sum(\bar{q}\gamma^{\mu_{1}}\gamma^{\mu_{2}}\gamma^{\mu_{3}}T^{a}q)$$

$$\mathcal{L}_{eff} = \frac{4G_F}{\sqrt{2}} V_{tb} V_{tq}^* \left[\sum_{i=1}^{10} C_i Q_i + \frac{V_{ub} V_{uq}^*}{V_{tb} V_{tq}^*} \sum_{i=1}^{2} C_i (Q_i - Q_i^u) + \sum_{\substack{i=3 \\ \text{for QED corrections}}}^6 C_{iQ} Q_{iQ} + C_b Q_b \right]$$
for QED corrections
$$\Lambda_{\text{QCD}} \qquad \text{few} \times \Lambda_{\text{QCD}} \qquad m_b \qquad m_{W,Z} \qquad m_{\text{NP}}$$
non-perturbative perturbative

• EW penguins:

$$Q_{3Q} = (\bar{q}_L \gamma_\mu b_L) \sum Q_q (\bar{q} \gamma^\mu q)$$

$$Q_{4Q} = (\bar{q}_L \gamma_\mu T^a b_L) \sum Q_q (\bar{q} \gamma^\mu T^a q)$$

$$Q_{5Q} = (\bar{q}_L \gamma_{\mu_1} \gamma_{\mu_2} \gamma_{\mu_3} b_L) \sum Q_q (\bar{q} \gamma^{\mu_1} \gamma^{\mu_2} \gamma^{\mu_3} q)$$

$$Q_{6Q} = (\bar{q}_L \gamma_{\mu_1} \gamma_{\mu_2} \gamma_{\mu_3} T^a b_L) \sum Q_q (\bar{q} \gamma^{\mu_1} \gamma^{\mu_2} \gamma^{\mu_3} T^a q)$$

POWER CORRECTIONS

<
$$m_b^2 + q^2 - 2m_b\sqrt{q^2} = \left(m_b - \sqrt{q^2}\right)^2$$

OPE is an expansion in $\Lambda_{QCD}/(m_b-\sqrt{q^2})$ and breaks down at $q^2\sim m_b^2$

b

$Q^2 CUTS$

• Quark-hadron duality breaks down when the rate is dominated by charmonium resonances:

- Three regions:
 0.04 GeV² < q² < 1 GeV²
 1 GeV² < q² < 6 GeV²
 q² > 14.4 GeV²
 dominated by the photon pole (b→sγ)
- Resonances model using data:
 - ★ Krüger-Sehgal (e+e- data)
 - ★ Simple Breit-Wigner
- Away from resonances expansion in 1/m_c² is performed

$Q^2 CUTS$

- Alternatively use a Breit-Wigner ansatz to parametrize <O₂>
- The two approaches agree well above and below the resonances but not in between
- The impact in the low q² region is +1.8%, in the high q² region is -10%

Xs CUT

• MX cuts required to suppress the $b \rightarrow c l^{-}v \rightarrow s l^{-}l^{+}v v$ background

Correction factor added in experimental results

• Framework: Fermi motion, SCET

Xs CUT

• New idea: use SCET to describe the X_s system

 $p_X^+ \ll p_X^- \Longrightarrow m_X^2 \ll E_X^2$ X_S is a hard-collinear mode: $\Lambda^2 \ll p_{X_s}^2 \sim \Lambda m_b \ll m_b^2$

• The effect seems very large (power corrections?)

Xs CUT

 At leading power and at order α_s, these corrections are a universal multiplicative factor:

• Reduce non-perturbative effects by considering: [Lee, Ligeti, Stewart, Tackmann] $\Gamma^{\rm cut}(B \to X_s \ell^+ \ell^-) / \Gamma^{\rm cut}(B \to X_u \ell \bar{\nu})$ [same M_X cut]

INPUTS FOR $B \rightarrow SLL$

(1)

$\alpha_s(M_z) = 0.1189 \pm 0.0010 \ [40]$	$m_e = 0.51099892 \text{ MeV}$
$\alpha_e(M_z) = 1/127.918$	$m_{\mu} = 105.658369 \text{ MeV}$
$s_W^2 \equiv \sin^2 \theta_W = 0.2312$	$m_{\tau} = 1.77699 \text{ GeV}$
$ V_{ts}V_{tb}/V_{cb} ^2 = 0.962 \pm 0.002 \ [41]$	$m_c(m_c) = (1.224 \pm 0.017 \pm 0.054) \text{ GeV} [42]$
$ V_{ts}V_{tb}/V_{ub} ^2 = (1.28 \pm 0.12) \times 10^2 [41]$	$m_b^{1S} = (4.68 \pm 0.03) \text{ GeV} [31]$
$BR(B \to X_c e\bar{\nu})_{exp} = 0.1061 \pm 0.0017 \ [43]$	$m_{t,\text{pole}} = (170.9 \pm 1.8) \text{ GeV} [44]$
$M_Z = 91.1876 \text{ GeV}$	$m_B = 5.2794 \text{ GeV}$
$M_W = 80.426 \text{ GeV}$	$C = 0.58 \pm 0.01 \ [31] = \left \frac{V_{ub}}{V_{cb}} \right ^2 \frac{\Gamma(\bar{B} \to X_c e\bar{\nu})}{\Gamma(\bar{B} \to X_u e\bar{\nu})}$
$\lambda_2^{\text{eff}} = (0.12 \pm 0.02) \text{ GeV}^2$	$ \rho_1 = (0.06 \pm 0.06) \text{ GeV}^3 [31] $
$\lambda_1^{\text{eff}} = (-0.243 \pm 0.055) \text{ GeV}^2 [42]$	$f_u^0 + f_s = (0 \pm 0.2) \text{ GeV}^3 [24]$
$f_u^0 - f_s = (0 \pm 0.04) \text{ GeV}^3 [24]$	$f_u^{\pm} = (0 \pm 0.4) \text{ GeV}^3 [24]$

BRANCHING RATIO

Theory [Huber, Lunghi, Misiak, Wyler; Huber, Hurth, Lunghi]:

Experiment [BaBar and Belle]:

 $\mathcal{B}_{\ell\ell}^{\rm low} = (1.60 \pm 0.51) \times 10^{-6}$ $\mathcal{B}_{\ell\ell}^{\text{high}} = (4.4 \pm 1.2) \times 10^{-7}$

in large power corrections over which we have a poor control

LOW-Q²: FBA

[Huber,Hurth,Lunghi]

Integrated observables:

Bin 1 $(q^2 \in [1, 3.5] \text{GeV}^2)$ Bin 2 $(q^2 \in [3.5, 6] \text{GeV}^2)$ low $-q^2 (q^2 \in [1, 6] \text{GeV}^2)$ $(\bar{\mathcal{A}}_{\mu\mu})_{\text{bin1}} = [-9.1 \pm 0.9]\%$ $(\bar{\mathcal{A}}_{\mu\mu})_{\text{bin2}} = [7.8 \pm 0.8]\%$ $(\bar{\mathcal{A}}_{\mu\mu})_{\text{low}} = [-1.5 \pm 0.9]\%$ $(\bar{\mathcal{A}}_{ee})_{\text{bin1}} = [-8.1 \pm 0.9]\%$ $(\bar{\mathcal{A}}_{\mu\mu})_{\text{bin2}} = [8.3 \pm 0.6]\%$ $(\bar{\mathcal{A}}_{\mu\mu})_{\text{low}} = [-0.9 \pm 0.9]\%$

HIGH-Q²: REDUCING THE ERRORS

• New idea: normalize the decay width to the semileptonic $B \rightarrow X_u lv$ rate with the *same dilepton invariant mass cut*:

$$\mathcal{R}(s_0) = \frac{\int_{\hat{s}_0}^1 \mathrm{d}\hat{s} \, \frac{\mathrm{d}\Gamma(\bar{B} \to X_s \ell^+ \ell^-)}{\mathrm{d}\hat{s}}}{\int_{\hat{s}_0}^1 \mathrm{d}\hat{s} \, \frac{\mathrm{d}\Gamma(\bar{B}^0 \to X_u \ell\nu)}{\mathrm{d}\hat{s}}}$$

[Ligeti,Tackmann]

- Impact of non-perturbative $1/m_b^2$ and $1/m_b^3$ power corrections drastically reduced
- In the high-q² region we find: $\mathcal{R}(14.4 \text{GeV}^2) = 2.29 \times 10^{-3} \left(1 \pm 0.04_{\text{scale}} \pm 0.02_{m_t} \pm 0.01_{C,m_c} \pm 0.006_{m_b} \pm 0.005_{\alpha_s} \pm 0.09_{\text{CKM}} \pm 0.003_{\lambda_2} \pm 0.03_{\rho_1} \pm 0.03_{f_u^0 + f_s} \pm 0.05_{f_u^0 - f_s} \right)$ $= 2.29 \times 10^{-3} (1 \pm 0.13) \qquad \text{[Huber,Hurth,Lunghi]}$
- The largest source of uncertainty is V_{ub}

HIGH-Q²: REDUCING THE ERRORS

[Belle, 87 fb⁻¹, hep-ex/0311048]

[BaBar, 383 m Y, arXiv:0708.3702]

- Experiments already positioned to measure $B \rightarrow X_u lv$ with a q^2 cut
- Separation of B⁰ and B⁺ is important to control WA contributions

MODEL INDEPENDENT ANALYSIS

• Use $B \rightarrow X_s \gamma$ to constrain C_7 and C_8 :

Theory: $\mathcal{B}(\bar{B} \to X_s \gamma)_{\text{SM}} = (3.15 \pm 0.23) \times 10^{-4}$

Experiment: $\mathcal{B}(\bar{B} \to X_s \gamma)_{exp} = (3.52 \pm 0.25) \times 10^{-4}$

MODEL INDEPENDENT ANALYSIS

• Use C₇ and C₈ from $B \rightarrow X_s \gamma$ to constrain C₉ and C₁₀

- $C_7 > 0$ requires sizable contributions to C_9 and C_{10}
- Reversing the sign of C₇ we obtain $\mathcal{B}(\bar{B} \to X_s \ell^+ \ell^-) = (3.11 \pm 0.22) \times 10^{-6}$ hence the SM sign is favored at the 2.7 σ level [Gambino,Haisch,Misiak]

MFV SUSY

- Computing aid: *Spheno* for the RGE of the MSSM and *MicrOMEGAs* for the relic dark matter density
- Effects on C9 and C10 are tiny: $|C_{9,10}(\mu_0)/C_{9,10}^{SM}(\mu_0)| < 0.1$
- b→sγ shapes the surviving parameter space:

SUSY: MIA ANALYSIS

• In the most general MSSM, gluino and chargino diagrams can lead to huge contributions to the semileptonic operators:

 $0.7 < C_9(\mu_0) / C_9^{\text{SM}}(\mu_0) < 1.3$ $0 < C_{10}(\mu_0) / C_{10}^{\text{SM}}(\mu_0) < 2$

SUSY: MIA ANALYSIS

The C₇ > 0 scenario is viable (with some degree of fine tuning)
More than one mass insertion present at the same time

SUSY: MIA ANALYSIS

• Constraints on (23) mass insertions in the down sector [Ciuchini,Silvestrini]

INPUTS TO THE UT FIT

$$\begin{aligned} |V_{cb}|_{\text{excl}} &= (38.6 \pm 1.2)10^{-3} & \eta_1 = 1 \\ |V_{cb}|_{\text{incl}} &= (41.31 \pm 0.76)10^{-3} & \eta_2 = 0 \\ |V_{cb}|_{\text{incl}+\text{excl}} &= (40.3 \pm 1.0)10^{-3} & \eta_3 = 0 \\ |V_{ub}|_{\text{excl}} &= (3.42 \pm 0.37)10^{-3} & \eta_B = 0 \\ |V_{ub}|_{\text{incl}} &= (4.03 \pm 0.15^{+0.20}_{-0.25})10^{-3} & \xi = 1.2 \\ \Delta m_{B_d} &= (0.507 \pm 0.005) \text{ ps}^{-1} & \alpha = (8 \\ \Delta m_{B_s} &= (17.77 \pm 0.12) \text{ ps}^{-1} & S_{\psi K_S} = \\ \varepsilon_K &= (2.229 \pm 0.012) \times 10^{-3} & \gamma = (7 \\ m_c(m_c) &= (1.268 \pm 0.009) \text{ GeV} & \widehat{B}_K = \\ m_{t,pole} &= (172.4 \pm 1.2) \text{ GeV} & \kappa_{\varepsilon} = 0 \\ f_K &= (155.8 \pm 1.7) \text{ MeV} & f_B = (6 \\ f_{B_s} \sqrt{\widehat{B}_s} &= (275 \pm 13) \text{ MeV} & \lambda = 0.2 \\ \text{BR}(B \to \tau \nu) &= (1.43 \pm 0.37)10^{-4} \\ \end{bmatrix}$$

 $.51 \pm 0.24$ 0.5765 ± 0.0065 $.47 \pm 0.04$ 0.551 ± 0.007 243 ± 0.028 $(9.5 \pm 4.3)^{\circ}$ $= 0.672 \pm 0.024$ $(8 \pm 12)^{\circ}$ 0.725 ± 0.026 0.92 ± 0.01 $(192.8 \pm 9.9) \text{ MeV}$ 2255 ± 0.0007