How SuperB can probe R-parity violation through τ and B meson decays

Ben O'Leary

RWTH Aachen University and Bonn University

SuperB Physics Workshop, INFN - Laboratori Nazionale di Frascati, 02/12/2009

Outline

Introduction to R-parity violation

SuperB's reach in RPV

Models with RPV predictions

Summary

Reminder: what is R-parity and what would violate it?

R-parity is a \mathbb{Z}_2 multiplicative symmetry.

$$R_p = (-1)^R$$

$$R = 3B + L + 2s$$

Only terms with $R_p = +1$ are normally allowed in the MSSM.

Without R-parity, H_d has same gauge quantum numbers as L!

 $\mu'_{i}H_{u}L_{iL}$

 $+\frac{1}{2}\lambda_{ijk}L_{iL}L_{iL}e_{kR}^{c}$

 $\mu H_{\mu} H_{d}$

 $+Y_{ik}^eH_dL_{jL}e_{kR}^c$

$$+Y_{jk}^{d}H_{d}Q_{jL}d_{kR}^{c} + \lambda'_{ijk}L_{iL}Q_{jL}d_{kR}^{c} + \frac{1}{2}\lambda''_{ijk}u_{iR}^{c}d_{jR}^{c}d_{kR}^{c}$$

$$e.g. \ \lambda'_{123}:$$

$$b$$

$$\frac{s}{\nu_{e}}$$

Reminder: why is *R*-parity conservation usually assumed?

Proton decay:

$$\lambda'_{ijk}, \lambda''_{ijk} \sim \mathcal{O}(1), \ m_{\tilde{q}} \sim \mathcal{O}(1) \text{ TeV} \Rightarrow \tau_p^{\text{RPV}} \sim 10^{-50} \tau_p^{\text{exp.min.}}$$
 (R. Barbier *et al.*, Phys. Rept. **420** (2005) 1 [arXiv:hep-ph/0406039])

However, either lepton number conservation*:

Models with RPV predictions

$$\lambda_{ijk} = \lambda'_{ijk} = 0,$$

or baryon number conservation

$$\lambda''_{ijk} = 0.$$

is sufficient.

Also, almost any \mathbb{Z}_2 gives a dark matter candidate!

Models with B-L as gauge quantum number (e.g. left-right symmetric models) automatically conserve R-parity.

lepton number conservation is not anomaly-free.

Introduction to R-parity violation SuperB's reach in RPV Models with RPV predictions

Outline

R-parity-violating processes relevant to SuperB

114016 [arXiv:hep-ph/0612278]:

- ▶ Bounds with old data (PDG 2007).
- BUT correct formulae for B meson related bounds.
 Bounds shown in this talk are updated (but not given in depth).

Summary

6/14

How these processes bound R-parity-violating couplings

SuperB's reach in RPV

- Integrate out sfermion to get effective four-fermion term
 - e.g. $[\lambda_{321}^{\prime*}\bar{\tau}P_Rd\tilde{c}_I^*][\lambda_{221}^{\prime}\bar{d}P_I\mu\tilde{c}_I] \Rightarrow$ $(-\lambda_{321}^{\prime*}\lambda_{221}^{\prime}/m_{\tilde{e}_{1}}^{2})[\bar{\tau}P_{R}d][dP_{I}\mu]$
- Rearrange with Fierz identities

$$\Rightarrow (\lambda_{321}^{\prime*} \lambda_{221}^{\prime} / 2m_{\tilde{c}_l}^2) [\bar{\tau} \gamma_{\nu} P_L \mu] [\bar{d} \gamma^{\nu} P_R d]$$

Apply PCAC assuming isospin invariance

•
$$\langle 0|\bar{d}\gamma^{\nu}\gamma^{5}d|\pi^{0}\rangle \Rightarrow if_{\pi}p_{\pi^{0}}^{\nu}/\sqrt{2}$$

- Integrate over phase space
- Compare to experimental bound

The reach of SuperB in R-parity-violating parameter space

How SuperB's estimated reach with 75 ab⁻¹ improves bounds (all bounds scale as (100 GeV $/m_{\tilde{t}}$)²):

$$\blacktriangleright$$
 $B_d \rightarrow \ell_i \bar{\ell}_i \ (B_d \rightarrow \mu \bar{\mu})$:

$$\lambda'_{jg3}\lambda'_{ig1} < 3.3E-4 \Rightarrow < 2.1E-5$$

$$B_s \to \ell_i \bar{\ell}_i \ (B_s \to \mu \bar{\mu}):$$

$$\lambda'_{ig3}\lambda'_{ig2} < 5.6E-4 \Rightarrow < 2.6E-5$$

$$\tau \to \ell_i P^0/V^0 \ (\tau \to \mu \eta)$$
:

$$\lambda_{gi3} \lambda'_{gmn} < 4.4E-5 \Rightarrow < 3.4E-6$$

$$\lambda'_{3gm}\lambda'_{ign} < 6.1E-4 \Rightarrow < 4.8E-5$$

$$(B \to K \ell_i \bar{\ell}_i \text{ is much more involved})$$

R-parity-violating Model 1: long-lived-yet-unstable gravitino dark matter model

W. Buchmüller, L. Covi, K. Hamaguchi, A. Ibarra and T. Yanagida, JHEP **0703** (2007) 037 [arXiv:hep-ph/0702184]:

SuperB's reach in RPV

"primordial nucleosynthesis, thermal leptogenesis and gravitino dark matter are naturally consistent for $10^{-14} < \lambda, \lambda' < 10^{-7}$ and $m_{3/2} \gtrsim 5$ GeV."

... waaaaaay too small to be relevant to SuperB... (remember, SuperB probes $\lambda \lambda' \sim 10^{-7} \Rightarrow \lambda' \sim 10^{-3}$)

- B. C. Allanach, M. A. Bernhardt, H. K. Dreiner, C. H. Kom and P. Richardson, Phys. Rev. D **75** (2007) 035002 [arXiv:hep-ph/0609263]:
 - R-parity-violating mSUGRA benchmark points
 - ▶ Only one R-parity-violating coupling non-zero at GUT scale
 - ▶ RGE \Rightarrow other non-zero R-parity-violating couplings at EW scale
 - but only one remains $> 10^{-4}$

couplings

 τ - $\tilde{\tau}$ loop contribution to muon neutrino mass:

ss:
$$|\lambda_{233}|^2/m_{\tilde{\tau}_L}^2 \approx (4\pi)^2 m_{\nu_\mu}/(\mu \mathrm{tan}(\beta) m_{\tau}^2)$$
 $\tilde{\tau}^*$

Assuming $\mu \approx m_{\tilde{\tau}_l} \approx 100$ GeV, $\tan \beta \approx 30$, $m_{\nu_u} \approx 0.3$ eV,

$$|\lambda_{233}|^2 \approx 10^{-5} (m_{\tilde{\tau}_t}/100 \text{ GeV})^2$$

H. K. Dreiner, J. Soo Kim and M. Thormeier, arXiv:0711.4315 [hep-ph]:

$$\lambda_{g33} \approx 3.6E - 5, \lambda'_{223} \approx 4.0E - 6, \lambda'_{233} \approx 9.6E - 5, \text{ rest } < 10^{-6}$$

... a bit beyond SuperB, also not good combinations for visible signals $(B_s \to \nu \bar{\nu}, \Upsilon \to \tau \bar{\tau})$

D meson decays

- G. Bhattacharyya, K. B. Chatterjee and S. Nandi, arXiv:0911.3811 [hep-ph]:
 - $\lambda'_{223} \approx \lambda'_{323} \approx 0.3$.
 - ▶ Explains excess for $D_s \rightarrow \nu \bar{e}/\nu \bar{\mu}$ for $m_{\tilde{a}} \approx 300$ GeV (compared to SM prediction with lattice decay constant).
- P. Dey, A. Kundu, B. Mukhopadhyaya and S. Nandi, JHEP 0812 (2008) 100 [arXiv:0808.1523 [hep-ph]]:
 - \blacktriangleright addition of $\lambda'_{223} \sim 0.1$ and soft squark mixing parameters within current bounds allows ν mass at 2-loop level.

Couplings seem large enough to be probed, but would need good data on $\Upsilon \to \tau \bar{\mu}$

Advertisement for other relevant work by BOL

(plus diagrams with the muons crossed.)

M. Giffels, J. Kallarackal, M. Krämer, B. O'L. and A. Stahl, Phys. Rev. D **77** (2008) 073010 [arXiv:0802.0049 [hep-ph]]: asymmetry in $\tau \rightarrow \mu \mu \bar{\mu}$ at LHC to distinguish between RPV, MSSM, LHT, TC2, ...

H. K. Dreiner, S. Grab, D. Koschade, M. Krämer, B. O'L. and U. Langenfeld, Phys. Rev. D **80** (2009) 035018 [arXiv:0905.2051 [hep-ph]]: bounds on MSSM models with very light neutralinos (through relaxation of gaugino mass relations)

Outline

Summary

- SuperB can significantly improve bounds on interesting R-parity-violating couplings in combinations.
- R-parity violation is motivated by cosmology, but only for small amounts way below the reach of SuperB.
- R-parity violation is motivated by neutrino mass:
 - ▶ 1-loop mechanisms *might* be within reach of SuperB;
 - 2-loop mechanisms should be within reach of SuperB.
- SuperB can also probe some other interesting models.