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outline

(1) Precision calculations of inclusive b→sll decays:

Present status of SM predictions and NP implications

Electromagnetic corrections: issues and resolution (preliminary)

(2) UT fit without semileptonic decays:

Present status of the UT fit and hints for NP

Issues with Vcb and Vub from semileptonic decays

Impact of a determination of                    with super-B precision B → τν



part 1:
inclusive b→sll
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T. Huber, T. Hurth and E.L., arXiv:0712.3009
T. Huber, T. Hurth and E.L., in preparation
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general considerations

Phase space cuts introduce sensitivity to new scales, the rate 
becomes less inclusive and new non-perturbative effects appear

local OPE, optical theorem
quark-hadron duality

  
HQET

(I)                          cut to remove                                    
background

b→ c!−ν̄ → s!−!+ν̄ν

(II)                           cut to remove the double semileptonic                                     
x                             background
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+"−
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cuts

• Di-lepton invariant mass: 

low: 1 GeV2 < q2 < 6 GeV2

high: q2 > 14.4 GeV2

Model resonances with data

Away from resonances expansion 
in 1/mc2

q2

• Hadronic invariant mass:

q2

M2
X

q 2
< (m

B −m
X

s ) 2

high-q2

low-q2

Ba
Ba

r
Be

lle

high-q2 region unaffected
Experiments correct using Fermi 
motion model
Leading power SCET suggests cuts 
are universal (same for b→sll and 
b→ulν)
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status in the sm

• Known at NNLO in QCD and NLO in QED

d2Γ
dq2dz

=
3
8

[
(1 + z2)HT (q2) + 2zHA(q2) + 2(1− z2)HL(q2)

]

dAFB

dq2
=

3
4
HA
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dq2
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[(
C9 +

2
ŝ
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10

]
Independent 
combinations of WC’s

• Double differential rate:

• Standard approach: normalization to the full B→Xuℓν rate

• At high-q2 it is convenient to normalize to the B→Xuℓν rate with 

the same q2 cut:

z = cos θ!

B
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ℓ
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dŝ
/
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dŝ
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status in the sm

Bhigh
µµ = (2.4± 0.7)× 10−7

• SM predictions for the branching ratios:

Bhigh
ee = (2.1± 0.6)× 10−7

• Experimental world averages:

scale, αs/mb, mt mb-3 parameters, scale

• Forward-Backward asymmetry:

• New normalization: R(14.4GeV2)µµ = 2.29× 10−3(1± 0.13)
R(14.4GeV2)ee = 1.94× 10−3(1± 0.16)

Vub
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dominant uncertainty: scale
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Blow
ee = (1.64± 0.14)× 10−6
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µµ = (1.59± 0.14)× 10−6



model independent np reach

• Present bounds:
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• Future possibilities (extrapolated to 1 ab-1):

(δd,u
23 )LL,RR != 0

1

[Lee,Ligeti,Stewart,Tackmann]



• The rate is proportional to                 . Without QED corrections the scale μ is 
undetermined → ± 4% uncertainty

α2
em(µ2)

• Focus on corrections enhanced by large logarithms:
 [WC, RG running]

[Matrix Elements]αem log(m!/mb)
αem log(mW /mb) ∼ αem/αs

qed logs: overview

• The differential rate is not IR safe with respect to photon emission the 
results in the presence of a physical collinear logarithm, 

 

log(m!/mb)

QED contribution

q2 [GeV2]

virtual = 

real = 

∫
dq2 (Bcollinear −B′

collinear) = 0

Asoft+collinear

ε2
+

Bcollinear + Bsoft

ε
+ C

−Asoft+collinear

ε2
− B′

collinear + Bsoft

ε
+ C ′
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[Bobeth,Gambino,Gorbahn,Haisch]



comparison to experiments

• Theory 
include all bremsstrahlung 
photons into the Xs system:

Xs

!+!−

B

!−ν

c

e−

e+

B̄

!+!−

Xs

B̄

• Experiment (fully inclusive, Super-B only)
One B is identified; on the other side only 
the two leptons are reconstructed:

• Experiment (Xs system reconstructed as a sum over exclusive states):
At BaBar (Belle) photons with energies smaller than 30 (20) MeV are not 
resolved. Photons emitted inside a small cone (35x50 mrad) around the electrons 
are identified and included in the event reconstruction. Events with any other 
photon (E > 30 (20) MeV and outside of the cone) are vetoed.

• Measured rates are sensitive to the soft photon cutoff and to the size of the cone

Note: at BaBar (Belle) photons inside the cone are (are not) included in 
the definition of the q2

1



• Use BaBar b→sll MonteCarlo to study the effects of the photon cuts

• Inclusive b→sll events are obtained combining fully inclusive events with 
MXs > 1.1 GeV with B->K(*) ll exclusive  samples to cover the low MXs (high 
q2 region):

[Many thanks to Kevin Flood, Owen Long and Chris Schilling]

• Spectator effects are described using a Fermi motion model [Ali,Hiller]
• The Xs system is hadronized with JetSet
• Photons are modeled using PHOTOS (hard cut-off for Eγ = 150 eV)

comparison to experiments
1
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• PHOTOS generates photons with large multiplicity. Most of the energy is 
carried by a single photon:

comparison to experiments

• Comparison between event sets generated with and without PHOTOS yields:
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Prelim
inary

numerical results

• Impact of real photon emission on integrated observables (in bracket the 
analytical result - without charmonium effects): 

+1.5% (+2.0%) +3.6% (+5.2%)

-4.4% (-6.8%) -12.9% (-17.6%)

Good agreement taking into account that the MC sample contains events 
with multiple photon emissions
Inclusion of the leading photon into the q2 leads to integration over IR safe 
regions of the phase space and log-enhanced QED corrections vanish

high q2

low q2

µµ ee

1

• The weights of the K and K* samples relatively to the Xs (MXs > 1.1 GeV) 
one have to be supplemented externally (not built in the MC). We find:

Xee
K∗ = (15± 3)%

Xµµ
K = (11± 2)%

Xµµ
K∗ = (25± 4)%

X!!
Xs(MXs >1.1GeV) = 100%−X!!

K −X!!
K∗

Xee
K = (8± 2)%



Prelim
inary

interpretation

• Effect induced by the soft photon cut (30/20 MeV for BaBar/Belle)
• Order of magnitude of the effect agrees with Sudakov double log:

• The MC sample contains events with up to 12 photons: Sudakov 
resummation is effectively implemented

σmeasured ! σ0

(
1 − αem

π
log

m2
b

m2
!

log
m2

b

E2
cut

)
⇒ σ0

∣∣∣∣exp
[
− αem

2π
log

m2
b

m2
!

log
m2

b

E2
cut

]∣∣∣∣
2

1

1.59 x 10-6 1.64 x 10-6 2.4 x 10-7 2.1 x 10-7

-(7.5±0.2)% -(13.5±0.2)% -(5.2±0.1)% -(0.7±0.3)%

-(8.4±0.2)% -(13.4±0.2)% -(6.2±0.1)% -(8.1±0.1)%

BaBar

Belle

Fully inclusive 

low(µµ) low(ee) high(µµ) high(ee)

• Fully inclusive (analytical) vs sum over exclusive (BaBar/Belle):!
!

• We have checked that inclusion of the second most energetic photon in the 
cone does not affect the above results 



Prelim
inary

alternative selection
1

• Previous results obtained using the following cuts:
μ+μ- final state → Eγ < 30 MeV
e+e- final state → Eγ < 30 MeV or γ1 in a (35,50) mrad cone around e±

• Alternative possibility:
Construct                                       and                                  for each event 
Impose                             and 
Note that                            is the reconstructed B meson momentum in the 
colliding electrons COM frame
μ+μ- final state → 
e+e- final state →

mES =
√

E2
beam − !P 2

B ∆E = EB − Ebeam

pB = (EB , !PB)

pB = pXs + pµ+ + pµ−

mES > 5.2 GeV |∆E| < 100 MeV

pB = pXs + pe+ + pe− + pγ
Eγ > 30 MeV & in the cone

1.59 x 10-6 1.64 x 10-6 2.4 x 10-7 2.1 x 10-7

-(5.5±0.2)% -(10.4±0.2)% -(2.7±0.1)% -(2.8±0.3)%

-(5.5±0.2)% -(8.9±0.2)% -(2.7±0.1)% -(3.5±0.1)%

BaBar (alternative)

Belle (alternative)

Fully inclusive 

low(µµ) low(ee) high(µµ) high(ee)



part 2:
ut without semileptonic decays

E.L. and A. Soni, arXiv:0903.5059
J. Laiho, E.L., R. van de Water, arXiv:0910.2928
E.L. and A. Soni, arXiv:0912.0002

UNITARITY

Vcb

Vub

Pay tribute to:
UTfit
CKMfitter
Buras, Guadagnoli
...



unitarity triangle 
2

• Present status of the Unitarity Triangle fit:

• Note the ubiquitous use of |Vcb| for the individual constraints



status of vxb
2

• Presently we have discrepancies at the (1-2)σ level between 
exclusive and inclusive determinations of |Vcb| and |Vub|

• b → c:

|Vub|incl = (40.3 ± 1.5+2.0
−2.5)× 10−4|Vcb|incl = (41.31 ± 0.76)× 10−3

|Vcb|excl = (38.6 ± 1.2)× 10−3 |Vub|excl = (34.2 ± 0.37)× 10−4

• b → u:

Error on exclusive Vcb from D* 
data rescaled to take into 
account bad experimental χ2

Inclusive calculation quite 
mature (NNLO and αs/mb2 not 
in fit yet) 
Issues with violation of quark-
hadron duality (D and D* 
represent 70% of the spectrum)

Inclusive calculation is sensitive 
to non-local effects (Shape 
function) 

New NNLO corrections seem to 
push the |Vub| to higher central 
values (!)



removing vxb
2

• |Vub| not essential to the fit (main effect is to favor NP in       
rather than in Bd mixing)

εK

• |Vcb| seems essential to       , B→τν and ΔMBs :εK

|εK | = 2χεB̂Kκε ηλ6
(
A4λ4(ρ− 1)η2S0(xt) + A2

(
η3S0(xc, xt)− η1S0(xc)

))
∆MBs = χs f2

Bs
B̂BsA

2λ4

BR(B → τν) = χτf2
BA2λ6(ρ2 + η2)

• The interplay of these constraints allows to drop Vcb, while still 
constraining new physics in K mixing: 

|εK | ∝ B̂K (fBsB̂
1/2
s )−4 f(ρ, η)

|εK | ∝ B̂K BR(B → τν)2 f−4
B g(ρ, η)



2
removing vxb

4

FIG. 3: 95 % C.L. bounds in the (tan β, mH+) plane. The
shaded regions are allowed in the 2HDM. The dotted (dashed)
lines show how these regions are modified in two MSSM sce-
narios with ε0 = −0.01 (0.01); the arrows indicate the allowed
regions.

that the result |Vcb|fit = (39.7± 1.7)× 10−3 agrees nicely
with the average we quote in Table I. Finally, we remind
the reader that fBsB̂

1/2
s and ξ = fBsB̂

1/2
s /fBdB̂1/2

d are
largely independent because they are affected by different
lattice systematics and we average results from different
lattice collaborations thereby reducing the possible cor-
relation between statistical errors. A surprising outcome
is the slight preference of the fit for new physics in Bd

mixing. This can be seen by extracting the parameters
Cε, θd and rH

C
noVqb
ε = 1.30 ± 0.23 ⇒ (1.3σ, p = 40%), (19)

θ
noVqb

d = −(8.9 ± 4.2)o ⇒ (2.1σ, p = 89%), (20)

r
noVqb

H = 1.7 ± 0.5 ⇒ (1.4σ, p = 43%). (21)

and noting that new physics in Bd mixing yields a much
larger p–value than new physics in K mixing or in B →
τν.

As an illustration of the implications of these con-
straints we consider the impact on two Higgs doublet
models. Within these models the rH %= 1 result can
be translated into a constraint on the mass of charged
Higgs. In the type-II two Higgs Doublet Model (2HDM)
and in the Minimal Supersymmetric SM (MSSM) we can
write [22] rH = (1−XH)2 where

XH =
m2

B+

m2
H+

tan2 β

1 + ε0 tanβ
, (22)

tanβ is the ratio of the vacuum expectation values of the
Higgses that couple to up and down quarks and ε0 sum-
marizes supersymmetric corrections to the ubW+ vertex.
In the 2HDM we have ε0 = 0; in the MSSM ε0 does not
vanish and typical values range at the 10−2 level. A full
supersymmetric analysis of Eq. (21) is beyond the scope
of this letter. In Fig. 3 we present the regions of the
(tanβ,mH+) that are allowed at 95% C.L. for various
values of ε0. In the 2HDM case we show also the lower

bound mH+ > 295 GeV induced by B → Xsγ [23]. In the
MSSM, chargino loops can compensate charged Higgs ef-
fects; therefore the bound on the charged Higgs depends
strongly on the chosen point in the supersymmetric pa-
rameter space. From the observation that XH is always
positive follows that the charged Higgs exchange can only
reduce the B → τν branching ratio unless XH > 2 im-
plying a sign switch in the B → τν amplitude. Eq. (21)
implies XH = (2.3 ± 0.2) ∨ (−0.3 ± 0.2), therefore at
the 1σ level, the only allowed parameter space corre-
sponds to very large NP contributions (narrow bands at
low MH+ or large tanβ in Fig. 3). At 95% C.L. the
solution XH = 0 is allowed and the decoupling region
(m+

H →∞) opens up.
Let us now discuss the dominant sources of uncertainty

in this analysis. In the following table we list the most
relevant inputs, their errors and their impact on εK (as
it follows from Eqs. (4), (17) and (18)):

X : B̂K |Vcb| fBsB̂
1/2
s BR(B → τν) fB

δX : 4% 2.5% 5% 26% 5%
δεK : 4% 10% 20% 52% 20%

First of all, note that the impact of B̂K on the error is
subdominant. The use of the semileptonic b → c con-
straint results in a ∼ 10% determination of εK , roughly
half of the uncertainty obtained by employing only ∆MBs

(i.e.: fBsB̂
1/2
s ). A calculation of fBsB̂

1/2
s at the 2.5%

level would reduce the overall uncertainty on εK to 10%;
a calculation at the 1% level would impact εK at the
same level as B̂K . At first sight, the impact of B → τν
seems irrelevant. Fortunately the non–trivial dependence
of BR(B → τν) on ρ and η implies a certain degree of
orthogonality between the constraints (17) and (18), as
can be seen explicitly in the upper panel of Fig. 2. A
numerical estimate of the impact of this constraint can
be obtained by removing it from the fit and recalculating
the overall p–value: we obtain p = 43%, meaning that
no hint of new physics is observed. The experimental
uncertainty on the B → τν branching ratio is therefore
an important ingredient of this analysis. Once the latter
reaches the 10% level, improvements on fB will be rele-
vant as well. We summarize this discussion in Fig. 4 and
in the following table:

δτ δs pSM θd ± δθd pθd θd/δθd

∗26% ∗5% 20% −(8.9 ± 4.2)o 89% 2.1σ
∗26% 2.5% 3.5% −(9.6 ± 3.5)o 88% 2.7σ
∗26% 1% 0.1% −(10.1 ± 2.9)o 87% 3.4σ

10% ∗5% 1% −(8.8 ± 2.7)o 89% 3.3σ

3% ∗5% 0.04% −(8.8 ± 2.2)o 89% 4.0σ

10% 2.5% 0.1% −(9.2 ± 2.5)o 88% 3.7σ

10% 1% 0.004% −(9.6 ± 2.2)o 86% 4.4σ

3% 2.5% 0.004% −(9.1 ± 2.1)o 88% 4.4σ

3% 1% 0.0001% −(9.4 ± 1.9)o 86% 5.0σ

ρ-η topology of the
constraint makes it 
relevant despite large 
errors on B→τν



fit w/out semileptonic decays
2

|εNP
K | = Cε |εSM

K |
Md,NP

12 = eiθd Md,SM
12

BR(B → τν)NP = rH BR(B → τν)SM

C
noVqb
ε = 1.30± 0.23 ⇒ (1.3σ, p = 40%)

θ
noVqb

d = −(8.9± 4.2)o ⇒ (2.1σ, p = 89%)

r
noVqb

H = 1.7± 0.5 ⇒ (1.4σ, p = 43%)



2
superb expectations

4

FIG. 3: 95 % C.L. bounds in the (tan β, mH+) plane. The
shaded regions are allowed in the 2HDM. The dotted (dashed)
lines show how these regions are modified in two MSSM sce-
narios with ε0 = −0.01 (0.01); the arrows indicate the allowed
regions.

that the result |Vcb|fit = (39.7± 1.7)× 10−3 agrees nicely
with the average we quote in Table I. Finally, we remind
the reader that fBsB̂

1/2
s and ξ = fBsB̂

1/2
s /fBdB̂1/2

d are
largely independent because they are affected by different
lattice systematics and we average results from different
lattice collaborations thereby reducing the possible cor-
relation between statistical errors. A surprising outcome
is the slight preference of the fit for new physics in Bd

mixing. This can be seen by extracting the parameters
Cε, θd and rH

C
noVqb
ε = 1.30 ± 0.23 ⇒ (1.3σ, p = 40%), (19)

θ
noVqb

d = −(8.9 ± 4.2)o ⇒ (2.1σ, p = 89%), (20)

r
noVqb

H = 1.7 ± 0.5 ⇒ (1.4σ, p = 43%). (21)

and noting that new physics in Bd mixing yields a much
larger p–value than new physics in K mixing or in B →
τν.

As an illustration of the implications of these con-
straints we consider the impact on two Higgs doublet
models. Within these models the rH %= 1 result can
be translated into a constraint on the mass of charged
Higgs. In the type-II two Higgs Doublet Model (2HDM)
and in the Minimal Supersymmetric SM (MSSM) we can
write [22] rH = (1−XH)2 where

XH =
m2

B+

m2
H+

tan2 β

1 + ε0 tanβ
, (22)

tanβ is the ratio of the vacuum expectation values of the
Higgses that couple to up and down quarks and ε0 sum-
marizes supersymmetric corrections to the ubW+ vertex.
In the 2HDM we have ε0 = 0; in the MSSM ε0 does not
vanish and typical values range at the 10−2 level. A full
supersymmetric analysis of Eq. (21) is beyond the scope
of this letter. In Fig. 3 we present the regions of the
(tanβ,mH+) that are allowed at 95% C.L. for various
values of ε0. In the 2HDM case we show also the lower

bound mH+ > 295 GeV induced by B → Xsγ [23]. In the
MSSM, chargino loops can compensate charged Higgs ef-
fects; therefore the bound on the charged Higgs depends
strongly on the chosen point in the supersymmetric pa-
rameter space. From the observation that XH is always
positive follows that the charged Higgs exchange can only
reduce the B → τν branching ratio unless XH > 2 im-
plying a sign switch in the B → τν amplitude. Eq. (21)
implies XH = (2.3 ± 0.2) ∨ (−0.3 ± 0.2), therefore at
the 1σ level, the only allowed parameter space corre-
sponds to very large NP contributions (narrow bands at
low MH+ or large tanβ in Fig. 3). At 95% C.L. the
solution XH = 0 is allowed and the decoupling region
(m+

H →∞) opens up.
Let us now discuss the dominant sources of uncertainty

in this analysis. In the following table we list the most
relevant inputs, their errors and their impact on εK (as
it follows from Eqs. (4), (17) and (18)):

X : B̂K |Vcb| fBsB̂
1/2
s BR(B → τν) fB

δX : 4% 2.5% 5% 26% 5%
δεK : 4% 10% 20% 52% 20%

First of all, note that the impact of B̂K on the error is
subdominant. The use of the semileptonic b → c con-
straint results in a ∼ 10% determination of εK , roughly
half of the uncertainty obtained by employing only ∆MBs

(i.e.: fBsB̂
1/2
s ). A calculation of fBsB̂

1/2
s at the 2.5%

level would reduce the overall uncertainty on εK to 10%;
a calculation at the 1% level would impact εK at the
same level as B̂K . At first sight, the impact of B → τν
seems irrelevant. Fortunately the non–trivial dependence
of BR(B → τν) on ρ and η implies a certain degree of
orthogonality between the constraints (17) and (18), as
can be seen explicitly in the upper panel of Fig. 2. A
numerical estimate of the impact of this constraint can
be obtained by removing it from the fit and recalculating
the overall p–value: we obtain p = 43%, meaning that
no hint of new physics is observed. The experimental
uncertainty on the B → τν branching ratio is therefore
an important ingredient of this analysis. Once the latter
reaches the 10% level, improvements on fB will be rele-
vant as well. We summarize this discussion in Fig. 4 and
in the following table:

δτ δs pSM θd ± δθd pθd θd/δθd

∗26% ∗5% 20% −(8.9 ± 4.2)o 89% 2.1σ
∗26% 2.5% 3.5% −(9.6 ± 3.5)o 88% 2.7σ
∗26% 1% 0.1% −(10.1 ± 2.9)o 87% 3.4σ

10% ∗5% 1% −(8.8 ± 2.7)o 89% 3.3σ

3% ∗5% 0.04% −(8.8 ± 2.2)o 89% 4.0σ

10% 2.5% 0.1% −(9.2 ± 2.5)o 88% 3.7σ

10% 1% 0.004% −(9.6 ± 2.2)o 86% 4.4σ

3% 2.5% 0.004% −(9.1 ± 2.1)o 88% 4.4σ

3% 1% 0.0001% −(9.4 ± 1.9)o 86% 5.0σ

δs = δ(fBs

√
Bs)δτ = δBR(B → τν)

• Even modest improvements on B→τν have tremendous impact on the UT 
fit (10 ab-1 → 10%; 50 ab-1 →3%)

• Interplay with reduced errors on Bs mixing can produce a 5σ effect

• Fit is completely clean



Conclusions

(1) Inclusive b→sll decays
Calculations are approaching the “end-of-the-road”
Electromagnetic corrections: effect of BaBar & Belle treatment of soft and 
collinear photons seems to have very large impact (7-13%)
QED effects on HT and HL (Γ = HT + HL) are at the top of the TODO list

(2) UT fit without semileptonic decays
As long as Vxb determinations remain problematic, removing 
semileptonic decays allows to cast the UT fit as a clean & high-precision 
tool to identify new physics
Super-B level precision on B→τν coupled with improvements on the 
lattice determination of                 can test the SM at the 5σ levelfBsB̂

1/2
s
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effective lagrangian

Leff =
4GF√

2
VtbV

∗
tq

[
10∑

i=1

CiQi +
VubV

∗
uq

VtbV
∗
tq

2∑

i=1

Ci(Qi −Qu
i ) +

6∑

i=3

CiQQiQ + CbQb

︸ ︷︷ ︸
for QED corrections

]

ΛQCD few × ΛQCD mb mW,Z mNP

non-perturbative perturbative

Q1 = (q̄LγµT acL)(c̄LγµT abL)
Q2 = (q̄LγµcL)(c̄LγµbL)

︸ ︷︷ ︸︸ ︷︷ ︸

• Current-current:

Qu
1 = (q̄LγµT auL)(ūLγµT abL)

Qu
2 = (q̄LγµuL)(ūLγµbL)

bL uL,cL

uL,cL sL

W

bL uL,cL

uL,cL dL

W

∣∣∣∣
C2

C9

VubVus

VtbVts

∣∣∣∣ ∼ 0.5 %
∣∣∣∣
C2

C9

VubVud

VtbVtd

∣∣∣∣ ∼ −10 %
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effective lagrangian

Leff =
4GF√

2
VtbV

∗
tq

[
10∑

i=1

CiQi +
VubV

∗
uq

VtbV
∗
tq

2∑

i=1

Ci(Qi −Qu
i ) +

6∑

i=3

CiQQiQ + CbQb

︸ ︷︷ ︸
for QED corrections

]

ΛQCD few × ΛQCD mb mW,Z mNP

non-perturbative perturbative

︸ ︷︷ ︸︸ ︷︷ ︸

• QCD penguins:

dL,sLbL

q

W

t

q
g

Q3 = (q̄LγµbL)
∑

(q̄γµq)

Q4 = (q̄LγµT abL)
∑

(q̄γµT aq)

Q5 = (q̄Lγµ1γµ2γµ3bL)
∑

(q̄γµ1γµ2γµ3q)

Q6 = (q̄Lγµ1γµ2γµ3T
abL)

∑
(q̄γµ1γµ2γµ3T aq)

1



effective lagrangian

Leff =
4GF√

2
VtbV

∗
tq

[
10∑

i=1

CiQi +
VubV

∗
uq

VtbV
∗
tq

2∑

i=1

Ci(Qi −Qu
i ) +

6∑

i=3

CiQQiQ + CbQb

︸ ︷︷ ︸
for QED corrections

]

ΛQCD few × ΛQCD mb mW,Z mNP

non-perturbative perturbative

︸ ︷︷ ︸︸ ︷︷ ︸

• EW penguins:

Q3Q = (q̄LγµbL)
∑

Qq(q̄γµq)

Q4Q = (q̄LγµT abL)
∑

Qq(q̄γµT aq)

Q5Q = (q̄Lγµ1γµ2γµ3bL)
∑

Qq(q̄γµ1γµ2γµ3q)

Q6Q = (q̄Lγµ1γµ2γµ3T
abL)

∑
Qq(q̄γµ1γµ2γµ3T aq)

dL,sLbL

q

W

t

q
γ,Z

1



power corrections

ΛQCD/(mb −
√

q2)OPE is an expansion in                             and breaks down 
at q2 ∼ m2

b

Matthias Neubert CERN-FNAL Summer School, Aug. 2008 11

OPE for inclusive rates

• More realistic picture:

• Model-independent predictions

= C3 + C5  +…

!B"bb"B# !B"b$µ%Gµ%b"B#

= +

︸ ︷︷ ︸ ︸ ︷︷ ︸

s
b b

b bXs

q q p2
Xs

= (pb − q)2 = m2
b + q2 − 2mbq0

< m2
b + q2 − 2mb

√
q2 =

(
mb −

√
q2

)2

Γ
[
B̄ → Xs!

+!−
]

= Γ
[
b̄→ Xs!

+!−
]
+ O

(
Λ2

QCD

m2
b

,
Λ3

QCD

m3
b

,
Λ2

QCD

m2
c

, ...

)

1



q2 cuts

• Away from resonances expansion in 1/mc2 is performed

• Quark-hadron duality breaks down when the rate is dominated by 
charmonium resonances:

•  Three regions:
0.04 GeV2 < q2 < 1 GeV2

1 GeV2 < q2 < 6 GeV2

q2 > 14.4 GeV2

dominated by the photon pole (b→sγ)

• Resonances model using data:
★ Krüger-Sehgal (e+e- data)
★ Simple Breit-Wigner

b s b
c c

ℓ

ℓ

γ

γ

O2 O7

b→ cc̄s b→ s!+!−

q2

1



q2 cuts

• Kruger-Sehgal mechanism:

• Alternatively use a Breit-Wigner ansatz to parametrize <O2> 

• The impact in the low q2 region is +1.8%, in the high q2 region 
is -10%

• The two approaches agree well above and below the resonances 
but not in between

( )Img m
c
^ ,s^

0

2

4

6

8

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

s^

FIG. 1:

13

Re〈O2〉 → 〈O9〉tree

(
− 8

9
log mc/mb −

4
9

+
ŝ

3
P

∫ ∞

4m̂2
D

Rcc̄
had(ŝ′)

ŝ′(ŝ′ − ŝ)
dŝ′

)
Im〈O2〉 → 〈O9〉tree

(π

3
Rcc̄

had(ŝ)
)

cc̄

e+

e+
e−

e−

Rcc̄
had =

σ(e+e− → cc̄ hadrons)
σ(e+e− → µ+µ−)

= cc̄

e+ e−

b s

〈O2〉 =

J/ψ ψ′ Im〈O2〉

1



q2

M2
X

q 2
< (m

B −m
X

s ) 2

high-q2

low-q2

Ba
Ba

r
Be

lle

Xs cut

unaffected

• Correction factor added in experimental results

[Ali, Hiller]

• MX cuts required to suppress the b → c l- ν → s l- l+ ν ν background

• Framework: Fermi motion, SCET 

parton level at LO:
MXs = ms

bremsstrahlung:
ms < MXs < mb

non-perturbative effects:
phase space (MB-mb = Λ)
Fermi motion

1



Xs cut

• New idea: use SCET to describe the Xs system

Λ2 ! p2
Xs
∼ Λmb ! m2

b

Including NLL corrections

• Universality maintained; estimate shape function uncertainties using B → Xsγ

• Find for B(1 < q2 < 6 GeV2)/10−6

mcut
X = 1.8 GeV: 1.20± 0.15

mcut
X = 2.0 GeV: 1.48± 0.14

NNLL, no mX cut: 1.57± 0.11

• AFB only slightly affected (a-priori nontrivial)

• NNLL reduces µ dependence, effect on q2

spectrum small⇒ expect η(NLL) ≈ η(NNLL)

• If increasing mcut
X above 2 GeV hard⇒ keep mcut

X < mD, normalize to B → Xu#ν̄

with same cuts:
R = Γcut(B → Xs#+#−)

/
Γcut(B → Xu#ν̄)

Both shape function (mcut
X ) and mb dependence drastically reduced

Z. Ligeti — p. 18

Effects of mX cut at lowest order

• Define:

ηij =

Z 6 GeV2

1 GeV2
dq2

Z mcut
X

0
dm2

X

dΓij

dq2 dm2
XZ 6 GeV2

1 GeV2
dq2 dΓij

dq2

ij: C2
9 and C2

10, C7C9, C2
7 — different

functionally for each contribution

Dashed: tree level in local OPE [wrong]
Solid: with a fixed shape function model

• Strong mcut
X dependence: Raising it (if possible) would reduce uncertainty

Strong mcut
X dependence: If 1− η is sizable, so is its uncertainty

• Approximate universality of ηij: since shape function varies on scale p+
X/ΛQCD,

Approximate universality of ηij: while Γparton
ij varies on scale p+

X/mb ⇒ η ≈ ηij

Z. Ligeti — p. 15

Effects of mX cut at lowest order

• Define:

ηij =

Z 6 GeV2

1 GeV2
dq2

Z mcut
X

0
dm2

X

dΓij

dq2 dm2
XZ 6 GeV2

1 GeV2
dq2 dΓij

dq2

ij: C2
9 and C2

10, C7C9, C2
7 — different

functionally for each contribution

Dashed: tree level in local OPE [wrong]
Solid: with a fixed shape function model

• Strong mcut
X dependence: Raising it (if possible) would reduce uncertainty

Strong mcut
X dependence: If 1− η is sizable, so is its uncertainty

• Approximate universality of ηij: since shape function varies on scale p+
X/ΛQCD,

Approximate universality of ηij: while Γparton
ij varies on scale p+

X/mb ⇒ η ≈ ηij

Z. Ligeti — p. 15

• The effect seems very large (power corrections?)

2

versal soft shape function S [12, 13], i.e.

dΓ[0] = h[0] × J ⊗ S , (3)

a result applied extensively in the study of inclusive
B → Xu!ν̄ and B → Xsγ decays. It was first applied
to B → Xs !+!− in Refs. [14, 15] to study systematically
the effect of the mcut

X on the q2 spectrum and forward-
backward asymmetry. In Ref. [15] it was shown that
the cut on mX leads to a 10 − 30% reduction in the
rate. This reduction is, to a good approximation, univer-
sal among the different short distance contributions and
one can take it into account accurately using experimen-
tal information from B → Xsγ or B → Xu!ν̄, thereby
maintaining the sensitivity to new physics.

The largest irreducible hadronic uncertainties and
universality breaking are expected to come from
O(ΛQCD/mb) power corrections due to subleading shape
functions [16, 17, 18]. In this paper, we extend the anal-
ysis of the three angular observables to incorporate non-
perturbative shape-function effects arising from the mX

cut, including the O(ΛQCD/mb) subleading shape func-
tions.

In Sec. II, we briefly discuss the kinematics and the
angular decomposition, defining the three observables
HT,A,L(q2). In Sec. III, we discuss the separation of the
perturbation series above and below the scale µ ∼ mb,
and our effective Wilson coefficients. In Sec. IV, we
present our results for HT,A,L in the SCET region. The
leading power contribution is given in Sec. IVA, includ-
ing the full NLL and partial NNLL perturbative correc-
tions. The subleading power corrections are presented at
tree level in Sec. IVB. Their numerical impact is inves-
tigated briefly in Sec. V, and we conclude in Sec. VI.

II. ANGULAR DECOMPOSITION AND
KINEMATICS

The triple differential decay rate can be written as [4]

d3Γ

dq2 dp+
X dz

=
3

8

[
(1 + z2)HT (q2, p+

X) + 2zHA(q2, p+
X)

+ 2(1− z2)HL(q2, p+
X)

]
. (4)

Here, q2 = (p!+ + p!−)2 is the dilepton invariant mass,
p±X = EX ∓ |$pX |, and z = cos θ. In B̄0 or B− [B0 or
B+] decay, θ is the angle between the !+ [!−] and the B
meson three-momenta in the !+!− center-of-mass frame.
The q2 spectrum and forward-backward asymmetry are
given by

dΓ

dq2
= HT (q2) + HL(q2) ,

dAFB

dq2
=

3

4
HA(q2) . (5)

The velocity of the B meson is vµ = pµ
B/mB. We

define light-cone vectors n and n̄ such that qµ
⊥ = vµ

⊥ = 0
and p+

X = n · pX , p−X = n̄ · pX . For later convenience, we
also define the leptonic light-cone variables

q+ = n · q = mB − p+
X ,

0
0

0
0

1

1

1

1

2

2

2

2

3

3

3

3

4

4

4

4

5

5

5

5
p−

X [GeV]p−
X [GeV]

p
+ X

[G
eV

]
p

+ X
[G

eV
]

mX ≤ 2.0 GeV

q2 ∈ [1, 6]GeV2

FIG. 1: Phase space cuts relevant for B → Xs !+!− in the
p±

X plane. The measurements are performed in the orange
(medium) region, where the mX and q2 cuts overlap and
p+

X " p−

X .

q− = n̄ · q = mB − p−X =
q2

mB − p+
X

, (6)

with q2 = q+q−.
The functions Hi(q2, p+

X) in Eq. (4) are independent of
z, and are given by

HT (q2, p+
X) = 2

Γ0

m5
B

(q+ − q−)2

q+
q2 WT (q2, p+

X) ,

HA(q2, p+
X) = −2

Γ0

m5
B

(q+ − q−)2

q+
q2 WA(q2, p+

X) ,

HL(q2, p+
X) =

Γ0

m5
B

(q+ − q−)2

q+
WL(q2, p+

X) , (7)

where

Γ0 =
G2

F m5
B

48π3

α2
em

16π2
|VtbV

∗
ts|2 . (8)

In terms of the usual structure functions in the decom-
position of the hadronic tensor,

Wµν =
1

2mB

1

2π

∫
d4x e−iq·x〈B|J†µ(x)Jν(0)|B〉

= −gµνW1 + vµvνW2 + iεµν
αβvαqβW3

+ qµqνW4 + (vµqν + vνqµ)W5 , (9)

the hadronic structure functions WT,A,L in Eq. (7) are
given by

WT = 4 W1 ,

WA = −2 (q+ − q−)W3 ,

WL = 4 q2 W1 + (q− − q+)2 W2 . (10)

Without any cuts, the phase space limits on q2, p+
X ,

and z are

0 ≤ p+
X ≤ mB −

√
q2 ≤ mB , −1 ≤ z ≤ 1 . (11)

p+
X ! p−X =⇒ m2

X ! E2
X

XS is a hard-collinear mode:

p±X = EX ± |!pX |

1



Xs cut

Γcut(B → Xs!
+!−)/Γcut(B → Xu!ν̄)

[Lee, Ligeti, Stewart, Tackmann]

[same MX cut]
• Reduce non-perturbative effects by considering:

3

1.4 1.6 1.8 2.0 2.2
0

0.2

0.4

0.6

0.8

1
ij

ij  99,00=

79=

77=

ij 

ij 

!

shape function

local OPE

m
X

cut GeV][

FIG. 2: ηij(m
cut
X , 1GeV2, 6GeV2) as functions of mcut

X . The
dashed curves show the local OPE result, the solid curves
include the leading shape function effects. The uppermost,
middle, and lowest curves are η00,99, η79, and η77, respectively.

Xsφ) ≈ 10×B(B → K(∗)φ). Then B → Xsφ → Xs"+"−

is ∼2% of the Xs"+"− rate.)
The local OPE results for ηij(mcut

X , q2
1 , q

2
2) are obtained

by replacing f̂ (0)(p+
X) by δ(Λ̄−p+

X) in Eq. (9). Performing
the p+

X integral sets (mB − p+
X) = mb and implies m2

X >
Λ̄(mB − q2/mb). This makes the lower limit on q2 equal
max{q2

1, mb[mB − (mcut
X )2/Λ̄]}, and so the ηij ’s depend

on the shape of dΓij . In Fig. 2 the local OPE results are
shown by dashed lines, and clearly η77 &= η99. However,
the local OPE is not applicable for p+

X ∼ ΛQCD.
The universality of ηij found here could be broken by

αs corrections in the H or J functions, or by renormaliza-
tion group evolution, since these effects couple p+

X and q2

and have been neglected so far. We consider these next.

III. CALCULATION AND RESULTS AT O(αs)

A complication in calculating B → Xs"+"− compared
with B → Xu"ν̄ is that, in the evolution of the effective

Hamiltonian down to mb, C9(µ) receives a ln(m2
W /m2

b)
enhanced contribution from the mixing of O2. Thus, for-
mally, C9 ∼ O(1/αs), and conventionally one expands
the amplitude in αs, treating αs ln(m2

W /m2
b) = O(1) [13].

In the local OPE this is reasonable, since the nonpertur-
bative corrections are small, and at next-to-leading log
(NLL) all dominant terms in the rate are included. How-
ever, in the shape function region nonperturbative effects
are O(1) and only the rate is calculable, not the ampli-
tude. With the traditional counting, the C2

9 contribution
to the rate would be needed to O(α2

s) before the C2
10

terms could be included.

This would be a bad way to organize the perturbative
corrections (numerically |C9(mb)| ≈ |C10|). It can be cir-
cumvented by using a “split matching” procedure to de-
couple the perturbation series above and below the scale
mb [14]. This allows us to consider the short distance
coefficients Cmix

7 , Cmix
9 , and C10 as O(1) numbers when

organizing the perturbation theory at m2
b and mbΛQCD.

The rate and the forward-backward asymmetry are

d2Γ

dq2dp+
X

=
Γ0

m2
B

H(q2, p+
X)F (0)(p+

X , p−) ,

d2AFB

dq2dp+
X

=
Γ0

m2
B

K(q2, p+
X)F (0)(p+

X , p−) , (11)

where p− = mb − q2/(mB − p+
X). The hard functions

H and K were computed in [14] using soft-collinear ef-
fective theory (SCET) [19, 20] and split matching. This
factorizes the dependence on scales above and below mb

as Γij ∼ H1(µ0)H2(µb)F (0)(µb), with separate µ0 and µb

independence. Up to the order one is working at, H1 is µ0

independent, the µb dependence in H2 and F (0) cancels,
and F (0) is µi independent. The shape function model is
specified at µΛ. The convolution of jet and shape func-
tions at NLL including αs corrections is

F (0)(p+
X , p−) = UH(p−, µi, µb)

{

f̂ (0)
(

p+
X , µi

)

+
αs(µi)CF

4π

[

(

2 ln2 p+
Xp−

µ2
i

− 3 ln
p+

Xp−

µ2
i

+ 7 − π2
)

f̂ (0)
(

p+
X , µi

)

+

∫ 1

0

dz

z

(

4 ln
zp+

Xp−

µ2
i

− 3
)(

f̂ (0)
(

p+
X(1 − z), µi

)

− f̂ (0)
(

p+
X , µi

)

)

]}

,

f̂ (0)(ω, µi) =
eVS(µi,µΛ)

Γ(1 + η)

(

ω

µΛ

)η ∫ 1

0
dt f̂ (0)

[

ω(1 − t1/η), µΛ

]

, (12)

where η = (16/25) ln[αs(µΛ)/αs(µi)], UH was computed in Ref. [19], the one-loop jet function in Ref. [21, 22], and the
shape function evolution up to µi in Refs. [19, 22] (for earlier calculations, see Refs. [15, 23]). The hard coefficients

• At leading power and at order αs, these corrections are a universal 
multiplicative factor:

1



αs(Mz) = 0.1189 ± 0.0010 [40] me = 0.51099892 MeV

αe(Mz) = 1/127.918 mµ = 105.658369 MeV

s2
W ≡ sin2 θW = 0.2312 mτ = 1.77699 GeV

|VtsVtb/Vcb|2 = 0.962 ± 0.002 [41] mc(mc) = (1.224 ± 0.017 ± 0.054) GeV [42]

|VtsVtb/Vub|2 = (1.28 ± 0.12) × 102 [41] m1S
b = (4.68 ± 0.03) GeV [31]

BR(B → Xceν̄)exp = 0.1061 ± 0.0017 [43] mt,pole = (170.9 ± 1.8) GeV [44]

MZ = 91.1876 GeV mB = 5.2794 GeV

MW = 80.426 GeV C = 0.58 ± 0.01 [31]

λeff
2 = (0.12 ± 0.02) GeV2 ρ1 = (0.06 ± 0.06) GeV3 [31]

λeff
1 = (−0.243 ± 0.055) GeV2 [42] f 0

u + fs = (0 ± 0.2) GeV3 [24]

f 0
u − fs = (0 ± 0.04) GeV3 [24] f±

u = (0 ± 0.4) GeV3 [24]

Table 1: Numerical inputs that we use in the phenomenological analysis. Unless explicitly
specified, they are taken from PDG 2004 [45].

which implies
δRcut

Rcut
≈ 7.4

δmb

mb
. (52)

Using the pole mass scheme with δmb = 0.1 GeV, this leads to a ≈ 15% error on Rcut. However,
this error gets now significantly reduced in our updated analysis using the kinematical 1S scheme
for the mb mass.

4 Numerical results

The numerical inputs that we adopt are summarized in Table 1.

4.1 Branching ratio in the high-q2 region

For the branching ratio integrated over the region q2 > 14.4 GeV2 we find:

Bhigh
µµ = 2.40 × 10−7

(
1 +

[
+0.01
−0.02

]

µ0
+

[
+0.14
−0.06

]

µb

± 0.02mt +
[
+0.006
−0.003

]

C,mc

± 0.05mb
+

[
+0.0002
−0.001

]

αs

±0.002CKM ± 0.02BRsl
± 0.05λ2 ± 0.19ρ1 ± 0.14fs ± 0.02fu

)
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ratio and explain details of the κnαm
s -expansion. The effective theory used for resummation of

large QCD logarithms is introduced in Section 3 which is quite technical. It includes the list of
the relevant operators, the matching conditions for the Wilson coefficients, the renormalization
group equations and the Wilson coefficients at the low scale. Sections 4 and 5 contain a detailed
description of the four-fermion operator matrix element calculation. In Section 6 we discuss the
role of the angular cuts. Master formulae for the branching ratio are summarized in Section 7.
Appendix A contains the loop functions that appear in the text. Some intermediate-step
quantities for the evolution of Wilson coefficients are collected in Appendix B. Appendix C is
devoted to describing techniques that we have used to calculate the QED matrix elements of
quark-lepton operators.

2 Branching ratio and numerical results

In order to facilitate the reading of this rather technical paper, we give the final results first.
The differential (with respect to ŝ = m2

!!/m
2
b,pole) decay width of B̄ → Xs#+#− can be expressed

as follows:

dΓ(B̄ → Xs#+#−)

dŝ
=

G2
Fm5

b,pole

48π3
|V ∗

tsVtb|2 Φ!!(ŝ), (4)

where the dimensionless function Φ!!(ŝ) is assumed to include both the perturbative and non-
perturbative contributions.

In order to minimize the uncertainty stemming from m5
b,pole and the CKM angles, we normal-

ize the rare decay rate to the measured semileptonic one. Furthermore, to avoid introduction
of spurious uncertainties due to the perturbative b → Xceν̄ phase-space factor, we follow the
analyses of Refs. [9, 11] where

C =
∣∣∣∣
Vub

Vcb

∣∣∣∣
2 Γ(B̄ → Xceν̄)

Γ(B̄ → Xueν̄)
, (5)

was used instead. Consequently, our expression for the B̄ → Xs#+#− branching ratio reads

dB(B̄ → Xs#+#−)

dŝ
= B(B → Xceν̄)exp

∣∣∣∣
V ∗

tsVtb

Vcb

∣∣∣∣
2 4

C

Φ!!(ŝ)

Φu
, (6)

where Φu = 1 + O(αs, αem, Λ2/m2
b) is defined by

Γ(B → Xueν̄) =
G2

Fm5
b,pole

192π3
|Vub|

2 Φu. (7)

Our expressions for the ratio Φ!!(ŝ)/Φu are summarized in Section 7. Both the perturbative
and non-perturbative corrections to this ratio are much better behaved than for Φ!!(ŝ) and Φu

separately. The factor C = 0.58 ± 0.01 has been recently determined from a global analysis of
the semileptonic data [12]. All the input parameters that we use in the numerical calculation
are summarized in Table 1.

4
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branching ratio

• Theory [Huber,Lunghi,Misiak,Wyler; Huber,Hurth,Lunghi]:

• Experiment [BaBar and Belle]:

Blow
!! = (1.60± 0.51)× 10−6

Bhigh
!! = (4.4± 1.2)× 10−7

Bhigh
ee = (2.1± 0.6)× 10−7

Breakdown of the OPE results 
in large power corrections over 
which we have a poor control

Blow
µµ =

[
1.59± 0.08scale ± 0.06mt ± 0.024C,mc ± 0.015mb ± 0.02αs(MZ)

±0.015CKM ± 0.026BRsl ± 0.08αs/mb

]
× 10−6 = (1.59± 0.14)× 10−6

Blow
ee = (1.64± 0.14)× 10−6

Bhigh
µµ = 2.40× 10−7

(
1 +

[
+0.01
−0.02

]
µ0

+
[
+0.14
−0.06

]
µb
± 0.02mt +

[
+0.006
−0.003

]
C,mc

± 0.05mb

+
[
+0.0002
−0.001

]
αs
± 0.002CKM ± 0.02BRsl ± 0.05λ2 ± 0.19ρ1 ± 0.14fs ± 0.02fu ± 0.05αs/mb

)

= (2.40± 0.7)× 10−7

LO
W

H
IG

H
1



low-q2: FBA

• Integrated observables:

[Huber,Hurth,Lunghi]

0 1 2 3 4 5 6

!0.15

!0.10

!0.05

0.00

0.05

0.10

0.15

q2 !GeV2"

d! #d"2
d# #d"2

NNLO vs NLO

dA/dq2

dB/dq2

q2 (GeV2)
0 1 2 3 4 5 6

!0.15

!0.10

!0.05

0.00

0.05

0.10

0.15

q2 !GeV2"

d! #d"2
d# #d"2

NNLO " QED

dA/dq2

dB/dq2

q2 (GeV2)

(q2
0)µµ =

[
3.50± 0.10scale ± 0.002mt ± 0.04mc,C ± 0.05mb ± 0.03αs(MZ) ± 0.001λ1 ± 0.01λ2

]
GeV2

= (3.50± 0.12) GeV2

(q2
0)ee = (3.38± 0.11) GeV2

Bin 2 (q2 ∈ [3.5, 6]GeV2)Bin 1 (q2 ∈ [1, 3.5]GeV2) low − q2 (q2 ∈ [1, 6]GeV2)
(
Āµµ

)
bin1

= [−9.1± 0.9]%
(
Āµµ

)
bin2

= [7.8± 0.8]%
(
Āee

)
bin1

= [−8.1± 0.9]%
(
Āµµ

)
bin2

= [8.3± 0.6]%
(
Āµµ

)
low

= [−0.9± 0.9]%

(
Āµµ

)
low

= [−1.5± 0.9]%

1



high-q2: reducing the errors

• New idea: normalize the decay width to the semileptonic B→Xulν rate with 
the same dilepton invariant mass cut:

• Impact of non-perturbative           and             power corrections drastically 
reduced

• In the high-q2 region we find:

1/m2
b 1/m3

b

• The largest source of uncertainty is Vub

R(14.4GeV2) = 2.29× 10−3
(
1± 0.04scale ± 0.02mt ± 0.01C,mc ± 0.006mb ± 0.005αs ± 0.09CKM

±0.003λ2 ± 0.05ρ1 ± 0.03f0
u+fs

± 0.05f0
u−fs

)

= 2.29× 10−3(1± 0.13)

R(s0) =

∫ 1

ŝ0

dŝ
dΓ(B̄ → Xs!+!−)

dŝ
∫ 1

ŝ0

dŝ
dΓ(B̄0 → Xu!ν)

dŝ

[Ligeti,Tackmann]

[Huber,Hurth,Lunghi]

1



high-q2: reducing the errors

[Belle, 87 fb-1, hep-ex/0311048] [BaBar, 383 m ϒ,  arXiv:0708.3702]

• Experiments already positioned to measure B→Xulν with a q2 cut

• Separation of B0 and B+ is important to control WA contributions 

1



• Use B→Xsγ to constrain C7 and C8:

C7(µ0)/CSM
7 (µ0)

C
8
(µ

0
)/

C
S
M

8
(µ

0
)

!10 !8 !6 !4 !2 0 2 4
!10

!5

0

5

10

Theory:

B(B̄ → Xsγ)exp = (3.52± 0.25)× 10−4

B(B̄ → Xsγ)SM = (3.15± 0.23)× 10−4

Experiment:

model independent analysis
1



• Use C7 and C8 from B→Xsγ to constrain C9 and C10

!8 !6 !4 !2 0 2 4
!2

!1

0

1

2
C7 " 0

C9(µ0)/CSM
9 (µ0)

C
1
0
(µ

0
)/

C
S
M

1
0

(µ
0
)

!8 !6 !4 !2 0 2 4
!2

!1

0

1

2
C7 " 0

C
1
0
(µ

0
)/

C
S
M

1
0

(µ
0
)

C9(µ0)/CSM
9 (µ0)

• C7 > 0 requires sizable contributions to C9 and C10

• Reversing the sign of C7 we obtain                                                                                       
hence the SM sign is favored at the 2.7σ level

B(B̄ → Xs!
+!−) = (3.11± 0.22)× 10−6

[Gambino,Haisch,Misiak]

model independent analysis
1



• Computing aid: Spheno for the RGE of the MSSM and MicrOMEGAs for 
the relic dark matter density

• Effects on C9 and C10 are tiny:

• b→sγ shapes the surviving parameter space:

∣∣C9,10(µ0)/CSM
9,10(µ0)

∣∣ < 0.1

tanβ

C7(µb)

mfv susy
1



• In the most general MSSM, gluino and chargino diagrams can lead to 
huge contributions to the semileptonic operators:  

b s

Z

!−!+

b̃ s̃

g̃

δd
32 b s

Z

!−!+

t̃ c̃

χ̃−

δu
32

0 < C10(µ0)/CSM
10 (µ0) < 2

0.7 < C9(µ0)/CSM
9 (µ0) < 1.3

susy: mia analysis
1
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C9(µ0)/CSM
9 (µ0)
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1
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0
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)

• The C7 > 0 scenario is viable (with some degree of fine tuning)
• More than one mass insertion present at the same time

susy: mia analysis
1



• Constraints on (23) mass insertions in the down sector

susy: mia analysis

[Ciuchini,Silvestrini]
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FIG. 3: Allowed region in the Re
(

δd
23

)

LL
-Im

(

δd
23

)

LL
plane. In the plots on the left (right), negative

(positive) µ is considered. Plots in the upper (lower) row correspond to tan β = 3 (tan β = 10).

See the text for details.

• For tanβ = 3, we see from the upper row of Fig. 3 that the bound on (δd
23)LL from

Bs− B̄s mixing is competitive with the one from rare decays, while for tanβ = 10 rare

decays give the strongest constraints (lower row of Fig. 3). The bounds on all other

δ’s do not depend on the sign of µ and on the value of tanβ for this choice of SUSY

parameters.

• For LL and LR cases, B → Xsγ and B → Xsl+l− produce bounds with different
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2

|Vcb|excl = (38.6 ± 1.2)10−3 η1 = 1.51 ± 0.24

|Vcb|incl = (41.31 ± 0.76)10−3 η2 = 0.5765 ± 0.0065

|Vcb|incl+excl = (40.3 ± 1.0)10−3 η3 = 0.47 ± 0.04

|Vub|excl = (3.42 ± 0.37)10−3 ηB = 0.551 ± 0.007

|Vub|incl = (4.03 ± 0.15+0.20
−0.25)10

−3 ξ = 1.243 ± 0.028

∆mBd = (0.507 ± 0.005) ps−1 α = (89.5 ± 4.3)o

∆mBs = (17.77 ± 0.12) ps−1 SψKS = 0.672 ± 0.024

εK = (2.229 ± 0.012)× 10−3 γ = (78 ± 12)o

mc(mc) = (1.268 ± 0.009) GeV bBK = 0.725 ± 0.026

mt,pole = (172.4 ± 1.2) GeV κε = 0.92 ± 0.01

fK = (155.8 ± 1.7) MeV fB = (192.8 ± 9.9) MeV

fBs

p
bBs = (275 ± 13) MeV λ = 0.2255 ± 0.0007

BR(B → τν) = (1.43 ± 0.37)10−4 [17]

TABLE I: Inputs used in the unitarity triangle fit. Refer-
ences to the original experimental and theoretical papers and
the description of the averaging procedure can be found in
Ref. [12]. Statistical and systematic errors are combined in
quadrature.

level. While |Vub| can be dropped from the fit without
affecting the observed tension [8], it is usually believed
that |Vcb| ! Aλ2 from semileptonic decays is essential in
order to use εK (because of its A4 dependence).

Bearing all this in mind, in this letter we propose a
new approach to the UT analysis, wherein no use of semi-
leptonic decays is made. In particular, we show that the
traditional use of εK + |Vcb| combination can be effec-
tively replaced by the interplay between εK , ∆MBs and
BR(B → τν). We find that even after removing all input
to UT analysis from semileptonic decays, the 2σ tension
in the UT fit with the SM survives. More importantly, ev-
ery experimental and theoretical input to this analysis is
now theoretically clean and under very good control. The
latter point is quite important, because many of the hints
for new physics that come from precision studies tend to
have some problems. For instance, the muon anomalous
magnetic moment ((g − 2)µ) tension relies on the non-
perturbative estimation of light–by–light scattering con-
tributions, the use of e+e− → hadrons to calculate the
hadronic vacuum polarization tensor of the photon and
on isospin corrections to τ decays data. Another example
is the (2− 3)σ tensions in the direct CP asymmetries in
B → Kπ as well as in time–dependent CP asymmetries
B → ψK versus the penguin modes such as B → φK or
η′K etc. These rely on model dependent QCD treatment
of power corrections and non-factorizable effects which
are very difficult to ascertain reliably. A very important
exception is the 2.2σ evidence for a CP violating phase in
Bs mixing, whose non-zero value would be an extremely
clean evidence for new physics [13–16].

Present status of the UT fit. The standard tech-
nique to extract the parameters A, ρ and η relies on a
simultaneous fit of the following observables: the mixing

induced CP violation in the kaon system (εK), the mass
differences in the Bd and Bs systems (∆MBd,s), the CP
asymmetries in B → J/ψKs (SψK), B → (ππ, ρρ, ρπ)
(α) and B → D(∗)K(∗) (γ) modes, the rates of semilep-
tonic b → (c, u)-ν decays (|Vcb| and |Vub|) and the
B → τν branching ratio. A complete description of these
observables and of the possible statistical techniques that
could be employed can be found in Refs. [18, 19]. In this
letter we follow the approach of Refs. [8, 11] and uti-
lize the averages calculated in Ref. [12]. Below we first
present explicitly only those formulas that are relevant to
the traditional analysis which uses semi-leptonic decays:

∆MBs = χs f2
Bs

B̂BsA
2λ4 (1)

∆MBd = χd f2
Bd

B̂BdA2λ6(η2 + (−1 + ρ)2) (2)
∆MBs

∆MBd

=
mBs

mBd

ξ2λ−2

η2 + (−1 + ρ)2
(3)

|εK | = 2χεB̂Kκε ηλ6
(
A4λ4(ρ− 1)η2S0(xt)

+A2
(
η3S0(xc, xt)− η1S0(xc)

))
(4)

BR(B → τν) = χτf2
B |Vub|2 ! χτf2

BA2λ6(ρ2 + η2) (5)

where we expanded in λ and defined

χq = G2
F m2

W mBqηBS0(xt)/(6π2) , (6)

χε = (G2
F m2

W f2
KmK)/(12

√
2π2∆mexp

K ) , (7)
χτ = G2

F m2
τmB+/(8πΓB+)(1−m2

τ/m2
B+)2. (8)

We take the inputs to the UT analysis from Ref. [12] and
summarize them in Table I. Note that in Ref. [12] only
the exclusive determination of |Vub| is used. The 68%C.L.
allowed regions in the (ρ, η) plane are shown in Fig. 1,
where we show explicitly that the εK , B → τν (pink)
and |Vub| (yellow) constraints require |Vcb| in order to be
drawn independently. In particular we obtain:

|Vub|fit = (3.62 ± 0.13)× 10−3 , (9)
BR(B → τν)fit = (0.86 ± 0.11)× 10−4 . (10)

Note that |Vub|fit is quite close to the determination from
exclusive decays and that BR(B → τν)fit is smaller than
the corresponding world average ((1.43 ± 0.37) × 10−4).
The latter result is driven by the updated value for the B
decay constant. The relatively low p–value1 (p = 13%)
of the overall fit has been interpreted in terms of new
physics in either K or Bd mixing [7–12]. Adopting the

1 We remind the reader that the p–value is a goodness of fit mea-
sure and, in this context, is defined as the probability to obtain a
minimum chi-square larger than the observed one, assuming the
SM is correct. For instance, p = 13% means that there is a 13%
chance that the observed result is explained by fluctuations.

inputs to the ut fit
2


