TOWARD SUPER-B:
CED LOGS IN $B \rightarrow X_{s}$ ll \& USES OF $B \rightarrow \tau \nu$

ENRICO LUNGHI indiana university

OUTLINE

(1) Precision calculations of inclusive $\mathrm{b} \rightarrow$ sll decays:

- Present status of SM predictions and NP implications

Q Electromagnetic corrections: issues and resolution (preliminary)
(2) UT fit without semileptonic decays:

- Present status of the UT fit and hints for NP

Q Issues with V_{cb} and V_{ub} from semileptonic decays

- Impact of a determination of $B \rightarrow \tau \nu$ with super-B precision

$$
\begin{gathered}
\text { PART 1: } \\
\text { INCLUSIVE } \rightarrow \text { SLL }
\end{gathered}
$$

T. Huber, E.L., M. Misiak and D.Wyler, hep-h/05I2066 T. Huber, T. Hurth and E.L., arXiv:07I2.3009
T. Huber, T. Hurth and E.L., in preparation
[Misiak; Buras, Munz;
Bobeth, Misiak, Urban;
Asatryan, Asatrian, Greub, Walker;
Ghinculov, Hurth, Isidori, Yao;
Bobeth, Gambino, Gorbahn, Haisch; Huber, Lunghi, Misiak, Wyler]

EFFECTIVE LAGRANGIAN

- Magnetic \& chromo-magnetic

$$
\begin{aligned}
& Q_{7}=\frac{e}{16 \pi^{2}} m_{b}\left(\bar{q}_{L} \sigma^{\mu \nu} b_{R}\right) F_{\mu \nu} \\
& Q_{8}=\frac{g}{16 \pi^{2}} m_{b}\left(\bar{q}_{L} \sigma^{\mu \nu} T^{a} b_{R}\right) G_{\mu \nu}^{a}
\end{aligned}
$$

- Semileptonic

$$
\begin{aligned}
Q_{9} & =\left(\bar{q}_{L} \gamma_{\mu} b_{L}\right) \sum\left(\bar{\ell} \gamma^{\mu} \ell\right) \\
Q_{10} & =\left(\bar{q}_{L} \gamma_{\mu} b_{L}\right) \sum\left(\bar{\ell} \gamma^{\mu} \gamma_{5} \ell\right)
\end{aligned}
$$

GENERAL CONSIDERATIONS

$$
\Gamma\left[\bar{B} \rightarrow X_{s} \ell^{+} \ell^{-}\right]=\Gamma\left[\bar{b} \rightarrow X_{s} \ell^{+} \ell^{-}\right]+O\left(\frac{\Lambda_{Q C D}^{2}}{m_{b}^{2}}, \frac{\Lambda_{Q C D}^{3}}{m_{b}^{3}}, \frac{\Lambda_{Q C D}^{2}}{m_{c}^{2}}, \ldots\right)
$$

local OPE, optical theorem quark-hadron duality

Phase space cuts introduce sensitivity to new scales, the rate becomes less inclusive and new non-perturbative effects appear
(I) $q^{2}=\left(p_{\ell^{+}}+p_{\ell^{-}}\right)^{2}$ cut to remove $B \rightarrow X_{s}\left(J / \psi, \psi^{\prime}\right) \rightarrow X_{s} \ell^{+} \ell^{-}$ background
(II) $M_{X_{s}}<[1.8,2] \mathrm{GeV}$ cut to remove the double semileptonic $b \rightarrow c \ell^{-} \bar{\nu} \rightarrow s \ell^{-} \ell^{+} \bar{\nu} \nu$ background

CUTS

- Di-lepton invariant mass:

- low: $1 \mathrm{GeV}^{2}<q^{2}<6 \mathrm{GeV}^{2}$
- high: $q^{2}>14.4 \mathrm{GeV}^{2}$
- Model resonances with data
- Away from resonances expansion in $1 / \mathrm{m}^{2}{ }^{2}$
- Hadronic invariant mass:

- high-q ${ }^{2}$ region unaffected
- Experiments correct using Fermi motion model
- Leading power SCET suggests cuts are universal (same for $b \rightarrow$ sll and $\mathrm{b} \rightarrow \mathrm{ulv}$)

STATUSIN THE SM

- Known at NNLO in QCD and NLO in QED
- Double differential rate:

$$
\begin{aligned}
& \frac{d^{2} \Gamma}{d q^{2} d z}=\frac{3}{8}\left[\left(1+z^{2}\right) H_{T}\left(q^{2}\right)+2 z H_{A}\left(q^{2}\right)+2\left(1-z^{2}\right) H_{L}\left(q^{2}\right)\right] \\
& \frac{d \Gamma}{d q^{2}}=H_{T}+H_{L} \quad \frac{d \mathcal{A}_{F B}}{d q^{2}}=\frac{3}{4} H_{A} \quad z=\cos \theta_{\ell}
\end{aligned}
$$

$$
\begin{aligned}
& H_{T} \propto(1-\hat{s})^{2} \hat{s}\left[\left(C_{9}+\frac{2}{\hat{s}} C_{7}\right)^{2}+C_{10}^{2}\right] \\
& H_{L} \propto(1-\hat{s})^{2}\left[\left(C_{9}+2 C_{7}\right)^{2}+C_{10}^{2}\right]
\end{aligned}
$$

Independent combinations of WC's

- Standard approach: normalization to the full $B \rightarrow X_{u} \ell v$ rate
- At high $-q^{2}$ it is convenient to normalize to the $B \rightarrow X_{u} \ell v$ rate with the same q 2 cut: $\mathcal{R}\left(s_{0}\right)=\int_{s_{0}}^{1} \mathrm{~d} \hat{s} \frac{\mathrm{~d} \Gamma\left(\bar{B} \rightarrow X_{\rho^{+}} \ell^{-}\right)}{\mathrm{d} \hat{s}} / \int_{s_{0}}^{1} \mathrm{~d} \hat{s} \frac{\mathrm{~d} \Gamma\left(\bar{B}^{0} \rightarrow X_{u} \ell \nu\right)}{\mathrm{d} \hat{s}}$

STATUSIN THE SM

- SM predictions for the branching ratios:

$$
\begin{aligned}
& \mathcal{B}_{\mu \mu}^{\text {low }}=(1.59 \pm 0.14) \times 10^{-6} \\
& \mathcal{B}_{e e}^{\text {low }}=(1.64 \pm 0.14) \times 10^{-6} \\
& \text { scale, } \alpha_{\mathrm{s}} / \mathrm{m}_{\mathrm{b}}, \mathrm{~m}_{\mathrm{t}}
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{B}_{\mu \mu}^{\text {high }} & =(2.4 \pm 0.7) \times 10^{-7} \\
\mathcal{B}_{e e}^{\text {high }} & =(2.1 \pm 0.6) \times 10^{-7} \\
& \mathrm{~m}_{\mathrm{b}}^{-3} \text { parameters, scale }
\end{aligned}
$$

- New normalization: $\mathcal{R}\left(14.4 \mathrm{GeV}^{2}\right)_{\mu \mu}=2.29 \times 10^{-3}(1 \pm 0.13)$

$$
\begin{aligned}
& \mathcal{R}\left(14.4 \mathrm{GeV}^{2}\right)_{\mu \mu}=2.29 \times 10^{-5}(1 \pm 0.13) \\
& \mathcal{R}\left(14.4 \mathrm{GeV}^{2}\right)_{e e}=1.94 \times 10^{-3}(1 \pm 0.16)
\end{aligned} \quad \mathrm{V}_{\mathrm{ub}}
$$

- Experimental world averages:

$$
\left(\mathcal{B}_{\ell \ell}^{\text {low }}\right)_{\exp }=(1.60 \pm 0.51) \times 10^{-6} \quad\left(\mathcal{B}_{\ell \ell}^{\text {high }}\right)_{\exp }=(4.4 \pm 1.2) \times 10^{-7}
$$

- Forward-Backward asymmetry:

$$
\begin{aligned}
\left(q_{0}^{2}\right)_{\mu \mu}=(3.50 \pm 0.12) \mathrm{GeV}^{2} & \left(q_{0}^{2}\right)_{e e}=(3.38 \pm 0.11) \mathrm{GeV}^{2} \\
\left(\overline{\mathcal{A}}_{\mu \mu}\right)_{\mathrm{bin} 1}= & {[-9.1 \pm 0.9] \% } \\
\left(\overline{\mathcal{A}}_{\mu \mu}\right)_{\mathrm{bin} 2}= & {[7.8 \pm 0.8] \% } \\
& \left(\overline{\mathcal{A}}_{e e}\right)_{\mathrm{bin} 1}=[-8.1 \pm 0.9] \% \\
& \text { dominant uncertainty: scale }
\end{aligned}
$$

MODEL INDEPENDENT NP REACH

- Present bounds:

- Future possibilities (extrapolated to $1 \mathrm{ab}^{-1}$):

- C_{7} constrained by $\mathrm{b} \rightarrow \mathrm{s} \gamma$
- $\mathrm{C}_{7}>0$ excluded in MFV
- pink ellipses are allowed ranges in the most general MSSM $\left(\left(\delta_{23}^{d, u}\right)_{L L, R R} \neq 0\right)$
[Lee,Ligeti,Stewart,Tackmann]

CED LOGS: OVERVIEW

- The rate is proportional to $\alpha_{\mathrm{em}}^{2}\left(\mu^{2}\right)$. Without QED corrections the scale μ is undetermined $\rightarrow \pm 4 \%$ uncertainty
- Focus on corrections enhanced by large logarithms:
- $\quad \alpha_{\mathrm{em}} \log \left(m_{W} / m_{b}\right) \sim \alpha_{\mathrm{em}} / \alpha_{s}$
- $\quad \alpha_{\mathrm{em}} \log \left(m_{\ell} / m_{b}\right)$
[WC, RG running] [Bobeth,Gambino,Gorbahn,Haisch] [Matrix Elements]
- The differential rate is not IR safe with respect to photon emission the results in the presence of a physical collinear logarithm, $\log \left(m_{\ell} / m_{b}\right)$

$$
\begin{gathered}
\text { virtual }=\frac{A_{\text {soft }+ \text { collinear }}}{\epsilon^{2}}+\frac{B_{\text {collinear }}+B_{\text {soft }}}{\epsilon}+C \\
\text { real }=-\frac{A_{\text {soft }+ \text { collinear }}}{\epsilon^{2}}-\frac{B_{\text {collinear }}^{\prime}+B_{\text {soft }}}{\epsilon}+C^{\prime} \\
\int d q^{2}\left(B_{\text {collinear }}-B_{\text {collinear }}^{\prime}\right)=0
\end{gathered}
$$

(1)

COMPARISON TO EXPERIMENTS

- Theory
include all bremsstrahlung photons into the X_{s} system:

- Experiment (fully inclusive, Super-B only) One B is identified; on the other side only the two leptons are reconstructed:

- Experiment (Xs system reconstructed as a sum over exclusive states):

At BaBar (Belle) photons with energies smaller than 30 (20) MeV are not resolved. Photons emitted inside a small cone ($35 \times 50 \mathrm{mrad}$) around the electrons are identified and included in the event reconstruction. Events with any other photon ($\mathrm{E}>30$ (20) MeV and outside of the cone) are vetoed.

Note: at BaBar (Belle) photons inside the cone are (are not) included in the definition of the q^{2}

- Measured rates are sensitive to the soft photon cutoff and to the size of the cone

COMPARISON TO EXPERIMENTS

- Use BaBar $b \rightarrow$ sll MonteCarlo to study the effects of the photon cuts [Many thanks to Kevin Flood, Owen Long and Chris Schilling]
- Inclusive $\mathrm{b} \rightarrow$ sll events are obtained combining fully inclusive events with $\mathrm{M}_{\mathrm{x}}>1.1 \mathrm{GeV}$ with $\mathrm{B}->\mathrm{K}^{(*)} 1 l$ exclusive samples to cover the low M_{x} (high q^{2} region):

- Spectator effects are described using a Fermi motion model [Ali,Hiller]
- The Xs system is hadronized with JetSet
- Photons are modeled using PHOTOS (hard cut-off for $\mathrm{E}_{\gamma}=150 \mathrm{eV}$)

COMPARISON TO EXPERIMENTS

- PHOTOS generates photons with large multiplicity. Most of the energy is carried by a single photon:

- Comparison between event sets generated with and without PHOTOS yields:

NUMERICAL RESULTS

- Impact of real photon emission on integrated observables (in bracket the analytical result - without charmonium effects):

	$\mu \mu$	
low q^{2}	$+1.5 \%(+2.0 \%)$	$+3.6 \%(+5.2 \%)$
high q^{2}	$-4.4 \%(-6.8 \%)$	$-12.9 \%(-17.6 \%)$

- Good agreement taking into account that the MC sample contains events with multiple photon emissions
- Inclusion of the leading photon into the q^{2} leads to integration over IR safe regions of the phase space and log-enhanced QED corrections vanish
- The weights of the K and K * samples relatively to the $\mathrm{X}_{\mathrm{s}}\left(\mathrm{M}_{\mathrm{x}_{\mathrm{s}}}>1.1 \mathrm{GeV}\right)$ one have to be supplemented externally (not built in the MC). We find:

$$
\begin{array}{lr}
X_{K}^{e e}=(8 \pm 2) \% & X_{K}^{\mu \mu}=(11 \pm 2) \% \\
X_{K^{*}}^{e e}=(15 \pm 3) \% & X_{K^{*}}^{\mu \mu}=(25 \pm 4) \% \\
X_{X_{s}\left(M_{X_{s}}>1.1 \mathrm{GeV}\right)}^{\ell \ell}=100 \%-X_{K}^{\ell \ell}-X_{K^{*}}^{\ell \ell}
\end{array}
$$

INTERPRETATION

- Fully inclusive (analytical) vs sum over exclusive (BaBar / Belle):

		$\operatorname{low}(\mu \mu)$		$\operatorname{low}(e e)$
$\operatorname{high}(\mu \mu)$		$\operatorname{high}(e e)$		
Fully inclusive	1.59×10^{-6}	1.64×10^{-6}	2.4×10^{-7}	2.1×10^{-7}
BaBar	$-(7.5 \pm 0.2) \%$	$-(13.5 \pm 0.2) \%$	$-(5.2 \pm 0.1) \%$	$-(0.7 \pm 0.3) \%$
Belle	$-(8.4 \pm 0.2) \%$	$-(13.4 \pm 0.2) \%$	$-(6.2 \pm 0.1) \%$	$-(8.1 \pm 0.1) \%$

- We have checked that inclusion of the second most energetic photon in the cone does not affect the above results
- Effect induced by the soft photon cut ($30 / 20 \mathrm{MeV}$ for BaBar / Belle)
- Order of magnitude of the effect agrees with Sudakov double log:

$$
\sigma_{\text {measured }} \simeq \sigma_{0}\left(1-\frac{\alpha_{\mathrm{em}}}{\pi} \log \frac{m_{b}^{2}}{m_{\ell}^{2}} \log \frac{m_{b}^{2}}{E_{\mathrm{cut}}^{2}}\right) \Rightarrow \sigma_{0}\left|\exp \left[-\frac{\alpha_{\mathrm{em}}}{2 \pi} \log \frac{m_{b}^{2}}{m_{\ell}^{2}} \log \frac{m_{b}^{2}}{E_{\mathrm{cut}}^{2}}\right]\right|^{2}
$$

- The MC sample contains events with up to 12 photons: Sudakov resummation is effectively implemented

aLternative selection

- Previous results obtained using the following cuts:
- $\mu^{+} \mu^{-}$final state $\rightarrow \mathrm{E}_{\gamma}<30 \mathrm{MeV}$

Q $\mathrm{e}^{+} \mathrm{e}^{-}$final state $\rightarrow \mathrm{E}_{\gamma}<30 \mathrm{MeV}$ or γ_{1} in a $(35,50)$ mrad cone around $\mathrm{e}^{ \pm}$

- Alternative possibility:
- Construct $m_{E S}=\sqrt{E_{\text {beam }}^{2}-\vec{P}_{B}^{2}}$ and $\Delta E=E_{B}-E_{\text {beam }}$ for each event
- Impose $m_{E S}>5.2 \mathrm{GeV}$ and $|\Delta E|<100 \mathrm{MeV}$

Q Note that $p_{B}=\left(E_{B}, \vec{P}_{B}\right)$ is the reconstructed B meson momentum in the colliding electrons COM frame

- $\mu^{+} \mu^{\text {- final state } \rightarrow} p_{B}=p_{X_{s}}+p_{\mu^{+}}+p_{\mu^{-}}$
- $\mathrm{e}^{+} \mathrm{e}^{-}$final state $\rightarrow p_{B}=p_{X_{s}}+p_{e^{+}}+p_{e^{-}}+p_{\gamma} \boldsymbol{\gamma}^{E_{\gamma}>30 \mathrm{MeV} \& \text { in the cone }}$

		$\operatorname{low}(\mu \mu)$		$\operatorname{low}(e e)$		$\operatorname{high}(\mu \mu)$		$\operatorname{high}(e e)$
Fully inclusive	1.59×10^{-6}	1.64×10^{-6}	2.4×10^{-7}	2.1×10^{-7}				
BaBar (alternative)	$-(5.5 \pm 0.2) \%$	$-(10.4 \pm 0.2) \%$	$-(2.7 \pm 0.1) \%$	$-(2.8 \pm 0.3) \%$				
Belle (alternative)	$-(5.5 \pm 0.2) \%$	$-(8.9 \pm 0.2) \%$	$-(2.7 \pm 0.1) \%$	$-(3.5 \pm 0.1) \%$				

PART 2:
 UT WITHOUT SEMILEPTONIC DECAYS

E.L. and A. Soni, arXiv:0903.5059
J. Laiho, E.L., R. van de Water, arXiv:0910.2928
E.L. and A. Soni, arXiv:0912.0002

Pay tribute to:
UTfit
CKMfitter
Buras, Guadagnoli

UNITARITY TRIANGLE

- Present status of the Unitarity Triangle fit:

- Note the ubiquitous use of $\left|\mathrm{V}_{\mathrm{cb}}\right|$ for the individual constraints

STATUS OF $V_{X B}$

- Presently we have discrepancies at the (1-2)o level between exclusive and inclusive determinations of $\left|\mathrm{V}_{\mathrm{cb}}\right|$ and $\left|\mathrm{V}_{\mathrm{ub}}\right|$
- $\mathrm{b} \rightarrow \mathrm{c}$:

$$
\begin{aligned}
& \left|V_{c b}\right|_{\text {excl }}=(38.6 \pm 1.2) \times 10^{-3} \\
& \left|V_{c b}\right|_{\text {incl }}=(41.31 \pm 0.76) \times 10^{-3}
\end{aligned}
$$

- Error on exclusive V_{cb} from D^{*} data rescaled to take into account bad experimental χ^{2}
- Inclusive calculation quite mature (NNLO and $\alpha_{\mathrm{s}} / \mathrm{m}_{\mathrm{b}}{ }^{2}$ not in fit yet)
- Issues with violation of quarkhadron duality (D and D^{*} represent 70% of the spectrum)
- $\mathrm{b} \rightarrow \mathrm{u}:$
$\left|V_{u b}\right|_{\text {excl }}=(34.2 \pm 0.37) \times 10^{-4}$
$\left|V_{u b}\right|_{\mathrm{incl}}=\left(40.3 \pm 1.5_{-2.5}^{+2.0}\right) \times 10^{-4}$
- Inclusive calculation is sensitive to non-local effects (Shape function)
- New NNLO corrections seem to push the $\left|\mathrm{V}_{\mathrm{ub}}\right|$ to higher central values (!)

REMOVING $V_{X B}$

- $\left|\mathrm{V}_{\mathrm{ub}}\right|$ not essential to the fit (main effect is to favor NP in ε_{K} rather than in B_{d} mixing)
- $\left|\mathrm{V}_{\mathrm{cb}}\right|$ seems essential to $\varepsilon_{K}, \mathrm{~B} \rightarrow \tau v$ and $\Delta \mathrm{M}_{\mathrm{Bs}}$:
$\Delta M_{B_{s}}=\chi_{s} f_{B_{s}}^{2} \hat{B}_{B_{s}} A^{2} \lambda^{4}$
$\left|\varepsilon_{K}\right|=2 \chi_{\varepsilon} \hat{B}_{K} \kappa_{\varepsilon} \eta \lambda^{6}\left(A^{4} \lambda^{4}(\rho-1) \eta_{2} S_{0}\left(x_{t}\right)+A^{2}\left(\eta_{3} S_{0}\left(x_{c}, x_{t}\right)-\eta_{1} S_{0}\left(x_{c}\right)\right)\right)$
$\mathrm{BR}(B \rightarrow \tau \nu)=\chi_{\tau} f_{B}^{2} A^{2} \lambda^{6}\left(\rho^{2}+\eta^{2}\right)$
- The interplay of these constraints allows to drop V_{cb}, while still constraining new physics in K mixing:

$$
\begin{aligned}
& \left|\varepsilon_{K}\right| \propto \hat{B}_{K}\left(f_{B_{s}} \hat{B}_{s}^{1 / 2}\right)^{-4} f(\rho, \eta) \\
& \left|\varepsilon_{K}\right| \propto \hat{B}_{K} \operatorname{BR}(B \rightarrow \tau \nu)^{2} f_{B}^{-4} g(\rho, \eta)
\end{aligned}
$$

REMOVING Vхв

$X:$	\widehat{B}_{K}	$\left\|V_{c b}\right\|$	$f_{B_{s}} \widehat{B}_{s}^{1 / 2}$	$\operatorname{BR}(B \rightarrow \tau \nu)$	f_{B}
$\delta X:$	4%	2.5%	5%	26%	5%
$\delta \varepsilon_{K}:$	4%	10%	20%	52%	20%

FIT W/OUT SEMILEPTONIC DECAYS

$$
\begin{aligned}
\left|\varepsilon_{K}^{\mathrm{NP}}\right| & =C_{\varepsilon}\left|\varepsilon_{K}^{\mathrm{SM}}\right| \\
M_{12}^{d, \mathrm{NP}} & =e^{i \theta_{d}} M_{12}^{d, \mathrm{SM}} \\
\operatorname{BR}(B \rightarrow \tau \nu)^{\mathrm{NP}} & =r_{H} \mathrm{BR}(B \rightarrow \tau \nu)^{\mathrm{SM}}
\end{aligned} \begin{aligned}
C_{\varepsilon}^{\mathrm{no} V_{q b}} & =1.30 \pm 0.23 \Rightarrow(1.3 \sigma, p=40 \%) \\
\theta_{d}^{\mathrm{no} V_{q b}} & =-(8.9 \pm 4.2)^{\circ} \Rightarrow(2.1 \sigma, p=89 \%) \\
r_{H}^{\mathrm{no} V_{q b}} & =1.7 \pm 0.5 \quad \Rightarrow(1.4 \sigma, p=43 \%)
\end{aligned}
$$

SUPERB EXPECTATIONS

$\delta_{\tau} \quad \delta_{s}$	$p_{\text {SM }}$	$\theta_{d} \pm \delta \theta_{d}$		$\theta_{d} / \delta \theta_{d}$
${ }^{*} 26 \% * 5 \%$	20\%	$-(8.9 \pm 4.2)^{\circ}$	89\%	2.1σ
*26\% 2.5\%	3.5\%	$-(9.6 \pm 3.5)^{\circ}$	88\%	2.7σ
*26\% 1\%	0.1\%	$-(10.1 \pm 2.9)^{\circ}$	87\%	3.4σ
$10 \% * 5 \%$	1\%	$-(8.8 \pm 2.7)^{\circ}$	89\%	3.3σ
$3 \% \quad * 5 \%$	0.04\%	$-(8.8 \pm 2.2)^{\circ}$	89\%	4.0σ
10\% 2.5\%	0.1\%	$-(9.2 \pm 2.5)^{\circ}$	88\%	3.7σ
10\% 1\%	0.004\%	$-(9.6 \pm 2.2)^{\circ}$	86\%	4.4σ
3\% 2.5%	0.004\%	$-(9.1 \pm 2.1)^{\circ}$	88\%	4.4σ
$3 \% \quad 1 \%$	0.0001\%	$-(9.4 \pm 1.9)^{\circ}$	86\%	5.0σ

- Even modest improvements on $B \rightarrow \tau v$ have tremendous impact on the UT fit ($10 \mathrm{ab}^{-1} \rightarrow 10 \%$; $50 \mathrm{ab}^{-1} \rightarrow 3 \%$)
- Interplay with reduced errors on B_{s} mixing can produce a 5σ effect
- Fit is completely clean

CONCLUSIONS

(1) Inclusive $b \rightarrow$ sll decays

- Calculations are approaching the "end-of-the-road"
- Electromagnetic corrections: effect of BaBar \& Belle treatment of soft and collinear photons seems to have very large impact (7-13\%)
- QED effects on H_{T} and $H_{L}\left(\Gamma=H_{T}+H_{L}\right)$ are at the top of the TODO list
(2) UT fit without semileptonic decays
- As long as V_{xb} determinations remain problematic, removing semileptonic decays allows to cast the UT fit as a clean \& high-precision tool to identify new physics
Q Super-B level precision on $B \rightarrow \tau v$ coupled with improvements on the lattice determination of $f_{B_{s}} \hat{B}_{s}^{1 / 2}$ can test the SM at the 5σ level

BACKUP SLIDES

EFFECTIVE LAGRANGIAN

$$
\begin{aligned}
& \mathcal{L}_{e f f}=\underbrace{\frac{4 G_{F}}{\sqrt{2}} V_{t b} V_{t q}^{*}[\sum_{i=1}^{10} C_{i} Q_{i}+\frac{V_{u b} V_{u q}^{*}}{V_{t b} V_{t q}^{*}} \sum_{i=1}^{2} C_{i}\left(Q_{i}-Q_{i}^{u}\right)+\underbrace{\sum_{i=3}^{6} C_{i Q} Q_{i Q}+C_{b} Q_{b}}_{\text {for QED corrections }}]}_{\text {non-perturbative }} \\
& \Lambda_{\text {few } \times \Lambda_{\mathrm{QCD}}}^{\Lambda_{\mathrm{QCD}}} m_{b} \\
& m_{W, Z} m_{\mathrm{NP}} \\
& m_{\text {perturbative }}
\end{aligned}
$$

- Current-current:

$$
\begin{aligned}
Q_{1} & =\left(\bar{q}_{L} \gamma_{\mu} T^{a} c_{L}\right)\left(\bar{c}_{L} \gamma^{\mu} T^{a} b_{L}\right) \\
Q_{2} & =\left(\bar{q}_{L} \gamma_{\mu} c_{L}\right)\left(\bar{c}_{L} \gamma^{\mu} b_{L}\right) \\
Q_{1}^{u} & =\left(\bar{q}_{L} \gamma_{\mu} T^{a} u_{L}\right)\left(\bar{u}_{L} \gamma^{\mu} T^{a} b_{L}\right) \\
Q_{2}^{u} & =\left(\bar{q}_{L} \gamma_{\mu} u_{L}\right)\left(\bar{u}_{L} \gamma^{\mu} b_{L}\right)
\end{aligned}
$$

$$
\left|\frac{C_{2}}{C_{9}} \frac{V_{u b} V_{u s}}{V_{t b} V_{t s}}\right| \sim 0.5 \% \quad\left|\frac{C_{2}}{C_{9}} \frac{V_{u b} V_{u d}}{V_{t b} V_{t d}}\right| \sim-10 \%
$$

EFFECTIVE LAGRANGIAN

$$
\begin{aligned}
& \mathcal{L}_{e f f}=\underbrace{\frac{4 G_{F}}{\sqrt{2}} V_{t b} V_{t q}^{*}[\sum_{i=1}^{10} C_{i} Q_{i}+\frac{V_{u b} V_{u q}^{*}}{V_{t b} V_{t q}^{*}} \sum_{i=1}^{2} C_{i}\left(Q_{i}-Q_{i}^{u}\right)+\underbrace{\sum_{i=3}^{6} C_{i Q} Q_{i Q}+C_{b} Q_{b}}_{\text {for QED corrections }}]}_{\text {non-perturbative }} \\
& \Lambda_{\text {few } \times \Lambda_{\mathrm{QCD}}}^{\Lambda_{\mathrm{QCD}}}
\end{aligned}
$$

- QCD penguins:

$$
\begin{aligned}
& Q_{3}=\left(\bar{q}_{L} \gamma_{\mu} b_{L}\right) \sum\left(\bar{q} \gamma^{\mu} q\right) \\
& Q_{4}=\left(\bar{q}_{L} \gamma_{\mu} T^{a} b_{L}\right) \sum\left(\bar{q} \gamma^{\mu} T^{a} q\right) \\
& Q_{5}=\left(\bar{q}_{L} \gamma_{\mu_{1}} \gamma_{\mu_{2}} \gamma_{\mu_{3}} b_{L}\right) \sum\left(\bar{q} \gamma^{\mu_{1}} \gamma^{\mu_{2}} \gamma^{\mu_{3}} q\right) \\
& Q_{6}=\left(\bar{q}_{L} \gamma_{\mu_{1}} \gamma_{\mu_{2}} \gamma_{\mu_{3}} T^{a} b_{L}\right) \sum\left(\bar{q} \gamma^{\mu_{1}} \gamma^{\mu_{2}} \gamma^{\mu_{3}} T^{a} q\right)
\end{aligned}
$$

EFFECTIVE LAGRANGIAN

$$
\begin{aligned}
& \mathcal{L}_{e f f}=\underbrace{\frac{4 G_{F}}{\sqrt{2}} V_{t b} V_{t q}^{*}[\sum_{i=1}^{10} C_{i} Q_{i}+\frac{V_{u b} V_{u q}^{*}}{V_{t b} V_{t q}^{*}} \sum_{i=1}^{2} C_{i}\left(Q_{i}-Q_{i}^{u}\right)+\underbrace{\sum_{i=3}^{6} C_{i Q} Q_{i Q}+C_{b} Q_{b}}_{\text {for QED corrections }}]}_{\text {non-perturbative }} \\
& \underbrace{\Lambda_{\mathrm{QCD}}}_{\text {few } \times \Lambda_{\mathrm{QCD}}} \underbrace{m_{b}}_{\text {perturbative }}
\end{aligned}
$$

- EW penguins:

$$
\begin{aligned}
Q_{3 Q} & =\left(\bar{q}_{L} \gamma_{\mu} b_{L}\right) \sum Q_{q}\left(\bar{q} \gamma^{\mu} q\right) \\
Q_{4 Q} & =\left(\bar{q}_{L} \gamma_{\mu} T^{a} b_{L}\right) \sum Q_{q}\left(\bar{q} \gamma^{\mu} T^{a} q\right) \\
Q_{5 Q} & =\left(\bar{q}_{L} \gamma_{\mu_{1}} \gamma_{\mu_{2}} \gamma_{\mu_{3}} b_{L}\right) \sum Q_{q}\left(\bar{q} \gamma^{\mu_{1}} \gamma^{\mu_{2}} \gamma^{\mu_{3}} q\right) \\
Q_{6 Q} & =\left(\bar{q}_{L} \gamma_{\mu_{1}} \gamma_{\mu_{2}} \gamma_{\mu_{3}} T^{a} b_{L}\right) \sum Q_{q}\left(\bar{q} \gamma^{\mu_{1}} \gamma^{\mu_{2}} \gamma^{\mu_{3}} T^{a} q\right)
\end{aligned}
$$

POWER CORRECTIONS

$$
\begin{aligned}
p_{X_{s}}^{2} & =\left(p_{b}-q\right)^{2}=m_{b}^{2}+q^{2}-2 m_{b} q_{0} \\
& <m_{b}^{2}+q^{2}-2 m_{b} \sqrt{q^{2}}=\left(m_{b}-\sqrt{q^{2}}\right)^{2}
\end{aligned}
$$

OPE is an expansion in $\Lambda_{Q C D} /\left(m_{b}-\sqrt{q^{2}}\right)$ and breaks down at $q^{2} \sim m_{b}^{2}$

(1)

Q CUTS

- Quark-hadron duality breaks down when the rate is dominated by charmonium resonances:

- Three regions:
- $0.04 \mathrm{GeV}^{2}<\mathrm{q}^{2}<1 \mathrm{GeV}^{2}$
$1 \mathrm{GeV}^{2}<q^{2}<6 \mathrm{GeV}^{2}$
$q^{2}>14.4 \mathrm{GeV}^{2}$
dominated by the photon pole ($\mathrm{b} \rightarrow \mathrm{s} \gamma$)
- Resonances model using data:
* Krüger-Sehgal (e+e- data)
* Simple Breit-Wigner

- Away from resonances expansion in $1 / \mathrm{m}_{\mathrm{c}}^{2}$ is performed

(1)

Q CUTS

- Kruger-Sehgal mechanism:

$$
\begin{aligned}
R_{\mathrm{had}}^{c \bar{c}} & =\frac{\sigma\left(e^{+} e^{-} \rightarrow \mathrm{c} \overline{\mathrm{c}} \text { hadrons }\right)}{\sigma\left(e^{+} e^{-} \rightarrow \mu^{+} \mu^{-}\right)} \\
& =e_{e^{+}}^{e^{-}}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Im}\left\langle O_{2}\right\rangle \rightarrow\left\langle O_{9}\right\rangle_{\text {tree }}\left(\frac{\pi}{3} R_{\text {had }}^{c \bar{c}}(\hat{s})\right) \\
& \operatorname{Re}\left\langle O_{2}\right\rangle \rightarrow\left\langle O_{9}\right\rangle_{\text {tree }}\left(-\frac{8}{9} \log m_{c} / m_{b}-\frac{4}{9}+\frac{\hat{s}}{3} P \int_{4 \hat{m}_{D}^{2}}^{\infty} \frac{R_{\text {had }}^{c \bar{c}}\left(\hat{s}^{\prime}\right)}{\hat{s}^{\prime}\left(\hat{s}^{\prime}-\hat{s}\right)} d \hat{s}^{\prime}\right)
\end{aligned}
$$

- Alternatively use a Breit-Wigner ansatz to parametrize $\left.<\mathrm{O}_{2}\right\rangle$
- The two approaches agree well above and below the resonances but not in between
- The impact in the low q^{2} region is $+1.8 \%$, in the high q^{2} region is -10%

Xs CUT

- MX cuts required to suppress the $\mathrm{b} \rightarrow \mathrm{cl}^{-} v \rightarrow \mathrm{sl}^{-} \mathrm{l}^{+} v v$ background

- Correction factor added in experimental results
- Framework: Fermi motion, SCET

CUT

- New idea: use SCET to describe the X_{s} system

$p_{X}^{+} \ll p_{X}^{-} \Longrightarrow m_{X}^{2} \ll E_{X}^{2}$
X_{S} is a hard-collinear mode:

$$
\Lambda^{2} \ll p_{X_{s}}^{2} \sim \Lambda m_{b} \ll m_{b}^{2}
$$

$$
\eta_{i j}=\frac{\int_{1 \mathrm{GeV}^{2}}^{6 \mathrm{GeV}^{2}} \mathrm{~d} q^{2} \int_{0}^{m_{X}^{\mathrm{cut}}} \mathrm{~d} m_{X}^{2} \frac{\mathrm{~d} \Gamma_{i j}}{\mathrm{~d} q^{2} \mathrm{~d} m_{X}^{2}}}{\int_{1 \mathrm{GeV}^{2}}^{6 \mathrm{GeV}^{2}} \mathrm{~d} q^{2} \frac{\mathrm{~d} \Gamma_{i j}}{\mathrm{~d} q^{2}}}
$$

$$
i j: C_{9}^{2} \text { and } C_{10}^{2}, C_{7} C_{9}, C_{7}^{2}
$$

- The effect seems very large (power corrections?)

(1)

Xs CUT

- At leading power and at order α_{s}, these corrections are a universal multiplicative factor:

- Reduce non-perturbative effects by considering: [Lee, Ligeti, Stewart, Tackmann] $\Gamma^{\mathrm{cut}}\left(B \rightarrow X_{s} \ell^{+} \ell^{-}\right) / \Gamma^{\mathrm{cut}}\left(B \rightarrow X_{u} \ell \bar{\nu}\right)$ [same M_{X} cut]

INPUTS FOR B \rightarrow SLL

$\alpha_{s}\left(M_{z}\right)=0.1189 \pm 0.0010[40]$	$m_{e}=0.51099892 \mathrm{MeV}$
$\alpha_{e}\left(M_{z}\right)=1 / 127.918$	$m_{\mu}=105.658369 \mathrm{MeV}$
$s_{W}^{2} \equiv \sin ^{2} \theta_{W}=0.2312$	$m_{\tau}=1.77699 \mathrm{GeV}$
$\left\|V_{t s} V_{t b} / V_{c b}\right\|^{2}=0.962 \pm 0.002[41]$	$m_{c}\left(m_{c}\right)=(1.224 \pm 0.017 \pm 0.054) \mathrm{GeV}[42]$
$\left\|V_{t s} V_{t b} / V_{u b}\right\|^{2}=(1.28 \pm 0.12) \times 10^{2}[41]$	$m_{b}^{1 S}=(4.68 \pm 0.03) \mathrm{GeV}[31]$
$B R\left(B \rightarrow X_{c} e \bar{\nu}\right)_{\mathrm{exp}}=0.1061 \pm 0.0017[43]$	$m_{t, \mathrm{pole}}=(170.9 \pm 1.8) \mathrm{GeV}[44]$
$M_{Z}=91.1876 \mathrm{GeV}$	$m_{B}=5.2794 \mathrm{GeV}$
$M_{W}=80.426 \mathrm{GeV}$	$C=0.58 \pm 0.01[31]=\left\|\frac{V_{u b}}{V_{c b}}\right\|^{2} \frac{\Gamma\left(\bar{B} \rightarrow X_{c} e \bar{\nu}\right)}{\Gamma\left(\bar{B} \rightarrow X_{u} e \bar{\nu}\right)}$
$\lambda_{2}^{\mathrm{eff}}=(0.12 \pm 0.02) \mathrm{GeV}^{2}$	$\rho_{1}=(0.06 \pm 0.06) \mathrm{GeV}^{3}[31]$
$\lambda_{1}^{\mathrm{eff}}=(-0.243 \pm 0.055) \mathrm{GeV}^{2}[42]$	$f_{u}^{0}+f_{s}=(0 \pm 0.2) \mathrm{GeV}^{3}[24]$
$f_{u}^{0}-f_{s}=(0 \pm 0.04) \mathrm{GeV}^{3}[24]$	$f_{u}^{ \pm}=(0 \pm 0.4) \mathrm{GeV}^{3}[24]$

BRANCHING RATIO

- Theory [Huber,Lunghi,Misiak,Wyler; Huber,Hurth,Lunghi]:

$$
\begin{aligned}
\mathcal{B}_{\mu \mu}^{\text {low }}= & {\left[1.59 \pm 0.08_{\text {scale }} \pm 0.06_{m_{t}} \pm 0.024_{C, m_{c}} \pm 0.015_{m_{b}} \pm 0.02_{\alpha_{s}\left(M_{Z}\right)}\right.} \\
& \left. \pm 0.015_{\mathrm{CKM}} \pm 0.026_{\mathrm{BR}_{s l}} \pm 0.08_{\alpha_{s} / m_{b}}\right] \times 10^{-6}=(1.59 \pm 0.14) \times 10^{-6} \\
\mathcal{B}_{e e}^{\text {low }}= & (1.64 \pm 0.14) \times 10^{-6}
\end{aligned}
$$

$$
\mathcal{B}_{\mu \mu}^{\mathrm{high}}=2.40 \times 10^{-7}\left(1+\left[\begin{array}{l}
+0.01 \\
-0.02
\end{array}\right]_{\mu_{0}}+\left[\begin{array}{l}
+0.14 \\
-0.06
\end{array}\right]_{\mu_{b}} \pm 0.02_{m_{t}}+\left[\begin{array}{l}
+0.006 \\
-0.003
\end{array}\right]_{C, m_{c}} \pm 0.05_{m_{b}}\right.
$$

$$
+\left[\left[_{-0.001}^{+0.0002}\right]_{\alpha_{s}} \pm 0.002_{\mathrm{CKM}} \pm 0.02_{\mathrm{BR}_{s l}} \pm 0.05_{\lambda_{2}} \pm 0.19_{\rho_{1}} \pm 0.14_{f_{s}} \pm 0.02_{f_{u}} \pm 0.05_{\alpha_{s} / m_{b}}\right)
$$

$$
=(2.40 \pm 0.7) \times 10^{-7}
$$

$$
\mathcal{B}_{e e}^{\text {high }}=(2.1 \pm 0.6) \times 10^{-7}
$$

- Experiment [BaBar and Belle]:

$$
\begin{aligned}
\mathcal{B}_{\ell \ell}^{\text {low }} & =(1.60 \pm 0.51) \times 10^{-6} \\
\mathcal{B}_{\ell \ell}^{\text {high }} & =(4.4 \pm 1.2) \times 10^{-7}
\end{aligned}
$$

Breakdown of the OPE results in large power corrections over which we have a poor control

LOW-Q2: FBA

[Huber,Hurth,Lunghi]

- Integrated observables:

$$
\begin{array}{ll}
\hline \operatorname{Bin} 1\left(q^{2} \in[1,3.5] \mathrm{GeV}^{2}\right) & \operatorname{Bin} 2\left(q^{2} \in[3.5,6] \mathrm{GeV}^{2}\right) \\
\left(\overline{\mathcal{A}}_{\mu \mu}\right)_{\text {bin } 1}=[-9.1 \pm 0.9] \% & \left(\overline{\mathcal{A}}_{\mu \mu}\right)_{\text {bin2 }}=[7.8 \pm 0.8] \% \\
\left(\overline{\mathcal{A}}_{e e}\right)_{\text {bin1 }}=[-8.1 \pm 0.9] \% & \left(\overline{\mathcal{A}}_{\mu \mu}\right)_{\text {bin2 }}=[8.3 \pm 0.6] \%
\end{array}
$$

$$
\begin{aligned}
& \text { low }-\mathrm{q}^{2}\left(q^{2} \in[1,6] \mathrm{GeV}^{2}\right) \\
& \left(\overline{\mathcal{A}}_{\mu \mu}\right)_{\text {low }}=[-1.5 \pm 0.9] \% \\
& \left(\overline{\mathcal{A}}_{\mu \mu}\right)_{\text {low }}=[-0.9 \pm 0.9] \%
\end{aligned}
$$

HIGH-Q2: REDUCINGTHE ERRORS

- New idea: normalize the decay width to the semileptonic $B \rightarrow X_{u} l v$ rate with the same dilepton invariant mass cut:

$$
\mathcal{R}\left(s_{0}\right)=\frac{\int_{\hat{s}_{0}}^{1} \mathrm{~d} \hat{s} \frac{\mathrm{~d} \Gamma\left(\bar{B} \rightarrow X_{s} \ell^{+} \ell^{-}\right)}{\mathrm{d} \hat{s}}}{\int_{\hat{s}_{0}}^{1} \mathrm{~d} \hat{s} \frac{\mathrm{~d} \Gamma\left(\bar{B}^{0} \rightarrow X_{u} \ell \nu\right)}{\mathrm{d} \hat{s}}}
$$

[Ligeti,Tackmann]

- Impact of non-perturbative $1 / m_{b}^{2}$ and $1 / m_{b}^{3}$ power corrections drastically reduced
- In the high $-q^{2}$ region we find:

$$
\begin{aligned}
\mathcal{R}\left(14.4 \mathrm{GeV}^{2}\right)= & 2.29 \times 10^{-3}\left(1 \pm 0.04_{\text {scale }} \pm 0.02_{m_{t}} \pm 0.01_{C, m_{c}} \pm 0.006_{m_{b}} \pm 0.005_{\alpha_{s}} \pm 0.09_{\mathrm{CKM}}\right. \\
& \left. \pm 0.003_{\lambda_{2}} \pm 0.05_{\rho_{1}} \pm 0.03_{f_{u}^{0}+f_{s}} \pm 0.05_{f_{u}^{0}-f_{s}}\right) \\
= & 2.29 \times 10^{-3}(1 \pm 0.13)
\end{aligned}
$$

- The largest source of uncertainty is $V_{u b}$

(1)

HIGH-Q2: REDUCING THE ERRORS

[Belle, $87 \mathrm{fb}^{-1}$, hep-ex / 0311048]
[BaBar, $383 \mathrm{~m} \Upsilon$, arXiv:0708.3702]

- Experiments already positioned to measure $\mathrm{B} \rightarrow \mathrm{X}_{\mathrm{u}} \mathrm{l} v$ with a q^{2} cut
- Separation of B^{0} and B^{+}is important to control WA contributions

MODEL INDEPENDENT ANALYSIS

- Use $B \rightarrow X_{5} \gamma$ to constrain C_{7} and C_{8} :

MODEL INDEPENDENT ANALYSIS

- Use C_{7} and C_{8} from $B \rightarrow X_{5} \gamma$ to constrain C_{9} and C_{10}

- $C_{7}>0$ requires sizable contributions to C_{9} and C_{10}
- Reversing the sign of C_{7} we obtain $\mathcal{B}\left(\bar{B} \rightarrow X_{s} \ell^{+} \ell^{-}\right)=(3.11 \pm 0.22) \times 10^{-6}$ hence the SM sign is favored at the 2.7σ level
[Gambino,Haisch,Misiak]

MFV SUSY

- Computing aid: Spheno for the RGE of the MSSM and MicrOMEGAs for the relic dark matter density
- Effects on C9 and C10 are tiny: $\left|C_{9,10}\left(\mu_{0}\right) / C_{9,10}^{\mathrm{SM}}\left(\mu_{0}\right)\right|<0.1$
- $\mathrm{b} \rightarrow \mathrm{s} \gamma$ shapes the surviving parameter space:

(1)

susy: MIA ANALysis

- In the most general MSSM, gluino and chargino diagrams can lead to huge contributions to the semileptonic operators:

$$
\begin{aligned}
0.7 & <C_{9}\left(\mu_{0}\right) / C_{9}^{\mathrm{SM}}\left(\mu_{0}\right)<1.3 \\
0 & <C_{10}\left(\mu_{0}\right) / C_{10}^{\mathrm{SM}}\left(\mu_{0}\right)<2
\end{aligned}
$$

SUSY: MIA ANALYSIS

- The $C_{7}>0$ scenario is viable (with some degree of fine tuning)
- More than one mass insertion present at the same time

SUSY: MIA ANALYSIS

- Constraints on (23) mass insertions in the down sector [Ciuchini,Silvestrini]

INPUTS TO THE UT FIT

$$
\begin{array}{ll}
\hline\left|V_{c b}\right|_{\text {excl }}=(38.6 \pm 1.2) 10^{-3} & \eta_{1}=1.51 \pm 0.24 \\
\left|V_{c b}\right|_{\text {incl }}=(41.31 \pm 0.76) 10^{-3} & \eta_{2}=0.5765 \pm 0.0065 \\
\left|V_{c b}\right|_{\text {incl }}=(40.3 \pm 1.0) 10^{-3} & \eta_{3}=0.47 \pm 0.04 \\
\left|V_{u b}\right|_{\text {excl }}=(3.42 \pm 0.37) 10^{-3} & \eta_{B}=0.551 \pm 0.007 \\
\left|V_{u b}\right|_{\text {incl }}=\left(4.03 \pm 0.15_{-0.25}^{+0.20}\right) 10^{-3} & \xi=1.243 \pm 0.028 \\
\Delta m_{B_{d}}=(0.507 \pm 0.005) \mathrm{ps}^{-1} & \alpha=(89.5 \pm 4.3)^{\circ} \\
\Delta m_{B_{s}}=(17.77 \pm 0.12) \mathrm{ps}^{-1} & S_{\psi K_{S}}=0.672 \pm 0.024 \\
\varepsilon_{K}=(2.229 \pm 0.012) \times 10^{-3} & \gamma=(78 \pm 12)^{\circ} \\
m_{c}\left(m_{c}\right)=(1.268 \pm 0.009) \mathrm{GeV} & \widehat{B}_{K}=0.725 \pm 0.026 \\
m_{t, \text { pole }}=(172.4 \pm 1.2) \mathrm{GeV} & \kappa_{\varepsilon}=0.92 \pm 0.01 \\
f_{K}=(155.8 \pm 1.7) \mathrm{MeV} & f_{B}=(192.8 \pm 9.9) \mathrm{MeV} \\
f_{B_{s}} \sqrt{\widehat{B}_{s}}=(275 \pm 13) \mathrm{MeV} & \lambda=0.2255 \pm 0.0007 \\
\mathrm{BR}(B \rightarrow \tau \nu)=(1.43 \pm 0.37) 10^{-4}[17] \\
\hline \hline
\end{array}
$$

