

Test beam - Calorimeter(s)

<u>I.Vivarelli</u> (with results from many people) University of Sussex

IDEA slice on beam (2018)

A full combined test of IDEA:

- Drift chamber prototype
- GEM as preshower + μRWell for μ dε
- Several calorimeter options tested c
- See, e.g., talk from R. Santoro <u>here</u>

Calorimeter options used during TB 2018

- RD52 module (combined data tak detectors)
- SiPM-based readout (standalone)
- "Staggered" module (standalone)

SiPM Readout

Como - analysis from M. Antonello - <u>here</u>

SiPM dual readout (standalone test)

ISU SIPM

illation light separated to bected to be ~ 50 times

SiPM readout - previous results (TB2017)

vith beam energy over a wide

 $t \sim 55 \text{ Spe/GeV}.$

 Scintillation response showing evidence of saturation

2018 - aims and issues

- Aim: verify that
 - Cross talk is under control
 - Linearity is fully recovered after attenuation of scintillation light
- Issues:
 - Slightly **degraded uniformity** of SiPM + fiber response
 - Dedicated correction factors extracted with optical measurements in the lab

SiPM dual readout (linearity)

Operating with 5.5 V_{OV} - PDE ~ 22%

Cherenkov light yield (70 Spe/GeV) ~ a factor 2 larger than what measured with PMT

(Filtered) scintillation light yield under control (~95 Spe/GeV).

EM stochastic term ~ 10% is achievable

Result could still be improved with SiPM with larger dynamic range

See <u>here</u> for more material

Staggered module

Pavia - analysis from L. Pezzotti

Longitudinal segmentation (standalone test)

- Particle identification (e.g. hadronic tau decay) may benefit from longitudinal segmentation.
- "Staggered" option tested on beam

"HAD" section: E(short fibres)

"EM" section: E (long fibres) - E (short fibres)

Staggered modules - the good and the bad

Good:

 Coarse radial information of the energy deposit (tau decay, e/pi separation)

Bad:

- Half sampling fraction for the same number of channels
- Loss of EM resolution from subtracting two independent energy measurements (long-short)
- Challenging:
 - How to propagate calibration to the short section?
 - With some calibration system
 - With particles (see next slides)

Long sector calibration with electrons

• Equalisation of electron channels after pedestal subtraction (similar plots for Cherenkov channels)

Scintillating long fibers 20 GeV electrons

ADC (equalized)

Calibration of the short:

Propagate the long section calibration using pions.

Long section 60 GeV π signal Ratio tower2_Scin Tower2_scinlong Entries Eutries 1200 Entries Mean 1.224 298.8 Mean Std Dev 0.6127 Std Dev 1200 1000 1000 800 800 600 400 400 200 200 300 400 500 short/long ADC (equalized) Short section 60 GeV π signal Entries 1200 365.8 263.6 Std Dev 1000 800 400 200 400 1000 600 Scintillation fibers ADC (equalized)

Calibration of the short:

Propagate the long section calibration using pions.

Long section 60 GeV π signal Ratio tower2_Scin Tower2_scinlong Entries Entries 1200 Entries Mean 1.224 298.8 Mean Std Dev 0.6127 Std Dev 1200 1000 800 800 600 600 400 200 300 400 500 short/long ADC (equalized) Short section 60 GeV π signal Entries 1200 365.8 263.6 Std Dev 1000 800 400 200 1000 600 Scintillation fibers ADC (equalized)

Calibration of the short:

Propagate the long section calibration using pions.

Long section 60 GeV π signal

Cherenkov signal 60 GeV pions

Short section 60 GeV π signal

RD52

Shower shape

- Prototype tested on beam in the past.
 - Focus on combined running
 - Studies of electron shower shape as a function of dead material in front of the calorimeter.

$R_W =$	$\sum_{\rm ch} E_{\rm ch} \cdot \sqrt{x_{\rm ch}^2 + y_{\rm ch}^2}$
	$\sum_{\mathrm{ch}} E_{\mathrm{ch}}$

1	2	3	4	5	6
7	8	9	10	11	12
13	14	15	16	17	18
19	20	21	22	23	24
25	26	27	28	29	30
31	32	33	34	35	36

Each tower is 4.6 cm side - Moliere radius 1.6 cm

Combined measurements (RD52)

 Focus on DAQ combination and combined runs with GEMbased preshower

$$R_{\text{shower}} = \frac{\sum_{\text{ch}} E_{\text{ch}} \cdot \sqrt{x_{\text{ch}}^2 + y_{\text{ch}}^2}}{\sum_{\text{ch}} E_{\text{ch}}}$$

Shower width from 5 mm Pb + additional material correlates with number of clusters in GEM preshower

- Electron resolution not proven to be the same as in the past (see talk <u>here</u>)
- Investigated:
 - Beam position and divergency
 - Pedestals
 - Shower shape
 - Electron selection
 - Equalisation

- To be investigated:
 - Role of upstream material nice chance to use the GEM preshower as illustrated yesterday

What we have learnt

- Main lessons from 2018 TB:
 - Linearity can be achieved with SiPM while keeping cross talk under control
 - It is **in principle** possible to **calibrate a staggered module** using single electrons and single pions at the test beam.
 - Probably this would extend easily to in-situ calibration measurements
 - Combined data taking at the TB worked, nice results from combined GEM/Calo runs.

UNIVERSITY OF SUSSEX

Things we should consider for future tests

- Containment is nice, but expensive and maybe not the highest priority
- My personal priority list:
 - Cost reduction explore new layout ideas
 - Readout chain (SiPM + ASIC? + ?)
 - Calibration system **stability monitoring** do we solely rely on in-situ Z->ee? Need to decouple **electronics linearity** from **optical readout efficiency/gain**.
 - **Simulation validation** G4 is not perfect, but often good enough especially after TB tuning.
 - Any hardware/layout solution to improve timing resolution? Note it is maybe enough to do it on scintillation signal where light yield not an issue
 - Reflect light on the inner fiber end
 - Reduced granularity SiPM on the inner side? (Feasible at all?)
 - Fibers mutually at an angle? (Reconstruction nightmare....)