

Measuring lpha in $B^0 o a_1(1260)^\pm \pi^\mp$ Status & perspectives for a Super-B

Simone Stracka^{1,2}

¹INFN Milano

²Dipartimento di Fisica Università degli Studi di Milano

Super-B Physics Workshop LNF, 1 December 2009

Outline

- 1 Introduction
- 2 Experimental status
- 3 Extrapolation to Super-B
- 4 Summary

- 1 Introduction

α measurement in non CP-eigenstates

$$\alpha = \arg\left[-V_{td}V_{tb}^*/V_{ud}V_{ub}^*\right]$$

Experimentally accessible in $b \rightarrow u\bar{u}d$ transitions

■ Time-dependence $B^0(\to \bar{B}^0) \to a_1^{\pm} \pi^{\mp}$

$$\begin{split} F_{Q_{\mathrm{tag}}}^{a_{1}^{\pm}\pi^{\mp}}(\Delta t) &\propto \frac{e^{-|\Delta t|/\tau}}{4\tau} \times \\ &\left\{1 + Q_{\mathrm{tag}}\bigg[S_{\pm}\sin(\Delta m_{d}\Delta t) - C_{\pm}\cos(\Delta m_{d}\Delta t)\bigg]\right\} \end{split}$$

Penguin pollution and strong phase between tree amplitudes

$$S_{\pm} = \sqrt{1 - {\color{red}C_{\pm}}^2} imes \sin(2 {\color{black}lpha} - 2 {\color{black}\Delta} {\color{black}lpha} \pm \hat{\delta})$$

8-fold ambiguity:

$$lacksquare$$
 average out $\hat{\delta}$: $lpha_{ ext{eff}} = rac{1}{4} \left[\arcsin \left(S_+ / \sqrt{1 - C_+^2}
ight) + \arcsin \left(S_- / \sqrt{1 - C_-^2}
ight)
ight]$

$$\mathbf{P} = 2 \ (\alpha \to \pi/2 - \alpha) \times 2 \ (\text{roughly } 2\alpha \leftrightarrow \hat{\delta}) \times 2 \ (\text{average})$$

 $\hat{\delta} \approx 0$ from factorization \Rightarrow 2-fold ambiguity

Constraining penguin contribution

Gronau, Zupan, PRD70, 074031; PRD73, 057502

Use simmetries to constrain $\Delta \alpha \equiv \alpha - \alpha_{eff}$.

■ SU(2) not a viable option \Rightarrow approx. flavor SU(3)

$\Delta S = 0$ decays

$$A(B^0 \to a_1^+ \pi^-) = e^{i\gamma} t_+ + p_+$$

$\Delta S = 1$ decays

$$A(B^+ \to a_1^+ K^0) = -(\bar{\lambda})^{-1} \frac{f_K}{f} p_-$$

$$P_{\Delta S=1}$$
 is CKM $(1/\bar{\lambda}=|V_{cs}|/|V_{cd}|\sim 0.23)$ enhanced over $P_{\Delta S=0}$

Derive bounds on $\Delta \alpha$ from ratios of *CP*-averaged rates of $\Delta S = 1$ and $\Delta S = 0$ *B* decays in a model dependent approach

$$ullet$$
 $\cos(2lpha_{ ext{eff}}^{\pm}-lpha)\geq (1-2 extstyle{R}_{\pm}^{0})/\sqrt{1-{\mathcal{A}_{CP}^{\pm}}^{2}}$

$$\cos(2\alpha_{\rm eff}^{\pm} - \alpha) \ge (1 - 2R_{+}^{+})/\sqrt{1 - {A_{CP}^{\pm}}^2}$$

Constraining penguin contribution

 $a_1(1260)$ decay constant from $\tau^+ \to a_1(1260)^+ \nu_\tau$:

• $f_{a_1} = (203 \pm 18) \,\text{MeV}$ [Bloch, PRD 60, 111502R]

 $K_1(1270)$ decay constant from $\tau^+ \to K_1(1270)^+ \nu_{\tau}$. $f_{K_{1A}}$ is calculated from $f_{K_1(1270)}$, mixing relations, and masses:

• $f_{K_{1A}} = (207 \pm 20) \text{ MeV}$ [Cheng, PRD 76, 114020]

 $K_{1A} \equiv SU(3)$ partner of $a_1(1260)$ SU(3) octet states K_{1A} (C=+1 octet) and K_{1B} (C=-1) octet mix:

- $|K_1(1400)\rangle = |K_{1A}\rangle \cos \theta_{K_1} + |K_{1B}\rangle \sin \theta_{K_1}$
- $|K_1(1270)\rangle = -|K_{1A}\rangle \sin\theta_{K_1} + |K_{1B}\rangle \cos\theta_{K_1}$
- mixing angle $|\theta_{K_1}| \approx 45^\circ$

$$R_{+}^{0}\equivrac{ar{\lambda}^{2}f_{a_{1}}^{2}\mathcal{B}(K_{1A}^{+}\pi^{-})}{f_{K_{1A}}^{2}\mathcal{B}(a_{1}^{+}\pi^{-})}$$

Branching fractions used in the ratio are extracted in the Quasi-Two-Body approximation

- 2 Experimental status

$B^0 ightarrow a_1^\pm \pi^\mp$ branching fraction PRL 97, 051802 (2006). 218 fb $^{-1}$

 $a_1(1260)$ parameters poorly known:

$$m_{a_1(1260)}^{(PDG)} = (1230 \pm 40) \, \text{MeV}$$

$$\Gamma_{a_1(1260)}^{(PDG)} = 250 \text{ to } 600 \text{ MeV}$$

ML fit to ΔE , m_{ES} , \mathcal{F} , $m_{\pi\pi\pi}$, \mathcal{H} :

$$m_{a_1(1260)}^{(fit)} = (1229 \pm 21) \, \text{MeV}$$

$$\Gamma_{a_1(1260)}^{(fit)} = (393 \pm 62) \, \text{MeV}$$

$$B = (33.2 \pm 3.8 \pm 3.0) \times 10^{-6}$$

Most of the systematic uncertainties are of statistical nature:

- PDF parameters (obtained, i.e., from off resonance data sample)
- background channels branching fractions
- $a_2\pi$ cross feed and interference (suppressed by cut on angular variable)

Uncertainty on $a_1 \to \sigma \pi$ BF limits precision to $\sim 0.4 \times 10^{-6}$ (2.5% effect).

$B^0 \to a_1^{\pm} \pi^{\mp}$ time-dependent analysis PRL 98, 181803 (2007). 383 fb⁻¹

Fit Δt model to data taking into account flavor-tagging performance and experimental Δt resolution:

$$S = 0.37 \pm 0.21 \pm 0.07$$

$$\Delta S = -0.14 \pm 0.21 \pm 0.06$$

$$C = -0.10 \pm 0.15 \pm 0.09$$

$$\Delta C = 0.26 \pm 0.15 \pm 0.07$$

$$A_{CP} = -0.07 \pm 0.07 \pm 0.02$$

Correlations are weak (at O(%) level).

(a)
$$B^0$$
 tag

- (b) \bar{B}^0 tag
- (c) asymmetry kymmetry vs.

$$lpha_{
m eff} = (79 \pm 7)^{\circ} \ \{_{11,41,49,79,101,131,139,169}^{\circ}\}$$

Main syst. errors: PDF parameters, $B\bar{B}$ CP violation, interference with $a_2\pi$

$B^0 \to a_1^- K^+ \text{ and } B^+ -$ PRL 100, 051803 (2008). 383 fb⁻¹

 $a_1(1260)$ resonance parameters fixed to values determined in $a_1\pi$ analysis.

ML fit to ΔE , m_{ES} , \mathcal{F} , $m_{\pi\pi\pi}$, \mathcal{H} :

■
$$\mathcal{B}(a_1^-K^+) = (16.4 \pm 3.0 \pm 2.4) \times 10^{-6}$$

 $S = 5.1\sigma$

■
$$\mathcal{B}(a_1^+ K^0) = (34.8 \pm 5.0 \pm 4.4) \times 10^{-6}$$

 $S = 6.2\sigma$

$$\blacksquare \text{ Th.: } \mathcal{B}(B^+ \to a_1^+ K^0) \sim \mathcal{B}(B^0 \to a_1^- K^+)$$

not consistent with experiment [Cheng, PRD 76, 114020]

Main systematics:

- PDF parameters
- Fit bias

 $B^0 o \overline{K_1^+ \pi^-}$ and $B^+ o K_1^0$ arXiv:0909.2171, submitted to PRD. 413 fb

Wide overlapping $J^P = 1^+$ mesons

- decay to $K\pi\pi$ final states (different BFs)
- $K_1(1270)$ also decays (11%) to ωK
- interference between signal components

 K_1 resonance parameters fixed to values determined from analysis of ACCMOR data: NPB 187, 1 (1981).

K-matrix with 2 resonances, and 6 channels [Aitchison]

$$F_{i} = e^{i\delta_{i}} \sum_{j} \frac{R_{j}}{R_{j}} (1 - i K \rho)_{ij}^{-1} \Big|_{200}^{-1}$$

$$R_{j} = \frac{f_{pa}f_{aj}}{M_{a} - M_{K\pi\pi}} + \frac{f_{pb}f_{bj}}{M_{b} - M_{K\pi\pi}} \Big|_{300}^{-1}$$

 $K_{ij} = \frac{f_{ai}f_{aj}}{M_a - M_{K\pi\pi}} + \frac{f_{bi}f_{bj}}{M_b - M_{K\pi\pi}} \frac{200}{100}$

Production

Decay

$B^0 o K_1^+ \pi^-$ and $B^+ o K_1^0 \pi$ arXiv:0909.2171, submitted to PRD. 413 fb

ML fit to ΔE , m_{ES} , \mathcal{F} , $m_{K\pi\pi}$, \mathcal{H} :

$$\mathcal{B}(K_1^+\pi^-) = (3.1^{+0.8}_{-0.7}) \times 10^{-5} \ (S = 7.5\sigma)$$

$$\mathbb{B}(K_1^0\pi^+) = (2.9^{+2.9}_{-1.7}) \times 10^{-5} \ (S = 3.2\sigma)$$

(combined contribution of $K_1(1270)$ and $K_1(1400)$)

 $B^0 \rightarrow K_1^+ \pi^- \text{ and } B^+ \rightarrow K_1^0 \pi^$ arXiv:0909.2171, submitted to PRD. 413 fb

Use $m_{K\pi\pi}$ distribution to distinguish between $K_1(1270)$ and $K_1(1400)$

- scan over production parameters $f_{pa} \equiv \cos \vartheta$; $f_{pb} \equiv \sin \vartheta e^{i\varphi}$
- non-parametric templates describe different $m_{K\pi\pi}$ distribution and efficiencies

Main systematics:

- Signal non-res bkg interference
- K₁ K-matrix parameters: mass poles, decay parameters

Use $\mathcal{B}(K_1(1270)\pi)$, $\mathcal{B}(K_1(1400)\pi)$, production parameters, and mixing angle to extract $\mathcal{B}(K_{1A}\pi)$.

Bounds on $\Delta \alpha$

arXiv:0909.2171, submitted to PRD. 413 fb 1

Evaluate bounds on $\Delta \alpha$ by MC based method

- Generate input according to the experimental distributions
- For each set of generated values, evaluate the bounds
- Get limits by counting the fraction of bounds within a given value

$$\Delta \alpha = 11^{\circ} \ 0 \ 68\% \ \text{CL}$$
 $\Delta \alpha = 13^{\circ} \ 0 \ 90\% \ \text{CL}$

$$\alpha = (79 \pm 7 \pm 11)^{\circ}$$

Selected solution compatible with global CKM fits

Outline

- 1 Introduction
- 2 Experimental status
- 3 Extrapolation to Super-B
- 4 Summary

Analysis technique with 75 ab

With current analysis technique:

■ input to ML fit: $20k \rightarrow 3M$ events

■ # signal events: 400 → 60000

	\mathcal{B} (10 ⁻⁶)
PDF	2.1
B background	1.3
$a_2(1320)^{\pm}\pi^{\mp}$	1.3
$a_1 o\sigma\pi$	0.8
$a_1 \rightarrow \sigma \pi$	0.8

150× luminosity

- Most systematics statistical in origin
 - PDF parameterization
 - background channels
- Model systematics can be reduced by increasing the complexity of the model and floating additional parameters
 - Masses and widths
 - Interference effects
- Cross-check with different final states

	S	С	Δ5	ΔC	\mathcal{A}_CP
PDF pars.	4.8	5.3	3.3	5.3	1.5
Fit bias	0.8	0.2	0.8	1.0	0.3
SCF, BB CPV	4.1	4.3	4.2	4.0	0.5
$a_2(1320)^{\pm}\pi^{\mp}$	2.8	4.5	3.2	0.6	0.2
DCS decays	0.8	2.2	0.0	2.2	0.1

		\mathcal{B} (10 ⁻⁶)	θ	φ
Sc	can	0.9	0.04	0.16
K	-matrix par.	2.2	0.01	0.36
In	terference	6.0	0.25	0.52
Pa	article ID	0.9		

Analysis technique with 75 ab

Extrapolation to Super-B based on comparison with $B^0 \to \rho^+ \rho^-$ decays

- Similar S/B
 - $S_{a_1\pi} = 608, B_{a_1\pi} = 29300$
 - $S_{00} = 730, B_{00} = 37424$
- Similar SCF and BB levels

At Super-B, $B \to a_1 \pi$ is a systematic limited measurement

- $\sigma(\alpha) \approx 0.75^{\circ}$ (see A. Bevan @ Warwick)
- bound on $\Delta \alpha \setminus 9^{\circ}$
- further improvement on $\Delta \alpha$ determination from a full SU(3) analysis?

Analysis technique with 75 ab

Current analysis not really portable to higher luminosity.

- increased data samples require more CPU
 - increase S/B using tag-side B information ...
 - see A. Perez @ Warwick workshop
 - ... and cleaner decays
 - i.e. $K_1(1270) \rightarrow \omega \pi$ (but large uncertainties on branching fraction)
- computational cost grows with more parameters and precision
 - increase granularity (n steps) and number of dimensions (d) in LH scan for $B \to K_1 \pi$ decays: $\sim n^d$

A proposal for a strategy

Possible strategy:

- split data in $m_{\pi\pi\pi}$ ($m_{K\pi\pi}$) bins
 - $lue{}$ kinematics allows to identify the primary π from B decay
- select a region in the $\pi\pi\pi$ ($K\pi\pi$) Dalitz plot with similar kinematics and resolution
- extract signal (i.e. correctly reconstructed B) contribution to each bin with a ML fit to m_{ES} , ΔE , \mathcal{F} and correct for efficiency
- perform a (TD) partial wave analysis of the three-body system and look at resulting $m_{\pi\pi\pi}$ ($m_{K\pi\pi}$) spectrum

Feasibility should be investigated

A closer look at decay constants f_{a_1}

The determination of parameters of a broad resonance, i.e. $a_1(1260)$, is in general model dependent

- $\Gamma = 250 600 \,\text{MeV}$
- badly defined mass and width
- difficult to define a single weak decay constant
- test f_{a_1} in $B^+ \to \bar{D}^0 a_1^+$ decays? [Cheng, PRD 69, 074025]

Method	f_{a_1} (MeV)	Ref.
QCD sum rule	238 ± 10	NPB 776, 187
$f_{K_1(1270)} + SU(3)$	215 – 223 *	PLB 623, 65
$\tau^- \rightarrow \pi^- \pi^+ \pi^- \nu$	203 ± 18	PRD 60, 111502R

^{*} depends on K_1 mixing angle

A closer look at decay constants $f_{K_{1A}}$

$au ightarrow K\pi\pi u$ decays:

- dominant $K_1(1270)$ component $\Rightarrow |f_{K_1(1270)}| = 175 \pm 19 \text{ MeV}$
- K₁(1400) component not well measured
- $f_{K_1(1400)}$ from covariant quark model using $|f_{a_1}| = 203 \,\text{MeV}$ as input [Cheng, PRD 69, 074025]

 $K_{1A} \equiv K_1(1270)$ and $K_1(1400)$ mixture

- a consequence of SU(3) breaking
- $f_{K_{1A}}$ calculated from $f_{K_1(1270)}$ and $f_{K_1(1400)}$

$$\Gamma(\tau \to \textit{K}_{1}\nu_{\tau}) = \frac{\textit{G}_{\textit{F}}^{2}}{16\pi}|\textit{V}_{\textit{us}}|^{2}\textit{f}_{\textit{K}_{1}}^{}{}^{2}\frac{(\textit{m}_{\tau}^{2} + 2\textit{m}_{\textit{K}_{1}}^{2})(\textit{m}_{\tau}^{2} - \textit{m}_{\textit{K}_{1}}^{2})^{2}}{\textit{m}_{\tau}^{3}}$$

 $f_{K_{1A}} = \frac{m_{K_1(1270)} f_{K_1}(1270) \sin \theta_{K_1} + m_{K_1(1400)} f_{K_1(1400)} \cos \theta_{K_1}}{m_{K_{1A}}}$

Digression: mixing angle

Mixing angle can be obtained from

 $\tau \to K_1 \nu$ decays

$$\frac{\mathcal{B}(\tau \to \mathcal{K}_1(1270)\nu)}{\mathcal{B}(\tau \to \mathcal{K}_1(1400)\nu)} = \left|\frac{\sin\theta_{\mathcal{K}_1} - \delta\cos\theta_{\mathcal{K}_1}}{\cos\theta_{\mathcal{K}_1} + \delta\sin\theta_{\mathcal{K}_1}}\right|^2 \times \Phi$$

- K_1 decays to ρK and $K^*\pi$
- 4 solutions: $θ_{K_1} = \pm 33^\circ, \pm 57^\circ$ [Suzuki, PRD47, 1252]
- used in most theory papers

Analysis of ACCMOR data yields $\theta_{K_1} \sim -72^{\circ}$

- not fully consistent with Suzuki's, but large uncertainties involved
- consistent with CLEO: $\theta_{K_1} = \pm 49^{\circ}, \pm 69^{\circ}$ [CLEO, PRD 62, 072006]
- used throughout BaBar analysis of $B \to K_1 \pi$ decays

How Super-B could help solving ambiguities:

■ $B \rightarrow K_1 \gamma$ decays (Sanchez @ Warwick)

J/ $\psi \rightarrow K_1^0 \bar{K}^0$ decays [Cheng, PRD 67, 094007]

 θ_{K_1} relevant for

- $\mathcal{B}(B \to K_{1A}\pi)$ from $\mathcal{B}(K_1\pi)$
- $f_{K_{1A}}$ from f_{a_1} and $f_{K_1(1270)}$
- estimates of several observables from phenomenology

A closer look at decay constants $f_{K_{1A}}$

 $f_{K_1(1400)}$ and $f_{K_{1A}}$ depend on mixing angle

- $f_{K_{1A}}(heta_{K_1}=-57^\circ)$ available, $f_{K_{1A}}(heta_{K_1}=-72^\circ)$ needed
- A naïve argument is used to test $f_{K_{1,A}}$ variation with mixing angle

$$\frac{m_{K_1(1400)}f_{K_1(1400)}}{m_{K_1(1270)}f_{K_1(1270)}} = \frac{\cos\theta_{K_1} + \frac{\delta}{\delta}\sin\theta_{K_1}}{\sin\theta_{K_1} - \frac{\delta}{\delta}\cos\theta_{K_1}}$$

$$|SU(3)| \Rightarrow |\delta| = \frac{m_s - m_u}{\sqrt{2}(m_s + m_u)} \approx 0.18$$

$$\mathbf{f_{K_{1A}}} = \frac{m_{K_1(1270)}f_{K_1(1270)}\sin\theta_{K_1} + m_{K_1(1400)}f_{K_1(1400)}\cos\theta_{K_1}}{m_{K_{1A}}}$$

$${m_{K_{1A}}}^2 = m_{K_1(1270)}^2 \sin^2 \theta_{K_1} + m_{K_1(1400)}^2 \cos^2 \theta_{K_1}$$

$$\begin{array}{l} \theta_{\mathit{K}_{1}} = -57^{\circ} \Rightarrow |\mathit{f}_{\mathit{K}_{1A}}| = 207\,\mathsf{MeV} \\ \theta_{\mathit{K}_{1}} \to -72^{\circ} \Rightarrow |\mathit{f}_{\mathit{K}_{1A}}| \searrow 20 \div 30\,\mathsf{MeV} \end{array}$$

Worst case scenario yields a $1^{\circ} \div 2^{\circ}$ effect on $\Delta \alpha$ bound, when combined with the other uncertainties

SU(3) symmetry

SU(3) with $B^0 \to \rho^+ \rho^-$ decays (and $K^* \rho$) [BaBar, PRD 76, 052007]:

- SU(3) breaking correction from neglected annihilation diagrams
- $O(2^{\circ})$ precision: limited by theory uncertainties (A. Bevan @ Warwick) [Beneke, PLB 638, 68]

SU(3) with
$$B^0 o a_1(1260)^\pm \pi^\mp$$

- analysis of ACCMOR data in K₁ system
 - $SU(3) \Rightarrow mixing$
 - SU(3) relations between decay constants
- extraction of decay constants
- SU(3) \Rightarrow ratios of decay constants in R_{\pm}^{+} , R_{\pm}^{0}
 - annihilation diagrams: study $B^0 \to K_1^{\pm} K^{\mp}$ decays! $\mathcal{B} = O(10^{-7})$ [Cheng, PRD76, 114020]
 - may also shed light on high $\mathcal{B}(B \to K_1 \pi)$

Outline

- 1 Introduction
- 2 Experimental status
- 3 Extrapolation to Super-B
- 4 Summary

Summary

- So far, α from $a_1\pi$ has been a BaBar-only business
 - lacktriangle Very recent lpha estimate, as a result of a long-term effort
 - More educated estimates of Super-B reach after cross-check by Belle
- $(P/T)_{\rho\rho} < (P/T)_{a_1\pi} < (P/T)_{\rho\pi} < (P/T)_{\pi\pi}$
 - \blacksquare \odot : $(P/T)_{a_1\pi}$ smaller than $(P/T)_{\rho\pi}$ and $(P/T)_{\pi\pi}$
 - ②: rely on SU(3)
- SU(3) based bounds on $\Delta \alpha \Rightarrow$ resume full SU(3) fit to get $\Delta \alpha$?
- Getting the most out of $B \to a_1 \pi$ decays at a Super-B factory is not an experimental matter only
 - will benefit from some guidance from theory
 - analysis of τ , $c\bar{c}$, D and B decays (interesting on their own) would pin down theoretical and model uncertainties
- \blacksquare \circledcirc : "redundant", independent measurement of α
 - How will $\alpha_{a_1\pi}$ be used? Should any discrepancy be interpreted as hint of NP? or SM "background"? or model uncertainties?