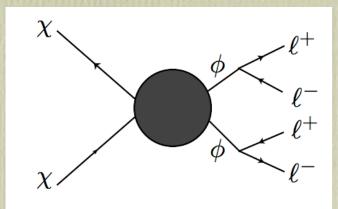
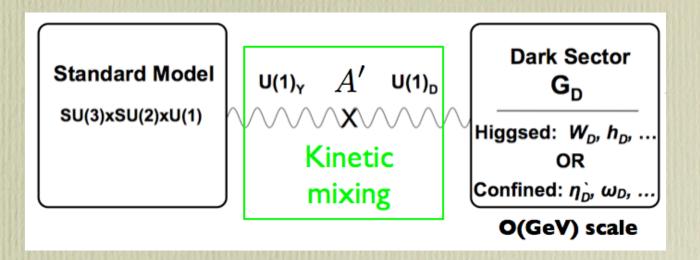

Searching for Dark Forces at
SuperB

Matt Graham
SLAC
SuperB General Meeting
December 1, 2009


ATIC/PAMELA/FERMI etc.

"A theory of dark matter"

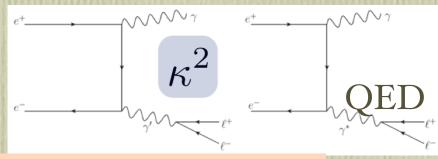

Arkani-Hamed, Finkbeiner, Slatyer, Weiner (hep-ph/0810.0713)

Pospelov, Ritz (hep-ph/0810.1502)

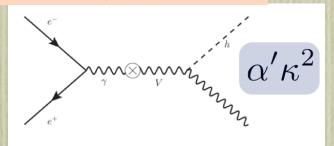
- new "dark force" with gauge boson φ- GeV while the dark matter particle is -TeV scale
- gauge boson decays to lepton pairs (e+e-, μ+μ-) but not pp because φ is below pp threshold (2GeV) (also can decay to pions...BR goes as R)
- the φ couples to the SM photon...we might see something in the B-Factories!

Structure of the Dark Sector

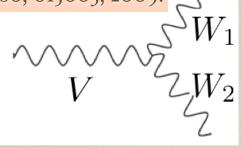
- •Abelian $U(I)_D$ common to all models...mixes with SM hypercharge with coupling K (or E depending on the paper); "dark higgs" to give mass
- •Structure in the dark sector is wide open...
 - •could have nothing interesting (just he U(1))
 - •Higgsed non-abelian SU(2): "dark EW"
 - Arkani-Hamed, Finkbeiner, Slatyer, Weiner (hep-ph/0810.0713)
 - •Confined non-abelian SU(N): "dark color"
 - Alves, Behbahani, Schuster, Wacker (hep-ph/0903.3945)


Some preliminaries...

- We haven't settled on the jargon yet...
 - dark photon=hidden photon=U-boson etc.

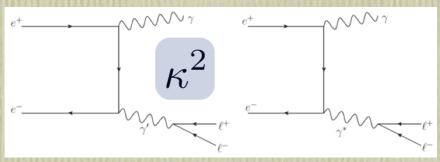

$$\phi = U = A' = \gamma_D = V \sim W_D = W'$$

- dark higgs: $h' = h_D$
- kinetic mixing parameter: $\varepsilon = \kappa = \chi$
- dark sector coupling constant: $\alpha' = \alpha_D$

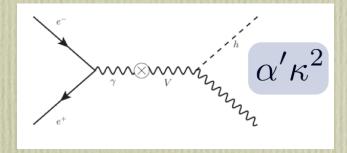

What to look for...direct production

Batell et al., PRD79, 115008, 2009.

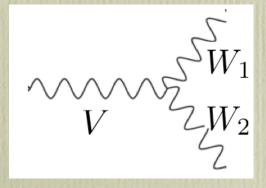
Essig et al., PRD80, 015003, 2009.



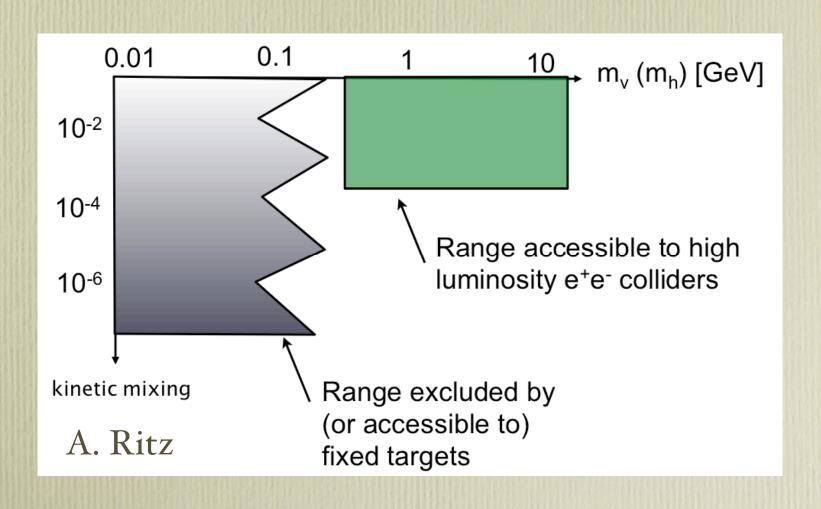
generic: γl⁺l⁻ look for a bump in ll mass huge QED background


generic+Higgs: 6l or 2l+€ small QED background

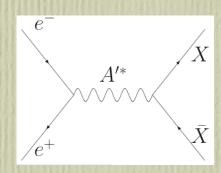
generic non-Abelian: 41 small QED background

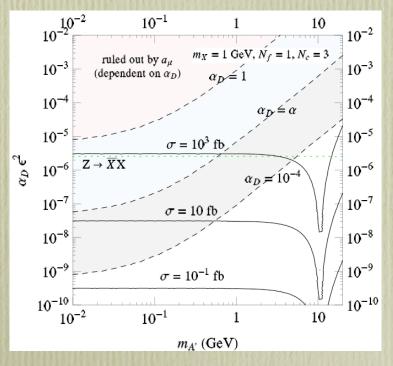

What to look for...direct production

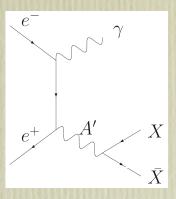
CLEO: PRL 101, 151802 (2008) Babar: PRL 103, 081803 (2009)

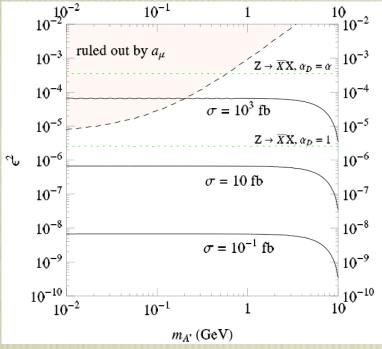


Nothing yet!

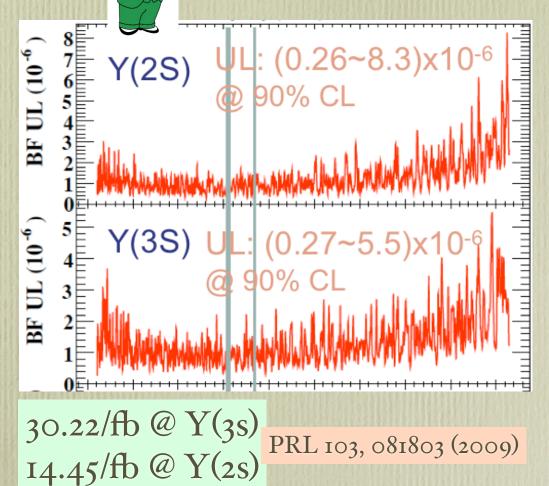



Babar: hep-ex/0908.2821


What we may reach...



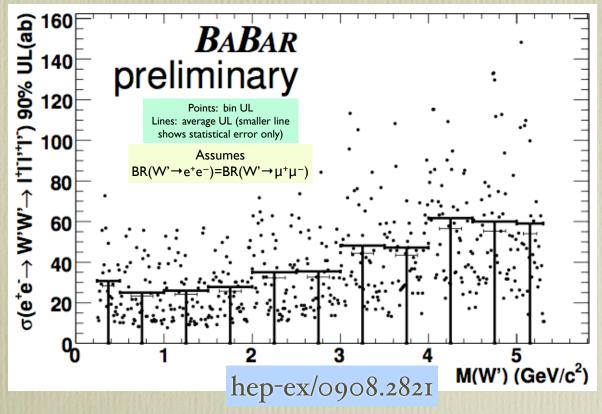
Dark Forces at e+e- Colliders



Analysis designed to look for light higgs (A_o), but works for this too...but big QED bkg.

→corresponding limit on €-5×10⁻³

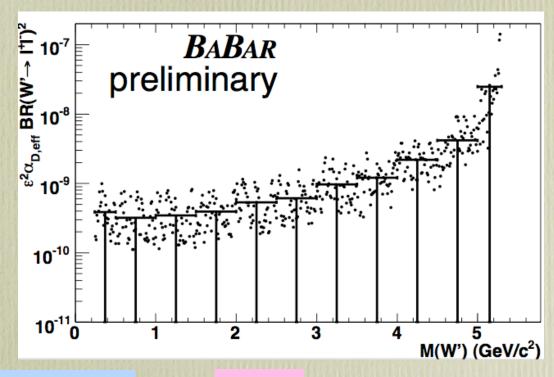

Remember...scaling of ϵ goes as: $\sqrt[4]{\mathcal{L}}$ so adding full dataset (x10)


reduces limit by -x 1.8.

...even SuperB only gets it down to ~1×10⁻³...it's not a winning game...

e+e⁻→4-leptons

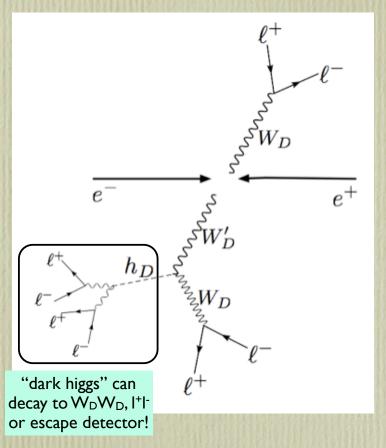
- •Very clean mode (esp 4µ) designed to search for a non-Abelian dark sector...requires 2 resonances within -10MeV
- •Used full BaBar runs 1-7 dataset...-540/fb



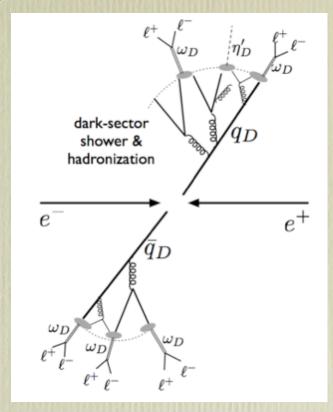
e+e⁻→4-leptons

$$\sigma(e^+e^- \to W_D W_D) \sim \frac{\pi \varepsilon \alpha \alpha_{D,eff}}{E_{cm}^2} \left(1 - \frac{4m_{W_D}^2}{E_{cm}^2}\right)^{3/2}$$

...some O(1) s dependence absorbed into definition of $\alpha_{D,eff}$



Remove BR(W \rightarrow II)² by dividing (2+R)²


$$\alpha_{\mathrm{D}}\text{-IO}^{-2}$$

 $\epsilon < \sim 10^{-3}$ (for non-abelian hidden sector)

More exotic signatures...

Non-Abelian Higgsed: 8 leptons or missing mass

Confined: lots of leptons; possibly missing mass depending on lifetimes..

...can also look for muons with a displaced vertex...

Searching for Dark Forces in Rare Decays

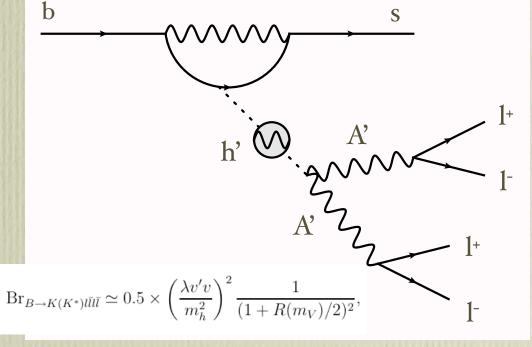
SuperB will be a meson factory...

$X \to YU$	n_X	$m_X - m_Y \text{ (MeV)}$	$BR(X \to Y + \gamma)$	$BR(X \to Y + \ell^+\ell^-)$	$\epsilon \leq$
$\eta \rightarrow \gamma U$	$n_{\eta} \sim 10^7$	547	$2\times 39.8\%$	6×10^{-4}	2×10^{-3}
$\omega \to \pi^0 U$	$n_{\omega} \sim 10^7$	648	8.9%	7.7×10^{-4}	5×10^{-3}
$\phi \rightarrow \eta U$	$n_{\phi} \sim 10^{10}$	472	1.3%	1.15×10^{-4}	1×10^{-3}
$K_L^0 \to \gamma U$	$n_{K_L^0} \sim 10^{11}$	497	$2 \times (5.5 \times 10^{-4})$	9.5×10^{-6}	2×10^{-3}
$K^+ \to \pi^+ U$	$n_{K^+} \sim 10^{10}$	354		2.88×10^{-7}	7×10^{-3}
$K^+ \to \mu^+ \nu U$	$n_{K^+} \sim 10^{10}$	392	6.2×10^{-3}	7×10^{-8a}	2×10^{-3}
$K^+ \to e^+ \nu U$	$n_{K^+}\sim 10^{10}$	496	1.5×10^{-5}	2.5×10^{-8}	7×10^{-3}

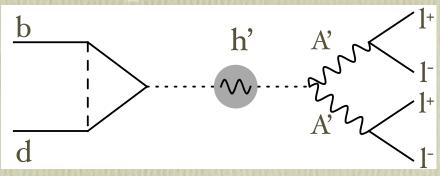
Reece & Wang 2009

Summary of estimates from existing samples...most of these are from fixed target experiments.

[→] SuperB will have a huge number of these and other meson decays from J/ψ , D, Y, and B...


 $[\]rightarrow$ also, can look in π° Dalitz decays...

Rare B-Decays and the Higgs Portal


- Vector portal: $\mathcal{L} = -\frac{\kappa}{2} V^{\mu\nu} B_{\mu\nu}$
- Higgs portal: $\mathcal{L} = (-\lambda S^2 + \xi S)H^{\dagger}H$

- •In addition to kinetic mixing ("vector portal") there must also be a higgs portal.
- •Because of the top dominating the loop, FCNC decays may be an interesting place to look for this...
 - •Look for dilepton resonance in K^(*)ll
 - •modes like B→K^(*)4l or B•→4l should be very clean

Multilepton Bo decays

Vector A'

$$Br_{B_s \to VV} = 4 \times 10^{-5} \times \lambda^2 \lambda_{VV}^{1/2} \times \frac{1 - 4m_V^2 / m_B^2 + 12m_V^4 / m_B^4}{(1 - m_{h'}^2 / m_B^2)^2},$$

- •here, λ gives the mixing strength of the higgs-dark higgs and $\lambda_{\rm VV}$ is a phase space term
- •reasonable to have BR-10⁻⁹-10⁻¹¹
 - •note that this eqn is for Bs decays...multiply by |Vtd/Vts|

Conclusions

- The possibility of a GeV scale, "dark" force has people excited
 - Addresses a number of anomalies...see dark forces workshop intro talk by N. Weiner for a nice summary of this
- The (super)B-Factories are a great place to look for evidence of dark forces, but limit on mixing in background dominated modes only scale by L⁻¹/4...the aim is €<10⁻³
 - many different models...many different modes.
 - look at very clean modes (6-lepton)
 - look for very rare decays (b→s 4l)
- It would be great if we could look at modes like 2l+E...triggering an issue at SuperB?
- We don't know the structure of hidden sector (duh!)...need to look at many different possible decay channels.