

Energy Scan above the Y(4S): BaBar Measurements & Perspectives at SuperB

Francesco Renga SAPIENZA – Università di Roma and INFN Roma

SuperB Physics Workshop - Frascati, November 30th, 2009

The New Charmonia

- New charmonium-like states discovered at the B-Factories;
- Do not fit in the standard picture:
- X Masses far from predicted states;
- X Widths too small;
- X Unusual decay rates (e.g. large $J/\psi \pi \pi$ rate for some of them).

Exotic Bottomonium?

- New charmonium-like states could have bottomonium companions;
- Interest boosted by Belle's observation of an anomalously large $Y(1S)\pi \pi$ ISR production around the Y(5S).

Exotic Bottomonium?

$$e^+e^- \rightarrow \gamma_{\rm ISR} \Upsilon(nS)$$

 $\searrow \Upsilon(1S)\pi^+\pi^-$

Phys.Rev.Lett.100:112001,2008

Phys.Rev.D 75 (2007) 071103

Exotic Bottomonium?

 Mass of new bottom resonances could be guessed just applying a shift to the new charmonium resonances:

 $m(bottomonium) = m(charmonium) + m(\Upsilon(1S)) - m(J/\psi)$ Works fine for standardbottomonium!

$$Y(4260) \rightarrow Y_b(10620)???$$

 $Y(4350) \rightarrow Y_b(10710)???$
 $Y(4660) \rightarrow Y_b(11020)???$

Energy Scan

- New bottomonium resonances can be searched for with an energy scan above the Y(4S) resonance;
- Inclusive approach:
 - Search for unexpected structures in the inclusive hadronic cross section:

- Exclusive approach:
 - Look for signals in specific decay channels (like $Y(nS)\pi \pi$) inspired by the new charmonia decay channels (like $J/\psi \pi \pi$)

BaBar Scan

- BaBar performed a 10 day long energy scan starting on March 28th, 2008:
 - Steps of 5 MeV from 10.54 to 11.20 GeV;
 - about 25 pb⁻¹ per step (3.3 fb⁻¹ total);
 - 8 additional steps in the Y(6S) region (10.96 to 11.10 GeV) corresponding to 600 pb⁻¹.

30 times more luminosity and *4 times finer steps* w.r.t. previous scan (@ Cornell in 1984)

One Week at SuperB...

- Let's assume:
 - Luminosity ~ 1×10^{36} cm⁻² s⁻¹ ~ $100 \times PEP$ II;
 - Same down time as during the BaBar Scan;
 - Same energy range (10.54 to 11.20 GeV);
 - 5 MeV steps (look for $\Gamma \sim$ 50 MeV resonances, without missing narrow states);
- We can collect:
 - 40 fb⁻¹ per day \rightarrow 280 fb⁻¹ in one week;
 - 130 steps \rightarrow 2.3 fb⁻¹ per step.

Inclusive Measurements

- Selection of a $b\overline{b}$ and a $\mu\mu$ samples;
- Backgrounds estimated at a reference point (Js = 10.54 GeV) below the BB threshold;
- Efficiencies from MC samples.

BaBar Results

- Region explored with unprecedented detail;
- Interpretation made difficult by *thresholds*.

σ_{stat} < 3% σ_{syst} < 2%

Phys.Rev.Lett.102:012001,2009

A Wide Impact...

A case for hidden \$b\bar{b}\$ tetraquarks based on \$e^+e^- \to b\bar{b}\$ cross section between \$\sqrt{s}=10.54\$ and 11.20 GeV Today, 1:00 AM

Ali, Ahmed arXiv:0911.2787 Read more	
Charmed Exotics Today, 1:00 AM Bali, G. arXiv:0910.3165 Read more	A case for hidden \$b\bar{b}\$ tetraquarks
Mass and width of the Upsilon(4S) Today, 1:00 AM van Beveren, Eef arXiv:0910.0967 Read more	Ali, Ahmed arXiv:0911.2787 Read more
Bottomonium Spectrum with Screened Potential Today, 1:00 AM Li, Bai-Qing Commun.Theor.Phys.52:653-661,2009 arXiv:6909.1369 Read more	
Long-distance behavior of the quark-antiquark static potential. Application to light Gonzalez, P. Phys.Rev.D80:054010,2009 arXiv:0909.1204 Read more New bottomonium spectroscopy and transitions Today, 1:00 AM	Bottomonium Spectrum with Screened Potential Li, Bai-Qing Commun.Theor.Phys.52:653-661,2009 arXiv:0909.1369
Vest, Chirs PoS Continement8:095,2008 <u>Head more</u> Production of hadron pairs in e+ e- annihilation near the K+ K-, D anti-D, B anti-B anti-B and Beveren, Eef Phys.Rev.D80:074001,2009 arXiv:0908.0242 <u>Read more</u>	and Lambda(c)+ Lambda(c)- thresholds Today, 1:00 AM
Low energy moments of heavy quark current correlators at four loops Today, 1:0 Maier, A. Nucl.Phys.B824:1-18,2010 arXiv:0907.2117 <u>Read more</u>	MA 00
Charm and Bottom Quark Masses: An Update Today, 1:00 AM Chetyrkin, K.G. Phys.Rev.D80:074010,2009 arXiv:0907.2110 Read more Bottomonium Results from BABAR and BELLE Today, 1:00 AM	Charm and Bottom Quark Masses: An Update
Bottomonium at BaBar Today, 1:00 AM Renga, Francesco arXiv:0905.4931 Read more	Chetyrkin, K.G. Phys.Rev.D80:074010,2009 arXiv:0907.2110 <u>Reac</u>
Y(5S) Results at Belle Today, 1:00 AM Louvot, Remi arXiv:0905.4345 Read more	
Towards a new spectroscopy Today, 1:00 AM Faccini, R. Nucl.Phys.Proc.Suppl.185:99-106,2008 Read more	
Dielectron widths of the S-, D-vector bottomonium states Today, 1:00 AM Badalian, A.M. arXiv:0903.3643 <u>Read more</u>	
On the possibility to observe higher n**3 D(1) bottomonium states in the e+ e- pro Badalian, A.M. Phys.Rev.D79:037505,2009 arXiv:0812.2136 Read more	Cesses Today, 1:00 AM

Interpretation & Perspectives

- Interpretation requires an explicit model for the interplay between quarkonium production and decay (e.g. Eichten *et al.* Phys.Rev.D17:3090,1978)
- Not just "interference", but "mixing" of different states:
 - mass eigenstates are not pure nL_J states;
 - cross section is not expected to be a superposition of Breit-Wigner's;
 - Differences among exclusive and inclusive shapes.
- Need for a theoretical (more than experim.) developments:
 - Help can come from exclusive $e^+e^- \rightarrow B\overline{B}$ decays.

Exclusive Measurements

Strategy

• Get inspired by $J/\psi \pi \pi$ exotic charmonia decays:

- $\sigma \times BR$ at the level of few pb;

• Looks for $\Upsilon(nS) \pi \pi (KK, \eta, etc.)$ final states:

$$- \Upsilon(nS) \rightarrow I^{+}I^{-}(I = e, \mu), n = 1, 2, 3; \\ - \Upsilon(2S) \rightarrow \Upsilon(1S) \pi^{+}\pi^{-}, \Upsilon(1S) \rightarrow I^{+}I^{-};$$
 BR ~ 4 - 5%

- 3 kind of selections for 3 kinds of production processes:
 - "alone" production ($e^+e^- \rightarrow \Upsilon(nS)$);
 - "ISR" production ($e^+e^- \rightarrow \Upsilon(nS) \gamma_{ISR}$);
 - "pair" production ($e^+e^- \rightarrow Y(nS) X$).

Expectations at BaBar

- BaBar analysis not finalized (lack of manpower...);
- Sensitivity expectations from MC (Signal) and data (Bkg.):
 - $\Gamma_{\rm Y}$ ~ 140 MeV;
 - cut & count within a 140 MeV "moving window";
- Which is the value of $\sigma(e^+e^- \rightarrow Y_b) \times BR(Y_b \rightarrow Y(nS)X)$ that we could discover at a 3σ level (stat. only)?

Decay Mode	$\varepsilon \times BR(\Upsilon \to final)$	σ_{bgk} [pb]	$\sigma \times BR$ Sens. [pb]	Discovery Sig. Yield
$Y_b ightarrow \Upsilon(1S)_{\mu^+\mu^-} \pi^+\pi^-$	0.95%	0.0017	1.5	3.9
$Y_b ightarrow \Upsilon(2S) \pi^+ \pi^-$	1.18%	0.0028	1.6	5.1
$Y_b ightarrow \Upsilon(1S)_{\mu^+\mu^-} \eta_{\pi\pi\pi^0}$	0.20%	0.0087	3.0	2.7
$Y_b ightarrow \Upsilon(1S)_{\mu^+\mu^-} \omega_{\pi\pi\pi^0}$	0.45%	0.0003	1.5	1.86
$Y_b ightarrow \Upsilon(1S)_{\mu^+\mu^-} \pi^0$	0.69%	0.0111	4.9	9.3
$Y_b ightarrow \Upsilon(1S)_{\mu^+\mu^-} \pi^+ \pi^- \pi^0$	0.56%	0.0015	1.1	4.1

Perspectives at SuperB

- From a rapid exchange with machine background experts:
 - Background for this analysis shouldn't be dramatically different w.r.t. BaBar;
- Scaling with luminosity:
 - 85 times more statistics.

Decay Mode	$\varepsilon \times BR(\Upsilon \to final)$	σ_{bgk} [pb]	$\sigma \times BR$ Sens. [pb]	Discovery Sig. Yield
$Y_b \rightarrow \Upsilon(1S)_{\mu^+\mu^-} \pi^+ \pi^-$	0.95%	0.0017	0.13	29.0
$Y_b ightarrow \Upsilon(2S) \pi^+ \pi^-$	1.18%	0.0028	0.14	38.0
$Y_b ightarrow \Upsilon(1S)_{\mu^+\mu^-} \eta_{\pi\pi\pi^0}$	0.20%	0.0087	0.2	15.5
$Y_b ightarrow \Upsilon(1S)_{\mu^+\mu^-} \omega_{\pi\pi\pi^0}$	0.45%	0.0003	0.12	13.0
$Y_b ightarrow \Upsilon(1S)_{\mu^+\mu^-} \pi^0$	0.69%	0.0111	0.45	72.5
$Y_b \rightarrow \Upsilon(1S)_{\mu^+\mu^-} \pi^+ \pi^- \pi^0$	0.56%	0.0015	0.09	27.0

Exclusive BB states (I)

- Development of theoretical predictions for R_b could take advantage from a measurement of the exclusive $e^+e^- \rightarrow B_{d,s}(^*)\overline{B}_{d,s}(^*)$ rates:
 - Calculations provide excl. and incl. rates together;
- A very good semi-exclusive B → DX technique available from BaBar/Belle:
 - efficiency ~ 0.4%;
- $B_{d,s}(*)B_{d,s}(*)$ can be separated in the (m_{ES}, ΔE) plane.

Baracchini et al. JHEP 0708:005,2007

Exclusive BB states (II)

- Let's assume:
 - 2.3 fb⁻¹ per step;
 - $\sigma_{bb} \sim 0.24$ nb (corresponding to $R_b \sim 0.3$);
 - 0.4% efficiency (one B is enough!) in all channels;
- We expect:
 - Sig. yield ~ 2200 & Bkg. yield ~ 30000 per scan point.
- We can aim at a 10% error level for each point (5 MeV steps) at least in the most frequent channels:
 - to be compared with ≥ 5% and 20 MeV steps in the charm sector (CLEO Collab., Phys.Rev.D80:072001,2009);

Conclusions

- BaBar Scan provided a precise measurement of the inclusive $e^*e^- \rightarrow b\overline{b}$ cross section above the $\Upsilon(4S)$:
 - Theoretical models already challenged;
 - Need for a theoretical (more than experimental) development;
- Exclusive Ψ_b searches not yet finalized at BaBar:
 - Sensitivity at the level of $\sigma \times BR \sim 1.5$ pb in some channels;
 - SuperB can reach the 0.1 pb level;
- Exclusive $e^+e^- \rightarrow B\overline{B}$ feasible at SuperB:
 - could help in the interpretation of the $e^+e^- \rightarrow b\overline{b}$.