Theory Predictions for the CP Asymmetry in the Golden Mode(s)

Martin Jung

Instituto de Física Corpuscular - IFIC, CSIC-UVEG, Valencia

SuperB Physics Workshop in Frascati 30/11/09

CPV in the Golden Modes

M. Jung

Introduction

I: NP in Amplitude

II: NP in Mixing

III: Breaking corrections

Outline

Introduction

Strategy I: Prediction 0 + NP in amplitudes

Strategy II: Large SM effects + NP in mixing

Strategy III: Improve SM predictions

Conclusion and outlook

CPV in the Golden Modes

M. Jung

ntroduction

I: NP in Amplitude

II: NP in Mixing

III: Breaking corrections

Motivation

- Validate CKM mechanism
- Measurements of angles require nonleptonic decays
- Enormous precision expected from future experiments
- Obstacle: Hadronic matrix elements notoriously difficult
- Golden Modes almost free of hadronic uncertainties
- Last few years: shift of focus:
 CKM main source of (low energy) CP violation
 - What about new physics (NP)?
- NP expected at the TeV-scale
- Direct search will be performed at the LHC
- Flavour physics complementary tool

CPV in the Golden Modes

M. Jung

Introduction

I: NP in Amplitude

II: NP in Mixing

III: Breaking corrections

Prediction 0: SM with standard powercounting

- B → J/ψK: Tree-dominated, governed by a single amplitude (+O(P/Tλ²) ~ O(λ³), "Gold-plated")
- Expected observables (neglecting $\mathcal{O}(\lambda^3)$ terms):
 - Mixing-induced CP-Asymmetry:

 $S_{CP} + \sin(2\beta) \simeq 0$

• Direct CP-Asymmetries (up to order $\mathcal{O}(\lambda^5)$):

$$A^{dir}_{CP}(\bar{B}^0) = A^{dir}_{CP}(B^-) \simeq 0$$

Averaged Rates:

$$\bar{\Gamma}(B^0)=\bar{\Gamma}(B^-)$$

• $B_s \rightarrow J/\psi \phi$: similar pattern, VV mode

CPV in the Golden Modes

M. Jung

Introduction

I: NP in Amplitude

II: NP in Mixing

III: Breaking corrections

Tensions (?)

Experimentally:

Decay	$\Gamma/10^{-4} ps^{-1}$	A _{CP}	S _{CP}
$B^- \rightarrow J/\psi K^-$	6.14 ± 0.21	0.017 ± 0.016	-
$ar{B}^0 ightarrow J/\psi ar{K}^0$	5.69 ± 0.21	$-0.002\pm0.020(*)$	0.657 ± 0.025

Also: Small tensions in $|\Delta S| = |\Delta B| = 1$ - processes:

- ▶ sin 2 β from $B \rightarrow J/\psi K_S$ vs. sin 2 β from $|V_{ub}/V_{cb}|$ and $\Delta m_d/\Delta m_s$
- sin 2β from B → J/ψK_S vs. sin 2β from B → φK_S (Note: Naive average now compatible with (sin 2β)_{J/ψK_S})
- CP asymmetry in B_s-mixing
- $B \rightarrow \tau \nu$ (?)
- CP asymmetries in $B \to K\pi$ (?)

Problem twofold:

- Understand SM hadronic process
- Determine possible NP influence

CPV in the Golden Modes

M. Jung

Introduction

I: NP in Amplitude

II: NP in Mixing

III: Breaking corrections

Strategies

Problem:

SM corrections to "Prediction 0" cannot be quantified

- QCD Factorization et al. do not work here...
- Estimates hint however towards small effects [Boos et al, Li et al, Gronau et al]
- Flavour Symmetries important tool!

Used within different scenarios:

- 1. "Prediction 0" + NP in amplitude
- 2. Large hadronic SM effects plus NP mixing phase
- 3. Large hadronic effects beyond the symmetry limit

Statistical treatment using RFit (CKMfitter)

CPV in the Golden Modes

M. Jung

Introduction

I: NP in Amplitude

II: NP in Mixing

III: Breaking corrections

Strategy I: Prediction 0 + NP in amplitudes

[Th. Feldmann, MJ, Th. Mannel]

Explore $b
ightarrow s ar{q} q$ -processes the following way:

- Take SM $|\Delta B| = |\Delta S| = 1$ effective Hamiltonian
- Include NP "operator-wise"
- Determine UT parameters independent of this NP
- Determine allowed ranges for NP contributions, using isospin decomposition and "Prediction 0" for SM contributions

Parameterization for $B \rightarrow J/\psi K$ with $(\bar{b}s)(\bar{u}u)$ operator:

$$\mathcal{A}(B^{0,+} \rightarrow J/\psi K^{0,+}) = \mathcal{A}_0 \left[1 + r_0 e^{i\theta_W} e^{i\phi_0} \pm r_1 e^{i\theta_W} e^{i\phi_1} \right]$$

"Reparametrisation invariance": Take $\theta_W = \pi - \gamma_{SM}$ as reference \rightarrow Possible interpretation as (CKM suppressed) SM contributions CPV in the Golden Modes

M. Jung

Introduction

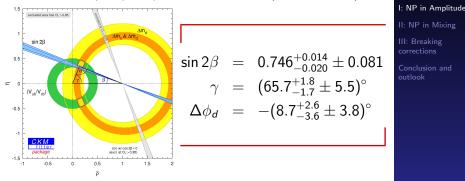
I: NP in Amplitude

II: NP in Mixing

III: Breaking corrections

UT analysis Determine β and γ by independent measurements:

• Use only $|V_{ub}/V_{cb}|$, Δm_d and Δm_s (Moriond '09)



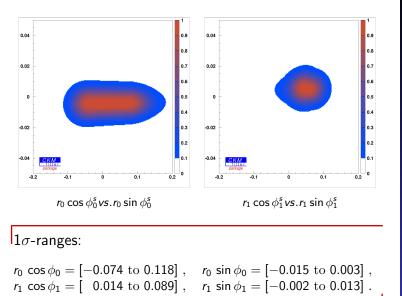
CPV in the Golden

Modes M. Jung

Introduction

- Tension decreased due to larger error for V_{ub}
- $B \rightarrow \tau \nu$ not included (avoid f_B/B_{B_d} discussion) Inclusion increases tension above the old level \rightarrow larger $\Delta I = 0$ contributions in the following

$b \rightarrow s \bar{u} u, \bar{d} d$ NP operator in $B \rightarrow J/\psi K$



CPV in the Golden Modes

M. Jung

Introduction

I: NP in Amplitude

II: NP in Mixing

III: Breaking corrections

Results Strategy I

Details: see Warwick proceedings

- Data for B → J/ψK, B → φK, B → πK point all to a contribution of an operator (b̄s)(ūu)
- Typical order of magnitude larger than expected in the SM, but not significantly, effect decreased lately
- ► Relative size of effects in $B \rightarrow J/\psi K$, $B \rightarrow \phi K$ as expected
- Small strong phases preferred

However:

- Reparametrisation invariance: NP indistinguishable from large hadronic SM effects
- Final states not related by symmetry
 - no quantitative relation
 - More data needed \rightarrow LHCb, SuperB
 - Reliable SM predictions necessary

CPV in the Golden Modes

M. Jung

Introduction

I: NP in Amplitude

II: NP in Mixing

III: Breaking corrections

Strategy II: Large SM effects + NP in mixing

Find symmetry-related decay \rightarrow SU(3)

- ▶ Simplest choice: $B_s \rightarrow J/\psi K_S$, but not measured yet
- ▶ Alternative: $B \rightarrow J/\psi \pi^0$ [M. Ciuchini, M. Pierini, L. Silvestrini]

This approach has the following features:

- Not just SU(3), but data confirm smallness of neglected terms
- Cabbibo-suppression of penguins absent

 \clubsuit high sensitivity to terms suppressed in $J/\psi K$

- Already measured time-dependently
- Additionally fit for NP mixing phase possible [S. Faller, R. Fleischer, MJ, Th. Mannel]
- Discrimination between SM and NP possible if NP breaks SU(3)

CPV in the Golden Modes

M. Jung

Introduction

I: NP in Amplitude

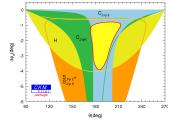
II: NP in Mixing

III: Breaking corrections

Results Strategy II

Performing this program...

- $B \rightarrow J/\psi\pi$ data imply a significant shift in $S_{J/\psi\kappa}$ in the right direction, from subleading terms: $\Delta\phi_d \in [-3.9, -0.8] (1\sigma)$
- NP phase is small or zero
- Discrimination of SM vs. NP difficult



 1σ -ranges (only!) in the $heta-\Delta\phi_d$ plane

In the future:

- Significant statements with a SuperB factory
- ▶ However: for improved data SU(3) breaking crucial!

CPV in the Golden Modes

M. Jung

Introduction I: NP in Amplitude

II: NP in Mixing

III: Breaking corrections

Strategy III: Improve SM predictions

[MJ, Th. Mannel]

- Both previous strategies call for better control of hadronic SM effects
- Started to address this using U-spin, which is the analogue to isospin, but relates d and s:

$$\begin{pmatrix} u \\ d \end{pmatrix} \stackrel{\textit{Isospin}}{=} \begin{pmatrix} |1/2, +1/2 \rangle \\ |1/2, -1/2 \rangle \end{pmatrix}, \ q := \begin{pmatrix} d \\ s \end{pmatrix} \stackrel{\textit{U-spin}}{=} \begin{pmatrix} |1/2, +1/2 \rangle \\ |1/2, -1/2 \rangle \end{pmatrix}$$

- Advantageous because:
 - Simpler structure than full SU(3)
 - Electroweak penguins included trivially $(Q_d = Q_s)$
 - Combination with unbroken isospin possible
- Major drawback: Breaking due to strange quark mass,

$$\mathcal{L}_{m}^{s,d} = m_{d}\bar{d}d + m_{s}\bar{s}s = \underbrace{\frac{1}{2}(m_{s} + m_{d})\bar{q}q}_{U-\text{spin symmetric}} - \underbrace{\frac{1}{2}\Delta m \bar{q}\tau_{3}q}_{\text{breaks }U-\text{spin}}.$$

CPV in the Golden Modes

M. Jung

Introduction

I: NP in Amplitude

II: NP in Mixing

III: Breaking corrections

Including breaking corrections

Generally:

- Perform spurion analysis, expand in $\epsilon = m_s/\Lambda_{\chi}$
- Results almost always in too many parameters 😕
- However, various strategies exist to reduce them Comparison
- This re-introduces systematic uncertainties....
 ... but on a subleading level ...

Possible strategies:

- Use isospin additionally, assumed as unbroken
- For $|A_1/A_2| \sim \delta \ll 1$, neglect $\mathcal{O}(\epsilon^2, \delta \epsilon)$ terms
- For colour-allowed tree amplitudes, factorization might be used
- The first point might be extended to small amplitude combinations

CPV in the Golden Modes

M. Jung

Introduction

I: NP in Amplitude

II: NP in Mixing

III: Breaking corrections

 $B^- \rightarrow J/\psi(\pi/K)^-$

U-spin limit:

- Only one amplitude, with two CKM structures
- Predicts

$$\begin{array}{rcl} A_{CP}(J/\psi K^{-})BR(J/\psi K^{-}) & + \\ A_{CP}(J/\psi \pi^{-})BR(J/\psi \pi^{-}) & \stackrel{!}{=} & 0 \stackrel{exp}{=} 0.22 \pm 0.17 \end{array}$$

- Not conclusive at the moment, due to uncertainties
- Naive factorization does not describe the breaking well:

$$\frac{BR(B^- \to J/\psi K^-)}{BR(B^- \to J/\psi \pi^-)} \left| \frac{\lambda_{cd}}{\lambda_{cs}} \right|^2 \sim \left(\frac{F^{B \to K}(M_{J/\psi}^2)}{F^{B \to \pi}(M_{J/\psi}^2)} \right)^2 \\ \iff 1.1 \pm 0.1 \sim 1.8 \pm 0.3$$

CPV in the Golden Modes

M. Jung

ntroduction

I: NP in Amplitude

II: NP in Mixing

III: Breaking corrections

Conclusion and outlook

~

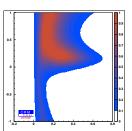
 $B \rightarrow J/\psi(\pi, K)$

The Golden Mode is included via isospin. The following approximations are used:

- The U-spin breaking in penguin suppressed amplitudes is neglected
- The $\Delta I = 1, 3/2$ amplitude $\sim \lambda_{cd,s}$ is neglected

This results in the following for the relative U-spin breaking parameter $x_{\epsilon} = A_{\epsilon}/A_0$:

$$\delta_0 \in [-\pi/2, \pi/2]$$
 $\delta_0 \in [\pi/2, 3\pi/2]$



CPV in the Golden Modes

M. Jung

Introduction

I: NP in Amplitude

II: NP in Mixing

III: Breaking corrections

Conclusions Strategy III

- $B \rightarrow J/\psi(\pi/K)$:
 - ► As before, $A_u(\Delta I = 1, 3/2)$ larger than expected
 - At present large range for SU(3) breaking allowed from data
 - Imaginary part hard to constrain
 - Earlier approximation can be implemented, but charged sector in tension with neutral
 - Update on BR's by present B factories would be interesting

Generally:

- Statistics of LHCb and a SuperB factory will help to control U-spin breaking model-independently
- Isospin can accompany the U-spin analysis
- However, individual analyses required

CPV in the Golden Modes

M. Jung

Introduction

I: NP in Amplitude

II: NP in Mixing

III: Breaking corrections

Conclusions and outlook

- Nonleptonic B decays and especially the Golden Modes remain a powerful tool in the seach for NP
- Indispensable to determine flavour structure of NP
- However: Control over hadronic uncertainties essential to differentiate between SM and NP
- Three projects have been discussed:
 - *O* = (*b̄s*)(*ūu*) contribution preferred in *b* → *s* decay amplitudes. SM explanation possible, but contributions tend to be large.
 - Assuming SM + NP in mixing, SU(3) implies a sizable correction to S_{J/ψK} in the SM, while no sign for a NP phase is found. NP interpretation possible as well.
 - With high statistics, U-spin breaking may be addressed in a data driven approach. Additional assumptions usually needed, but applied on a sub-leading level.

Lots to do for a SuperB factory!

CPV in the Golden Modes

M. Jung

Introduction

I: NP in Amplitude

II: NP in Mixing

III: Breaking corrections

Backupslides

- Experimental data
- Which input to use?
- Reparametrisation invariance
- Powercounting in $B \rightarrow J/\psi K, \phi K$

CPV in the Golden Modes

M. Jung

ntroduction

I: NP in Amplitude

II: NP in Mixing

III: Breaking corrections

Experimental data for $b \rightarrow s \bar{q} q$ transitions

CPV in the Golden Modes

M. Jung

ntroduction

I: NP in Amplitude

II: NP in Mixing

III: Breaking corrections

Decay	BR	A _{CP}	S _{CP}
$B^- \rightarrow J/\psi K^-$	$(10.07\pm0.35)10^{-4}$	$0.017 \pm 0.016(*)$	-
$ar{B}^0 ightarrow J/\psiar{K}^0$	$(8.71 \pm 0.32)10^{-4}$	$-0.002\pm0.020(*)$	0.657 ± 0.025
$B^- \rightarrow \phi K^-$	$(8.3\pm0.65)10^{-6}$	0.034 ± 0.044	-
$ar{B}^0 o \phi ar{K}^0$	$(8.3^{+1.2}_{-1.0})10^{-6}$	0.23 ± 0.15	$-(0.44^{+0.17}_{-0.18})$
$B^- ightarrow \pi^0 K^-$	$(12.9\pm0.6)10^{-6}$	0.050 ± 0.025	-
$B^- ightarrow \pi^- ar{K}^0$	$(23.1 \pm 1.0) 10^{-6}$	0.009 ± 0.025	-
$ar{B}^0 o \pi^+ K^-$	$(19.4\pm0.6)10^{-6}$	$-0.098\substack{+0.012\\-0.011}$	-
$ar{B}^0 o \pi^0 ar{K}^0$	$(9.8\pm0.6)10^{-6}$	$-0.01\pm$	-0.57 ± 0.17

Which input to use?

Recent analyses of $B \rightarrow \pi K$ puzzle come to different conclusions. Schematically:

- ▶ No NP needed in $B \rightarrow \pi K$ [Ciuchini et al. '08]
- Puzzle reduced, mod. EWP do not help much [Baek et al. '09]
- ► Discrepancy in S_{CP} − A_{CP}(B → π⁰K⁰) plane, mod. EWP help [Fleischer et al. '08]

Inputs are:

- QCDF + large non-factorizable corrections
- Fleischer/Neubert/Rosner relations (both)
- Neubert/Rosner relation I, BR(B → π⁺π⁰) (fixes mainly ϵ_{3/2}, large phase)

CPV in the Golden Modes

M. Jung

ntroduction

I: NP in Amplitude

II: NP in Mixing

III: Breaking corrections

Reparametrisation invariance

The amplitude is invariant under the transformations

$$\begin{array}{rcl} \mathcal{A}_{0} & \to & \mathcal{A}_{0} \left(1 + \xi \, r_{0} \, e^{i \phi_{s}^{0}} \right), \\ r_{0} \, e^{i \phi_{s}^{0}} & \to & \displaystyle \frac{r_{0} \, e^{i \phi_{s}^{0}} \, \sqrt{1 - 2 \, \xi \, \cos \phi_{w}^{0} + \xi^{2}}}{1 + \xi \, r_{0} \, e^{i \phi_{s}^{0}}} \\ e^{i \phi_{w}^{0}} & \to & \displaystyle \sqrt{\frac{e^{i \phi_{w}^{0}} - \xi}{e^{-i \phi_{w}^{0}} - \xi}}, \\ r_{1} \, e^{i \phi_{s}^{1}} & \to & \displaystyle \frac{r_{1} \, e^{i \phi_{s}^{1}}}{1 + \xi \, r_{0} \, e^{i \phi_{s}^{0}}}, \end{array}$$

as long as the leading SM-matrix-element \mathcal{A}_0 is not fixed.

CPV in the Golden Modes

M. Jung

ntroduction

I: NP in Amplitude

II: NP in Mixing

III: Breaking corrections

 $B \rightarrow J/\psi K$

SM and NP contributions and suppression factors:

							Introduction
Contr.	Suppression factors					Comment	I: NP in Amplitude
Contr.	Op.	Dyn.	CKM	NP	Π	Comment	II: NP in Mixing
$\lambda_c^s T$	1	1	1	-	1		III: Breaking corrections
$\lambda_c^s P^{\bar{c}c}$	λ	1	1	-	$\parallel \lambda$	$\mathcal{O}(1) \longrightarrow \lambda_c^s A_c^0$	Conclusion and
$ \begin{array}{c} \lambda_c^s T \\ \lambda_c^s P^{\bar{c}c} \\ \lambda_c^s P^{\bar{q}q} \\ \lambda_c^s P_{I=0}^{\bar{q}q} \end{array} $	λ	λ	1	-	λ^2		outlook
$\lambda_c^s P_{I=1}^{qq}$	λ^2	λ	1	-	λ^3		
$\lambda_{u}^{s}T$	1	λ	λ^2	-	λ^3	$\Big] \leq \mathcal{O}(\lambda^3) imes \lambda^s_c A^0_c$	
$ \begin{array}{c} \lambda_u^s T \\ \lambda_u^s P^{\bar{c}c} \end{array} $	λ	1	λ^2	-	λ^3	\longrightarrow "gold-plated	
$\frac{\lambda_{u}^{s}P_{l=0}^{\bar{q}q}}{\lambda_{u}^{s}P_{l=1}^{\bar{q}q}}$	λ	λ	λ^2	-	λ^4	mode"	
$\lambda_u^s P_{I=1}^{\bar{q}q}$	λ^2	λ	λ^2	-	λ^5		
$P_{0/c}^{\overline{c}c}$	1	1	1	λ	λ	$(2(1)) \sim 15.40$	
$P_{0/c,I=0}^{\overline{q}q}$	1	λ	1	λ	λ^2	$\mathcal{O}(\lambda) imes \lambda_c^s \mathcal{A}_c^0$	
$\begin{array}{c} P^{\bar{c}c}_{0/c} \\ P^{\bar{q}q}_{0/c,l=0} \\ P^{qq}_{c,l=1} \end{array}$	1	λ	1	λ	λ^2	$\mathcal{O}(\lambda^2) imes \lambda^s_c A^0_c$	

CPV in the Golden Modes

M. Jung

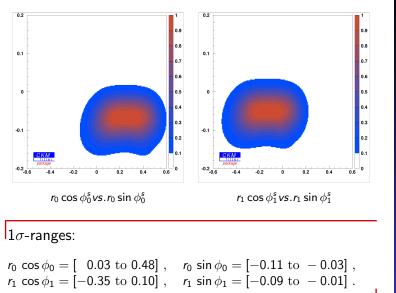
 $B \rightarrow \phi K$

SM and NP contributions and suppression factors:

							Introduction
Contr.	Suppression factors					Comment	I: NP in Amplitude
Contr.	Op.	Dyn.	CKM	NP	П	Comment	II: NP in Mixing
$\lambda_c^s T$	1	λ	1	-	λ		III: Breaking corrections
$\lambda_c^s P^{\overline{s}s}$	λ	1	1	-	λ	$\mathcal{O}(\lambda) \longrightarrow \lambda_c^s \mathcal{A}_c^0$	Conclusion and
$ \begin{array}{c} \lambda_c^s T \\ \lambda_c^s P^{\bar{s}s} \\ \lambda_c^s P_{I=0}^{\bar{q}q} \end{array} $	λ	λ	1	-	λ^2		outlook
$\lambda_c^s P_{l=1}^{\bar{q}q}$	λ^2	λ	1	-	λ^3		
$\lambda_{u}^{s}T$	1	λ	λ^2	-	λ^3		
$\lambda_u^s P^{\overline{s}s}$	λ	1	λ^2	-	λ^3	$ \leq \mathcal{O}(\lambda^2) imes \lambda^s_c A^0_c$	
$\lambda_{u}^{s}P_{I=0}^{\bar{q}q}$	λ	λ	λ^2	-	λ^4		
$ \begin{array}{c} \lambda_c^v P_{l=1}^{\overline{qq}} \\ \lambda_c^s P_{l=1}^{\overline{qq}} \\ \lambda_u^s T \\ \lambda_u^s P_{l=0}^{\overline{ss}} \\ \lambda_u^s P_{l=0}^{\overline{qq}} \\ \overline{\lambda_u^s P_{l=1}^{\overline{qq}}} \end{array} $	λ^2	λ	λ^2	-	λ^5		
$P_{0/c}^{\overline{s}s}$	1	1	1	λ	λ	$(0(1), \ldots) \leq A0$	
$P_{0/c,I=0}^{\overline{q}q}$	1	λ	1	λ	λ^2	$\mathcal{O}(1) imes\lambda^{s}_{c}\mathcal{A}^{0}_{c}$	
$\begin{array}{c} P^{\overline{s}s}_{0/c} \\ P^{\overline{q}q}_{0/c,l=0} \\ P^{qq}_{c,l=1} \end{array}$	1	λ	1	λ	λ^2	$\mathcal{O}(\lambda) imes\lambda^{s}_{c}\mathcal{A}^{0}_{c}$	

CPV in the Golden Modes

$b \rightarrow s \bar{u} u, \bar{d} d$ NP operator in $B \rightarrow \phi K$



CPV in the Golden Modes

M. Jung

Introduction I: NP in Amplitude

II: NP in Mixing

III: Breaking corrections