Sensitivity study for $B \rightarrow \phi K_S$ time dependent analysis

Nicola Neri Università di Pisa & INFN

> SuperB Physics Workshop Frascati, 30 Nov-4 Dec 2009

$$\begin{split} \mathbf{T}(4S) &\to B^0 \overline{B}^0 \quad \text{or experimentally} \quad B_{rec} B_{tag} \\ \text{Decay rate f+ (f.) to final state f when B_{tag} decays as} \quad B^0 \quad (\overline{B}^0) \\ f_{\pm}(\Delta t) &= \frac{e^{-|\Delta t|/\tau_{B^0}}}{4\tau_{B^0}} \left[1 \pm S_f \sin(\Delta m \Delta t) \mp C_f \cos(\Delta m \Delta t) \right] \\ \text{where} \quad \Delta t = t_{B_{rec}} - t_{B_{tag}} \\ S_f &\neq 0 \quad \text{CP violation in the interference between mixing and decay} \\ C_f &\neq 0 \quad \text{CP violation in the decay} \\ \end{split}$$

Experimental technique

• Reconstruct exclusively the B⁰ decay and vertex position:

$$B^0 \to \phi K^0_S \quad \phi \to K^+ K^- \quad K^0_S \to \pi^+ \pi^- \quad \mathbf{B}_{\mathrm{rec}}$$

 Reconstruct inclusively the rest of event, B_{tag}, and determine the flavor and vertex position.

$S_{\phi Ks}$ results from B Factories

example plots from Phys.Rev.D71:091102,2005.

selection efficiency. Purity ~85% (~75%), efficiency ~40% (~20%) for $\phi K_S (\phi K_L)$

Sensitivity projections for SuperB

Reconstruction efficiency

- Larger tracking coverage in SuperB: i.e. SVT has 300 mrad coverage in LAB frame in BW and FW directions.
- Reco efficiency for $B^0 \rightarrow \phi K_S^0$ according to Fast Sim V0.1.1, no selection cuts and MC truth request only:
 - BaBar $\epsilon = (44.1 \pm 0.3) \%$
 - SuperB L₀ Hybrid pixels $\epsilon = (48.8 \pm 0.3) \%$ (+10.6%)
 - SuperB L₀ Striplets $\epsilon = (49.4 \pm 0.3) \%$ (+12.0%)

B_{tag} flavor determination

- Flavor determination of B_{tag} exploits several informations such as flavor-charge correlations for primary leptons, kaons, pions, soft pions from D*, etc. Those informations are then combined in a neural network.
- Events are divided into different tagging categories in order to increase sensitivity:

Category	$\varepsilon_i \ (\%)$	$w_i \ (\%)$	$\Delta w_i \ (\%)$	$Q_i \ (\%)$	O - c (1 -
Lepton	8.96 ± 0.07	2.8 ± 0.3	0.3 ± 0.5	7.98 ± 0.11	$Q = \epsilon_{tag}(1 -$
$Kaon \ I$	10.82 ± 0.07	5.3 ± 0.3	-0.1 ± 0.6	8.65 ± 0.14	1
$Kaon \ II$	17.19 ± 0.09	14.5 ± 0.3	0.4 ± 0.6	8.68 ± 0.17	$\sigma \sim \frac{1}{1}$
KaonPion	13.67 ± 0.08	23.3 ± 0.4	-0.7 ± 0.7	3.91 ± 0.12	$US \propto \sqrt{O}$
Pion	14.18 ± 0.08	32.5 ± 0.4	5.1 ± 0.7	1.73 ± 0.09	$\nabla \mathcal{Q}$
Other	9.54 ± 0.07	41.5 ± 0.5	3.8 ± 0.8	0.27 ± 0.04	
All	74.37 ± 0.10			31.2 ± 0.3	

 $(2\omega)^2$

SuperB is expecting to increase tagging performances: larger tracking coverage, improved PID, improved vertexing. No estimates so far and conservatively considering to maintain identical performances to BaBar in this study.

Systematic errors (I)

example of systematic errors from Phys.Rev.D71:091102,2005. Not latest BaBar analysis though.

	Source	$S_{\phi K}$	$C_{\phi K}$	S_{KKK}	C_{KKK}	-
	Detector effects	± 0.02	± 0.02	± 0.02	± 0.01	-
	DCSD	± 0.01	± 0.03	± 0.00	± 0.03	
	Fit bias	± 0.01	± 0.01	± 0.02	± 0.01	
	B^0 - \overline{B}^0 tagging	± 0.01	± 0.02	± 0.00	± 0.01	
(S-wave contamination	+0.06	± 0.02	-	-	reduced with Dalitz KKKs analysis
	Other	± 0.03	± 0.02	± 0.01	± 0.01	_
	Total	$^{+0.07}_{-0.04}$	± 0.05	± 0.03	± 0.04	-

In 2005 analysis, the S-wave contamination represented the main contribution to the systematic error. Later BaBar Dalitz plot time-dependent analysis of $B^0 \rightarrow K^+K^-K_S^0$ reduced to almost negligible level this contribution. See next slide.

Systematic errors (II)

"Measurement of CP- Violating Asymmetries in the $B^0 \rightarrow K^+ K^- K_S^0$ Dalitz Plot" $K^+ K^- K_S$ Isobar model $arXiv:0808.0700v2 \ [hep-ex] \ 8 \ May \ 2009$

				_
Decay	Amplitude c_r	Phase ϕ_r	Fraction \mathcal{F}_r (%)	
$\phi(1020)K_{S}^{0}$	0.00897 ± 0.00096	-0.341 ± 0.232	12.6 ± 1.0	Lise Breit-Wigners and couple
$f_0(980)K_S^0$	0.542 ± 0.044	-0.201 ± 0.157	27.8 ± 7.1	channel (Flatte') function for $f_0(980)$. Note the dominant contribution of KK S-wave amplitude
$X_0(1550)K_S^0$	0.141 ± 0.017	-0.370 ± 0.154	5.70 ± 1.70	
$NR (K^+K^-)$	1 (fixed)	0 (fixed)	98.1 ± 18.7	
$(K^+ K_s^0)$	0.328 ± 0.058	1.81 ± 0.23	10.5 ± 3.4	
$(K^{-}K_{S}^{0})$	0.353 ± 0.066	-1.44 ± 0.27	12.1 ± 3.8	
$\chi_{c0}K_S^0$	0.0298 ± 0.0046	0.732 ± 0.437	2.53 ± 0.60	
D^+K^-	1.34 ± 0.19	—	3.43 ± 0.69	
$D_s^+K^-$	0.826 ± 0.160	_	1.37 ± 0.46	
				-
	C	$-\eta S$	5	
Whole DP	$-0.03 \pm 0.07 \pm 0.0$	$02 0.77 \pm 0.09$	0 ± 0.02	
High-mass	$-0.05 \pm 0.09 \pm 0.0$	0.86 ± 0.08	$\Phi \pm 0.03$	$\Gamma = 4.26 \pm 0.04 \text{ MeV}$
$\phi(1020)K_{S}^{0}$	$-0.14 \pm 0.19 \pm 0.0$	$0.20 \pm 0.26 \pm 0.26$	5 ± 0.03 + 0.03	(00) \mathbf{r}
$f_0(980)K_S^0$	$-0.01 \pm 0.26 \pm 0.0$	0.29 ± 0.25	0 ± 0.06	$900 J I^{-} = 40 \text{ to } 100 \text{ MeV}$

Systematic error on S reduced from +0.07-0.04 to 0.03!

Systematic errors (III)

example of systematic errors from latest BaBar analysis. arXiv:0808.0700v2 [hep-ex] 8 May 2009

Parameter	Whole DP		ϕK_S^0		$f_0 K_S^0$		
	A_{CP}	$\beta_{e\!f\!f}$	A_{CP}	$\beta_{e\!f\!f}$	A_{CP}	$\beta_{e\!f\!f}$	
Fixed PDF Parameters	0.010	0.010	0.014	0.010	0.025	0.015	\downarrow high stat control sample
Fit Bias	0.007	0.011	0.009	0.012	0.011	0.011	\downarrow larger Monte Carlo
DCSD, Beam Spot, other	0.015	0.004	0.015	0.004	0.015	0.004	\downarrow high stat control sample
Dalitz Model	0.005	0.005	0.009	0.002	0.060	0.024	~ same ?
Total	0.020	0.016	0.024	0.016	0.068	0.031	
	•				•	1 0	

$$S = \sin(2\beta_{eff})$$
 $\sigma_S \simeq \cos(2\beta_{eff})2\sigma_{\beta_{eff}} \simeq 0.03$

Naive projection for systematic error at SuperB: should be able to reduce it by at least a factor of 2. $\sigma_S(\text{SuperB}) \simeq 0.010 - 0.015$

comparable at 75 ab^{-1} . SuperB can reach a sensitivity to S close to 0.02.

Conclusions

- At B Factories $S_{\phi K_S^0}$ has been measured with a precision of 0.18 (combined measurement).
- Statistically limited and theoretically clean. Good candidate for SuperB case!
- Sensitivity projections for SuperB at 75 ab⁻¹ close to 0.02 if able to reduce present systematic error by a half (quite reasonable with high stat control sample and large Monte Carlo sample).
- At SuperB, the measurement will become theoretically limited according to present SM calculations for $S_{\phi K_S^0}$. Theory uncertainty for SM predictions -0.01< ΔS_{SM} <0.05.

Backup

Experimental status

S_{J/ψKs} like measurements from B Factories

