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Time from classical relativistic physics toward 
quantum gravity



Foreword:  
general conceptual issues and delimiting the scope



Which time?

Physical time

• objective


• measurable


• communicable, sharable


• mathematizable

time = mathematical entities in physical models/theories, 
corresponding to computable quantities as measured by clocks

base and condition sine qua non of our conceptualisation of the world



conceptual issues not dealt with:


relationships mathematical theory <—> reality (some form of scientific realism assumed, 
and naturalised metaphysics taken for granted)


relation between physical time (as defined above) and other notions/experiences of time


relation between time and causality, i.e. temporal ordering and distance and causal relations


irreversibility of time evolution and thermodynamic time arrow

conceptual issues touched upon:


existence and conceptual characterisation of physical time, as deduced from physical theories


which features of standard notion of time are challenged by theoretical physics (and quantum gravity)


fundamental vs emergent nature of time (and space)



Prima facie issues with physical time

• time vs change vs succession (what more in the first notion? whence the directionality and irreversibility?)


• substantivalism vs relationalism

what is it, actually?

space and time are “substances” themselves: they are 
objects with respect to which distances and velocities 
of other objects and duration of processes are 
measured; location is location in space and time

vs



Prima facie issues with physical time

• time vs change vs succession (what more in the first notion? whence the directionality and irreversibility?)


• substantivalism vs relationalism

what is it, actually?

space and time are “substances” themselves: they are 
objects with respect to which distances and velocities 
of other objects and duration of processes are 
measured; location is location in space and time

vs

space and time are relational (derived notions): spatial and 
temporal separations do not have intrinsic significance; 
spatial and temporal distances are relational attributes of 
objects, motion can only make sense as relative motion of 
objects; space and time have no existence themselves: 
they are not “objects” on their own, they have no 
independent physical attributes, no independent dynamical 
meaning; they are attributes of physical objects, can only 
be defined and understood in relation to material objects



Newtonian Time

“time of common sense”



Newtonian Time

absolute time


absolute simultaneity

corresponding to preferred (temporal) coordinate 
in the equations describing any physical system

physical (i.e. real)


not subject to influence of other entities

not trivial (highly disputable) assumptions


but perfect agreement with everyday experience, thus 
common sense, and extremely successful for physics

• continuum nature


• preferred foliation of spacetime manifold


• Galilean invariance (no preferred direction in space + relativity of inertial frames))



Special relativistic time

time loses its independence (from space and from observers)



Relativistic Time

Special Relativity

absolute spacetime physical (i.e. real) but not subject to influence of other entities

key point: finite (and absolute and maximal) 
propagation speed of light 


relativity of simultaneity


non-trivial causal structure



Relativistic Time

Special Relativity

absolute spacetime

preferred class of (spatio-temporal) coordinates (observers)

physical (i.e. real) but not subject to influence of other entities

• continuum nature


• no preferred global foliation of spacetime manifold


• Lorentz invariance (no preferred direction in spacetime, relativity of inertial frames))

space and time 
intimately linked

distance and time 
measurement depend 
on observer: 


length contraction and 
time dilation, relativity 
of simultaneity



General Relativistic time

time disappears


as an absolute, non dynamical entity, and as a preferred (set of) direction(s)


it also disappears as independent of other physical systems 



General Relativistic Time
General Relativity Spacetime is a physical system

• gravity = spacetime geometry (spatial distances between 
objects, time intervals between events, curvature of 
space, volumes, …..)

• mass-energy of material bodies “deformes” spacetime 
around them, this deformation affects motion of other 
material bodies

• deformation of spacetime is what we call “gravity”

• spacetime deformation itself has own dynamics
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General Relativistic Time
General Relativity Spacetime is a physical system

• gravity = spacetime geometry 

• mass-energy of material bodies “deformes” spacetime

• deformation of spacetime is what we call “gravity”

• spacetime deformation itself has own dynamics

R(t) �(t)

=) R(t) t(�)

=) R(�)

|t1i , |t2i, ..... |tni , .... (1)

gµ⌫(t, x) ds2 = gttdt
2 + g12 dx1dx2 (2)

1

time itself is “deformed” by mass-energy





deeper understanding of gravity 

is 


deeper understanding of space 
and time



General Relativistic Time

General Relativity Spacetime is a physical system

spacetime structures in GR: 


• differentiable manifold (as technical tool only?)


• metric field + matter fields

S
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spacetime continuum
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Einstein’s equations (constraint for allowed 
configurations of spacetime geometry and matter fields)

gravitational field is spacetime metric field 
(gravity = spacetime geometry)



Relativistic Time

General Relativity Spacetime is a physical system

Einstein’s equations (constraint for allowed 
configurations of spacetime geometry and matter fields)

gravitational field is spacetime metric field 
(gravity = spacetime geometry)

spacetimes with 
closed time-like loops

spacetimes with horizons (e.g. black holes)

deformation of time (and space) can be substantial!

wormholes



Relativistic Time

General Relativity Spacetime is a physical system

Einstein’s equations (constraint for allowed 
configurations of spacetime geometry and matter fields)

gravitational field is spacetime metric field 
(gravity = spacetime geometry)

key symmetry of GR: general covariance (diffeomorphism invariance):


Rµ⌫ [g(x)]� 1
2
R[g(x)] + ⇤gµ⌫(x) = 8⇡GNTµ⌫ [�(x), ...]

where D is the representation of GL(4, R) carried by the fields. In addition, we
require that the non-dynamical quantities Σ to be geometric objects, i.e. to support
an action of the diffeomorphism group.

Definition 1. Equation (3) is said to be covariant under the subgroupG ⊆ Diff(M)

iff for all f ∈ G

F[γ,Φ,Σ] = 0 ⇔ F[f · γ , f · Φ , f · Σ] = 0 . (5)

Definition 2. Equation (3) is said to be invariant under the subgroupG ⊆ Diff(M)

iff for all f ∈ G

F[γ,Φ,Σ] = 0 ⇔ F[f · γ , f · Φ , Σ] = 0 . (6)

Note the difference: in Definition 2 the non-dynamical structures Σ are the
same on both sides of the equation, whereas in Definition 1 they are allowed to be
also transformed by f ∈ Diff(M). Covariance merely requires the equation to ‘live
on the manifold’, i.e. to be well defined in a differential-geometric sense, whereas
an invariance is required to transforms solutions to the equations of motions to
solutions of the very same equation3, which is a much more restrictive condition.

As a simple example, consider the vacuumMaxwell equations on a fixed space-
time (Lorentzian manifold (M,g)):

dF = 0 , (7a)
d ⋆ F = 0 , (7b)

where F denotes the 2-form of the electromagnetic field and d the exterior differ-
ential. The ⋆ denotes the (linear) ‘Hodge duality’ map, which in components reads

⋆Fµν = 1
2εµναβFαβ , (8)

and which depends on the background metric g through ε and the operation of
raising indices: Fαβ := gαµgβνFµν. The system (7) is clearly Diff(M)–covariant
since it is written purely in terms of geometric structures on M and makes perfect
sense as equation onM. In particular, given any diffeomorphisms f ofM, we have
that f · F satisfies (7a) iff F does. But it is not likewise true that d ⋆ F = 0 implies
d ⋆ f · F = 0. In fact, it may be shown4 that this is true iff f is a conformal isometry
of the background metric g, i.e. f ·g = λg for some positive real-valued function λ

onM. Hence the system (7) is not Diff(M)–invariant but only G–invariant, where
G is the conformal group of (M,g).
3 In the mathematical literature this is called a symmetry (of the equation). We wish to avoid the
term ‘symmetry’ here altogether because that – in our terminology – is reserved for a further dis-
tinction of invariances into symmetries, which change the physical state, and redundancies (gauge
transformations) which do not change the physical state. Here we will not need this distinction.

4 This is true in 1+3 dimensions. In other dimensions higher than two f must even be an isometry
of g.

6

invariance under diffeomorphisms

fields
particles, strings, … background structures


(not subject to eqns of motion)

diffeomorphismeqns of motion

valid -only- if background structures are -invariant- under diffeomorphisms (or if no background structures)

global (active) diffeomorphisms on M are C∞ maps f : M → M with C∞ inverses 

map points to -different- points and induce map between physical objects “living on M”

background independence of GR



Relativistic Time

General Relativity Spacetime is a physical system

Einstein’s equations (constraint for allowed 
configurations of spacetime geometry and matter fields)

gravitational field is spacetime metric field 
(gravity = spacetime geometry)

key symmetry of GR: general covariance (diffeo invariance):


no preferred local direction (or foliation)


no meaning of coordinates


no meaning of manifold points

(NB: in theory, not on special solutions; compare 
with special relativity: preferred (“physical”) role of 
inertial frames/coordinates due to isometries of 
special solution, i.e. Minkowski geometry)

thus, in GR: no time? time does not exist?

Rµ⌫ [g(x)]� 1
2
R[g(x)] + ⇤gµ⌫(x) = 8⇡GNTµ⌫ [�(x), ...]

much more than “coordinate independence”!!!



Nature of spacetime: lessons from GR

diffeomorphism invariance and role of manifold

problem of time (and space) in GR:


no absolute notion of time or space direction/location

what are spacetime points? how to make sense of localization? what constitutes evolution?

no local beables? no time evolution?

what are time and change?

J. Butterfield, C. Isham, 1999; E. Curiel, 2016

we use time coordinates 
and spatiotemporal 
trajectories everyday in 
our work as relativists ….



Relativistic Time

General Relativity
general covariance (diffeo invariance):


no preferred local direction (or foliation)


no meaning of coordinates


no meaning of manifold points

relational observables (correlations of dynamical fields)

problem of observables: 


no function of spacetime points can be observable - 
no local observable?

• relational space: physical rods


• relational time: physical clocks

• physics is (only) in relations between physical, dynamical degrees of freedom


• identify internal degrees of freedom of system, e.g. matter fields, and use them 
as (approximate) clocks and rods to parametrize the evolution and location of 
other degrees of freedom

R(t) �(t)

=) R(t) t(�)

=) R(�)

R(t)

1

points, coordinates, trajectories on manifold are “useful fictions” representing physical frames 
(clocks and rods) in the limit in which their physical properties (energy, dynamics, …) are negligible



Nature of spacetime: lessons from GR

what is (classical) spacetime, then?

J. Earman, 1989; O. Pooley, 2013; R. Rynasiewic, 1996; 
M. Dorato, 2000, 2008; V. Lam, 2017; S. French, 2010

Substantivalism: spacetime is considered as an independently existing 
entity that has its own properties, which are not reducible to—not 
derived from—properties and relations of matter. Spacetime and 
matter are two ontologically distinct beings and spacetime is 
ontologically independent from matter.  

Relationalism: spacetime is reduced to—derived from—properties and 
relations among matter. Two versions: 


non-reductive version: spacetime consists in irreducible 
spatiotemporal relations among matter, which are ontologically distinct 
from but ontologically dependent on matter. 


reductive version: spacetime is reduced to non-spatiotemporal 
properties and relations among matter (reductive relationalism). 



in some sense, GR strikes an intermediate (reconciling) note, between substantivalism and relationalism, 
in two plausible (and compatible) interpretations:

a) spacetime is the gravitational field (a dynamical (“proto-material”) physical entity) and its properties


b) spacetime is in the relations between the gravitational field and material objects (used to define points)

possible formalization: spacetime structuralism (also close to functionalism)

spacetime is a physical structure: a network of physical relations among physical relata that do not 
possess any intrinsic identity independently of the relations in which they stand (eg spacetime points 
as physical correlations)

spacetime ~ gravitational field ~ physical system: substantivalism and relationalism reconciled?



General Relativistic Time

General Relativity Spacetime is a physical system

spacetime structures in GR: 


• differentiable manifold (as technical tool only?) - meaningful only as 
specifying a topology (and a restriction on allowed geometries)


• metric field + matter fields (in various diffeo-invariant combinations)

GR “forces” us to consider physical clocks as “time” —— non trivial at all!

S
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M
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g
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1

time is “relational time” only?



(naive) solution: relational observables  [Einstein, Bergmann, Kuchar, Rovelli, BD ...]

“Position of particle (now)”    is not an observable.

“Position of particle at 5pm (on Daniele’s clock)” is an observable.  This allows a notion of  
evolution with respect to Daniele’s clock. 

There is also a notion of (physical) Hamiltonian that evolves Daniele and the rest of the   
universe (but not his clock). 

So no “problem of time”?

Practical (?) problems:

    A.  In the canonical formalism observables are pre-- or postdictions. 

        Need to solve dynamics of the theory.   [But can be done in principle: BD]

     B.  Good clocks?

        
6

example:

1/2 1 3/2 0

SU(2)k

j = 0, 1
2 , . . . , k

2

k = 4, j = 0, 1, 2

L2(G) = ⊕ρVρ ⊗ Vρ∗

⊕µρρ′ Vρ ⊗ Vρ′

ρe, ρ′e, µρ,ρ′
ρ1 ρ2 ρ3 ρ4 ρ′1 ρ′2 ρ′3 ρ′4

ρinter ρ′inter

ρ′inter = ρ∗inter

ρ′inter ≠ ρ∗inter

ρ ≠ ρ′

ρinter, ρ′inter

ρ, ρ′ independent

Z ∼ δ(curv) ∼
∑

j

exp(i jcurv) (0.165)

A → Â , {A,B} → i[Â, B̂]

{φ(Ψ),φ(Ψ + ϵ)} = G(Ψ,Ψ + ϵ)
(
1 + Energy(φ)

Energy(Ψ)

)

27

Two-point function of scalar field relative to (four) clock scalars 

Green’s function on fixed background

[BD, Tambornino]

encode ‘free’ 
dynamics

Resolution limit for degrees of freedom points depending on energy of clocks.

Similar: for two-point function in path integral approach       [Giddings, Hartle, Marolf]

Forming of black holes leads to (super) holographic bound on number of dof’s [Giddings, Hartle, Marolf]

        

Existence of black holes: no perfect clocks?

[Bojowald, Hoehn, Tsobanjan]: Fashionables: change clocks when necessary. Leads to effects similar to 
non-unitary evolution.

11



quantum clocks (ticking along the preferred temporal direction)

highly non-trivial - new effects:

• uncertainty + quantum fluctuations + entanglement


• modified Schroedinger equation


• …..

R(t) �(t)

=) R(t) t(�)

=) R(�)

|t1i , |t2i, ..... |tni , .... (1)

R(t)

1

Quantum causality

Quantum reference frames

D. Page, W. Wootters, 1983; ….; A. Vanrietvelde, F. Giacomini, 
P. Hoehn, 2018; A. Vanrietvelde, P. Hoehn, 2018

lots of additional trouble … and fun!



Need to go beyond GR (and relativistic time) 

toward Quantum Gravity

all physical systems are quantum ….. spacetime is a physical system

our understanding of time will most likely go through another revolution

if this was not enough trouble…..



two incompatible conceptual (and mathematical) frameworks for space, time, geometry and matter

so, what are, really, space, time, geometry, and matter? 

spacetime (geometry) is a dynamical entity itself

there are no preferred temporal (or spatial) directions

physical systems are local and locally interacting

everything (incl. spacetime) evolves deterministically

all dynamical fields are continuous entities

every property of physical systems (incl. spacetime) can 
be precisely determined, in principle

spacetime is fixed background for fields’ dynamics

evolution is unitary (conserved probabilities) with 
respect to a given (preferred) temporal direction   

nothing can be perfectly localised

everything evolves probabilistically

interaction and matter fields are made of “quanta” 

every property of physical systems and their 
interactions is intrinsically uncertain, in general

GR QFT

Why we need to go beyond GR   - conceptual



•  breakdown of GR for strong gravitational fields/large energy densities

spacetime singularities - black holes, big bang - quantum effects expected to be important

Why we need to go beyond GR   - physics
several open physical issues, at limits of GR and QFT or at interface (where both are expected to be relevant)



•  breakdown of GR for strong gravitational fields/large energy densities

spacetime singularities - black holes, big bang - quantum effects expected to be important

Why we need to go beyond GR   - physics
several open physical issues, at limits of GR and QFT or at interface (where both are expected to be relevant)

singularity: 


if surrounded by event horizon, effective 
removal of spacetime region from contact 
with rest of universe


in any case, new “boundary” for spacetime, 
which becomes “incomplete” (space and 
time lose meaning at singularity)



•  no proper understanding of interaction of geometry with quantum matter, if gravity is not quantized

•  breakdown of GR for strong gravitational fields/large energy densities

spacetime singularities - black holes, big bang - quantum effects expected to be important

Why we need to go beyond GR   - physics
several open physical issues, at limits of GR and QFT or at interface (where both are expected to be relevant)

•  divergences in QFT - what happens at high energies? how does spacetime react to such high energies?

• what happens to quantum fields close to big bang? what generates cosmological fluctuations, and how? 



Quantum Gravity: 

a deeper understanding of 
the nature of space and time



Quantum Gravity: 

a deeper understanding of 
the nature of space and time

we have to learn to think deeper about the nature of space and time themselves, 
thus we have to learn to  

(re-)think the world without (assuming) space and time



Quantum Relativistic Time?

time disappears 


time acquires a probabilistic nature?


time loses its continuum nature?



Nature of spacetime: quantum counterpart of GR issues

spacetime is physical quantum system

(a priori) all spacetime notions subject to quantum uncertainty, superpositions, interference, entanglement


e.g. superposition of geometries


no sharp meaning for any spacetime 


notion (eg events)

merging the GR and quantum revolution

the bare minimum: quantized GR   -   already radical new features of spatiotemporal notions
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Beyond Relativistic Time    -    quantum relativistic time
and space, and causality, ….

the bare minimum: quantized GR   -   already radical new features of spatiotemporal notions
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(a priori) all spacetime notions subject to quantum uncertainty, superpositions, interference, entanglement




Beyond Relativistic Time    -    quantum relativistic time
and space, and causality, ….

the bare minimum: quantized GR   -   already radical new features of spatiotemporal notions

Causality itself “fluctuates”
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Beyond Relativistic Time    -    quantum relativistic time
and space, and causality, ….

the bare minimum: quantized GR   -   already radical new features of spatiotemporal notions

Causality itself “fluctuates”

geometric quantities (distances, time intervals, volumes, ….) may be discretized

minimal length, volume, ..?
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Beyond Relativistic Time    -    quantum relativistic time
and space, and causality, ….

the bare minimum: quantized GR   -   already radical new features of spatiotemporal notions

R(t) �(t)

=) R(t) t(�)

=) R(�)

|t1i , |t2i, ..... |tni , .... (1)

gµ⌫(t, x) ds2 = gttdt
2 + g12 dx1dx2 (2)

gµ⌫(t, x) =) dgµ⌫(t, x) (3)

1

possible degenerate configurations (zero volume element) - 
no well-defined spacetime geometry at some point/region

possible signature change: from Lorentzian geometry/spacetime 
to Riemannian geometry/spacetime


e.g in place of cosmological (classical) singularity

no temporal evolution at all (but 
space maintains its meaning)



  

a quantum (relativistic) Time will already be 
  

way beyond  
our current understanding of temporal 

concepts (and related)



Even more radical disappearance of time 
at fundamental quantum gravity level?

time stops making sense altogether?



• Einstein’s equations as equation of state

GR dynamics is effective equation of state for any microscopic dofs 
collectively described by a spacetime, a metric and some matter fields

fundamental discreteness of spacetime? locality loses any meaning? 
is spacetime itself “emergent” from non-spatiotemporal,                             

non-geometric, quantum building blocks (“atoms of space”)?

Beyond Time - hints of more radical disappearance of 
spacetime itself

• entanglement ~ geometry

geometric notions defined by quantum (information) notions 
(examples from AdS/CFT, and various quantum many-body systems)

•     black hole information paradox some fundamental principle has to go: is it locality?

•    challenges to “localization” in semi-classical GR    

•      spacetime singularities in GR

•      black hole thermodynamics

minimal length scenarios

breakdown of continuum itself?

black holes satisfy thermodynamic relations





Quantum Gravity: contemporary approaches

String Theory

Non-commutative geometry

Causal Dynamical Triangulations

Tensor Models

SupergravityLoop Quantum Gravity

Group Field Theory

Asymptotic SafetyCausal Sets

Simplicial Quantum Gravity

Spin Foam models



Quantum Gravity: a new perspective
many current approaches suggest a change of perspective on the quantum gravity problem

traditional perspective: 
quantise gravity (i.e. spacetime geometry)

i.e. obtain a quantum version of General Relativity (or some modification of it) 
possibly with new types of matter fields or interactions

new perspective: 
identify quantum structures/building blocks of non-
spatiotemporal nature from which spacetime and 

geometry “emerge” dynamically

problem becomes similar to the typical one in condensed matter theory (from atoms to macroscopic physics)



Emergent Time (and Space)?
notion of emergence itself is tricky

understanding/defining concept of emergence of spacetime even trickier

need a “spacetime free” notion of emergence to start with

Nagel, Battermann, Butterfield, Hartmann, Maudlin, …..
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•  emergence is appearance of properties that are novel wrt different description of the system and 
robust (stable), thus reproducible
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Emergent Time (and Space)?
notion of emergence itself is tricky

understanding/defining concept of emergence of spacetime even trickier

Butterfield et al.: 

•  emergence is appearance of properties that are novel wrt different description of the system and 
robust (stable), thus reproducible

• emergence of a property requires limiting procedures and approximations in the description

need a “spacetime free” notion of emergence to start with

QG context:
show emergence of space and time = define an approximation/limiting procedure that leads from non-

spatio-temporal, fundamental QG degrees of freedom (and their dynamics) to continuum spacetime and 
geometry (and their GR dynamics)

Nagel, Battermann, Butterfield, Hartmann, Maudlin, …..



Emergent Time (and Space)
examples of non-spatiotemporal structures in Quantum Gravity

example: the “atoms of space” in Loop Quantum Gravity

geometry from combinatorics and algebra!



Emergent Time (and Space)
examples of non-spatiotemporal structures in Quantum Gravity

example: the “atoms of space” in Loop Quantum Gravity

H2 = lim
�

S
� H�

⇡
= L2

�
Ā
�

4

where  
(�,J

(ab)
(ij) ,◆i)

(Gab
ij ) identifies a spin network functional labelled by a closed graph � with rep-

resentations J (ab)
(ij) associated to the di↵erent edges linking two vertices i and j, and intertwiners ◆i

associated to its vertices; gia (resp. gjb) (with a, b = 1, ..., d) are group elements being the argu-
ments of the field associated to the vertex i (resp. j), so that a pair of indices (a, b) denotes each
of the edges connecting two vertices i and j. The bosonic statistics implies a symmetrisation of
 with respect to permutations of the vertex labels. These observables act on the Fock vacuum
creating a spin network state associated to a graph �.

GFT as 2nd quantised reformulation of the LQG kinematics - We now discuss in more
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whose “histories” (dynamical interaction processes) are 
also purely algebraic and combinatorial: spin foams

2-complex J bordered by the graphs of γ and γ′ respectively, a collection of spins {jf} associated
with faces f ∈ J and a collection of intertwiners {ιe} associated to edges e ∈ J . Both spins and
intertwiners of exterior faces and edges match the boundary values defined by the spin networks s
and s′ respectively. Spin foams F : s → s′ and F ′ : s′ → s′′ can be composed into FF ′ : s → s′′

by gluing together the two corresponding 2-complexes at s′. A spin foam model is an assignment
of amplitudes A[F ] which is consistent with this composition rule in the sense that

A[FF ′] = A[F ]A[F ′]. (74)

Transition amplitudes between spin network states are defined by

⟨s, s′⟩phys =
∑

F :s→s′

A[F ], (75)

where the notation anticipates the interpretation of such amplitudes as defining the physical scalar
product. The domain of the previous sum is left unspecified at this stage. We shall discuss this
question further in Section V. This last equation is the spin foam counterpart of equation (73).
This definition remains formal until we specify what the set of allowed spin foams in the sum are
and define the corresponding amplitudes.
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Figure 5: A typical path in a path integral version of loop quantum gravity is given by a series of
transitions through different spin-network states representing a state of 3-geometries. Nodes and
links in the spin network evolve into 1-dimensional edges and faces. New links are created and
spins are reassigned at vertexes (emphasized on the right). The ‘topological’ structure is provided
by the underlying 2-complex while the geometric degrees of freedom are encoded in the labeling of
its elements with irreducible representations and intertwiners.

The background-independent character of spin foams is manifest. The 2-complex can be
thought of as representing ‘space-time’ while the boundary graphs as representing ‘space’. They do
not carry any geometrical information in contrast with the standard concept of a lattice. Geometry
is encoded in the spin labelings which represent the degrees of freedom of the gravitational field.

In standard quantum mechanics the path integral is used to compute the matrix elements of the
evolution operator U(t). It provides in this way the solution for dynamics since for any kinemat-
ical state Ψ the state U(t)Ψ is a solution to Schrödinger’s equation. Analogously, in a generally
covariant theory the path integral provides a device for constructing solutions to the quantum
constraints. Transition amplitudes represent the matrix elements of the so-called generalized ‘pro-
jection’ operator P (i.e., ⟨s, s′⟩phys = ⟨sP, s′⟩ recall the general discussion of Sections 2.2) such
that PΨ is a physical state for any kinematical state Ψ. As in the case of the vector constraint
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Two dynamical models for full LQG
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spin networks arise as specific “many-quanta” GFT states

GFT quanta = spin network vertices, created/annihilated out 
of Fock vacuum (with no topological/geometric information)

Z =
Z
D'D' ei S�(',') =

X

�

�N�

sym(�)
A�

a QFT of atoms of space
fundamental pre-geometric quantum discreteness

example: the “atoms of space” in Group Field Theory (Boulatov, Ooguri, De Pietri, Freidel, Krasnov, Rovelli, Perez, DO, Livine, ……)

Hilbert space of quantum states:

3

triangulations (quantum gravity as a sum over random lattices) [8] and the main idea of quantum
Regge calculus[6] (quantum gravity as a sum over geometric data assigned to a give lattice).

In the following we will highlight structures and concepts shared with other ways of doing loop
quantum gravity, as well as points of departure and new concepts brought in by the GFT refor-
mulation. We will also discuss how GFTs cast the problem of defining a background independent
theory of quantum gravity based on LQG ideas in a more or less standard QFT language. This
allows the use of several powerful tools, to realise concretely the suggestive notion of ‘atoms of
quantum space’and to treat spacetime, indeed, like a condensed matter (or many-atom) quantum
system, suggesting new lines of developments.

GFT KINEMATICS: HILBERT SPACE AND OBSERVABLES

Fock space of quantum states - The Hilbert space of states for single-field GFTs is a
Fock space built out of a fundamental ‘single-atom’ Hilbert space Hv = L

2(G⇥d): F(Hv) =
L

1
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n⇣
H(1)

v ⌦H(2)
v ⌦ · · ·⌦H(V )

v

⌘o
, where sym indicates symmetrisation with respect to

the permutation group SV [16]. This encodes a bosonic statistics for field operators (other possibil-
ities can be considered [17, 18], but they have not been used in the spin foam and LQG context):

h
'̂(~g) , '̂†(~g0)

i
= IG(~g,~g0)

⇥
'̂(~g) , '̂(~g0)

⇤
=

h
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†(~g) , '̂†(~g0)

i
= 0 (3)

where IG(~g,~g0) ⌘
Qd

i=1 �(gi(g
0

i)
�1), and we used the notation ~g = (g1, .., gd).

In quantum gravity models the group G is chosen to be the local gauge group of gravity in the
appropriate space-time dimension and signature, i.e. G = SU(2), SL(2,R) in 3 dimensions and
G = Spin(4), SL(2,C) in dimension 4 (or their rotation subgroup SU(2), in order to connect with
LQG).

Each Hilbert space Hv provides the space of states of a single ”quantum” of the GFT field, a
quantum gravity ‘atom’. It can be understood as a fundamental spin network vertex, represented
by a node with d outgoing links (ending up in 1-valent nodes), labelled by group elements, or as
a 3-cell (polyhedron) with d boundary faces. This just a pictorial representation. Whether the
states represent quantum gravity spin network vertices or geometric polyhedra depends on the
type of data they carry and the dynamics they satisfy. For G = SU(2), and with the closure
condition '(gI) = '(hgI) 8h 2 G imposed on the fields, however, the polyhedral interpretation
is justified and the same is true for G = SL(2,C) and G = Spin(4) with simplicity constraints and
closure conditions correctly imposed. In particular, for d = 4, the GFT quanta represent quantum
tetrahedra, about which a lot is known in the spin foam literature [19]. In this last case, the basic
Hilbert space is Hv =

L
Ji2N/2 Inv

�
HJ1 ⌦ ...⌦HJ4

�
, where each HJi is the Hilbert space of an

irreducible unitary representation of SU(2) labeled by the half-integer Ji.

Quantum observables - Kinematical observables are functionals of the field operators O
�
'̂, '̂

†
�
.

Of special importance are polynomial observables, whose evaluation in the vacuum state defines
to GFT n-point functions[20]. Any convolution of a finite number of GFT field operators with
appropriate kernels would define one such observable, as in any quantum field theory. The pecu-
liarity of GFTs, with respect to ordinary QFTs, is the possibility for these kernels to have a richer
combinatorial structure, involving a non-local pairing of field arguments, i.e. relating only a subset
of the d arguments of a given GFT field with a subset of the arguments of a di↵erent one. Of
particular interest for LQG are ‘spin network observables’:
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triangulations (quantum gravity as a sum over random lattices) [8] and the main idea of quantum
Regge calculus[6] (quantum gravity as a sum over geometric data assigned to a give lattice).

In the following we will highlight structures and concepts shared with other ways of doing loop
quantum gravity, as well as points of departure and new concepts brought in by the GFT refor-
mulation. We will also discuss how GFTs cast the problem of defining a background independent
theory of quantum gravity based on LQG ideas in a more or less standard QFT language. This
allows the use of several powerful tools, to realise concretely the suggestive notion of ‘atoms of
quantum space’and to treat spacetime, indeed, like a condensed matter (or many-atom) quantum
system, suggesting new lines of developments.
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G = Spin(4), SL(2,C) in dimension 4 (or their rotation subgroup SU(2), in order to connect with
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Each Hilbert space Hv provides the space of states of a single ”quantum” of the GFT field, a
quantum gravity ‘atom’. It can be understood as a fundamental spin network vertex, represented
by a node with d outgoing links (ending up in 1-valent nodes), labelled by group elements, or as
a 3-cell (polyhedron) with d boundary faces. This just a pictorial representation. Whether the
states represent quantum gravity spin network vertices or geometric polyhedra depends on the
type of data they carry and the dynamics they satisfy. For G = SU(2), and with the closure
condition '(gI) = '(hgI) 8h 2 G imposed on the fields, however, the polyhedral interpretation
is justified and the same is true for G = SL(2,C) and G = Spin(4) with simplicity constraints and
closure conditions correctly imposed. In particular, for d = 4, the GFT quanta represent quantum
tetrahedra, about which a lot is known in the spin foam literature [19]. In this last case, the basic
Hilbert space is Hv =
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, where each HJi is the Hilbert space of an

irreducible unitary representation of SU(2) labeled by the half-integer Ji.
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Of special importance are polynomial observables, whose evaluation in the vacuum state defines
to GFT n-point functions[20]. Any convolution of a finite number of GFT field operators with
appropriate kernels would define one such observable, as in any quantum field theory. The pecu-
liarity of GFTs, with respect to ordinary QFTs, is the possibility for these kernels to have a richer
combinatorial structure, involving a non-local pairing of field arguments, i.e. relating only a subset
of the d arguments of a given GFT field with a subset of the arguments of a di↵erent one. Of
particular interest for LQG are ‘spin network observables’:
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gravity atom’ corresponding to a Hilbert space Hv = L
2
�
G

⇥d
/G

�
. An orthonormal basis  ~�(~g) in

each Hv is given by the spin network wave functions for individual spin network vertices (labelled
by spins and angular momentum projections associated to their d open edges, and intertwiner
quantum numbers):
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The Hilbert space is then extended to include arbitrary numbers of QG atoms HGFT =L
1

V=0HV and can be turned into a Fock space by standard methods [16] introducing the fun-
damental GFT field operators

'̂(g1, .., gd) ⌘ '̂(~g) =
X

~�

'̂~�  ~�(~g) '̂
†(g1, .., gd) ⌘ '̂

†(~g) =
X

~�

'̂
†

~�  
⇤

~�(~g) ,

satisfying the commutation relations introduced above. The choice of bosonic statistics, we stress
again, is, at this stage, an assumption to be better justified. Acting on the Fock vacuum, these
operators generate the GFT Fock space already introduced.

Similarly, quantum observables can be turned from 1st quantised operators (i.e. operators act-
ing on the many-atom Hilbert spaces HV ) to 2nd quantised operators on the Fock space, following
again standard procedures. Given the matrix elements On,m (~�1, ..., ~�m, ~�

0

1, ..., ~�
0
n) (or the corre-

spondent functions in the group or flux basis) of the relevant operator \On,m in a basis of open spin
network vertices, take the appropriate convolutions of such functions with creation and annihila-
tion operators, according to which spin network vertices are acted upon by the operator and which
spin network vertices result from the same action, to obtain its 2nd quantized counterpart. The
result will thus be a linear combination of polynomials of creation and annihilation operators, i.e.
of GFT field operators, thus a GFT observable:

\On,m ! h~�1, ...., ~�m|\On,m|~�0

1, ..., ~�
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j ] b'†(~g1)..b'†(~gm)On,m
�
~g1, ..,~gm,~g
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1, ..,~g
0

n

�
b'(~g01)..b'(~g0n) .

Similarities and di↵erences with the LQG Hilbert space - The kinematical Hilbert space
of GFT is analogous to the one in LQG in the sense that its quantum states are the same type of
functions on group manifolds, associated to graphs, and characterised by the same representation
labels, group or Lie algebra elements. Thus they also encode quantum gravity degrees of freedom in
purely combinatorial and algebraic structures, and we have seen that, when restricting attention to
states associated to the same graph, the corresponding Hilbert spaces actually coincide. However,
there are also key di↵erences. First of all, there is a priori no embedding of GFT states into a
continuous manifold of given topology. Quantum states of the type we considered, thus, can be
associated to abstract graphs, in the spirit of ‘Algebraic LQG’[23]. This means that there is a
priori no action of di↵eomorphisms, nor any knotting degrees of freedom. Thus they also di↵er
from the s-knot states of the di↵eo-invariant Hilbert space of canonical LQG. The only symmetry
follows from choice of quantum statistics, i.e. symmetry under permutations of vertex labellings.
From this point of view, the GFT state space takes the combinatorial and algebraic nature of the
degrees of freedom of quantum space to be fundamental, and no continuum intuition is assumed.
In fact, there is no attempt to define a continuum limit at this kinematical level, if not in the
sense of a limit of infinite number of QG atoms (akin to a thermodynamic limit in condensed
matter). In particular, no cylindrical equivalence among GFT states is imposed, and graph links
labeled with trivial connection or zero representation label are not neglected (as atoms with zero

(Fock space = space of “disconnected spin network vertices”)DO, ‘13

' : G⇥d ! CQuantum field theories over group manifold  G (not spacetime!)

geometry from combinatorics and algebra!
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spin networks arise as specific “many-quanta” GFT states

GFT quanta = spin network vertices, created/annihilated out 
of Fock vacuum (with no topological/geometric information)

Feynman diagrams = stranded diagrams dual to cellular complexes of arbitrary topology ~ spin foams 
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a QFT of atoms of space
fundamental pre-geometric quantum discreteness

example: the “atoms of space” in Group Field Theory (Boulatov, Ooguri, De Pietri, Freidel, Krasnov, Rovelli, Perez, DO, Livine, ……)

Hilbert space of quantum states:

3

triangulations (quantum gravity as a sum over random lattices) [8] and the main idea of quantum
Regge calculus[6] (quantum gravity as a sum over geometric data assigned to a give lattice).

In the following we will highlight structures and concepts shared with other ways of doing loop
quantum gravity, as well as points of departure and new concepts brought in by the GFT refor-
mulation. We will also discuss how GFTs cast the problem of defining a background independent
theory of quantum gravity based on LQG ideas in a more or less standard QFT language. This
allows the use of several powerful tools, to realise concretely the suggestive notion of ‘atoms of
quantum space’and to treat spacetime, indeed, like a condensed matter (or many-atom) quantum
system, suggesting new lines of developments.

GFT KINEMATICS: HILBERT SPACE AND OBSERVABLES

Fock space of quantum states - The Hilbert space of states for single-field GFTs is a
Fock space built out of a fundamental ‘single-atom’ Hilbert space Hv = L

2(G⇥d): F(Hv) =
L

1

V=0 sym

n⇣
H(1)

v ⌦H(2)
v ⌦ · · ·⌦H(V )

v

⌘o
, where sym indicates symmetrisation with respect to

the permutation group SV [16]. This encodes a bosonic statistics for field operators (other possibil-
ities can be considered [17, 18], but they have not been used in the spin foam and LQG context):
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�1), and we used the notation ~g = (g1, .., gd).

In quantum gravity models the group G is chosen to be the local gauge group of gravity in the
appropriate space-time dimension and signature, i.e. G = SU(2), SL(2,R) in 3 dimensions and
G = Spin(4), SL(2,C) in dimension 4 (or their rotation subgroup SU(2), in order to connect with
LQG).

Each Hilbert space Hv provides the space of states of a single ”quantum” of the GFT field, a
quantum gravity ‘atom’. It can be understood as a fundamental spin network vertex, represented
by a node with d outgoing links (ending up in 1-valent nodes), labelled by group elements, or as
a 3-cell (polyhedron) with d boundary faces. This just a pictorial representation. Whether the
states represent quantum gravity spin network vertices or geometric polyhedra depends on the
type of data they carry and the dynamics they satisfy. For G = SU(2), and with the closure
condition '(gI) = '(hgI) 8h 2 G imposed on the fields, however, the polyhedral interpretation
is justified and the same is true for G = SL(2,C) and G = Spin(4) with simplicity constraints and
closure conditions correctly imposed. In particular, for d = 4, the GFT quanta represent quantum
tetrahedra, about which a lot is known in the spin foam literature [19]. In this last case, the basic
Hilbert space is Hv =

L
Ji2N/2 Inv

�
HJ1 ⌦ ...⌦HJ4

�
, where each HJi is the Hilbert space of an

irreducible unitary representation of SU(2) labeled by the half-integer Ji.

Quantum observables - Kinematical observables are functionals of the field operators O
�
'̂, '̂

†
�
.

Of special importance are polynomial observables, whose evaluation in the vacuum state defines
to GFT n-point functions[20]. Any convolution of a finite number of GFT field operators with
appropriate kernels would define one such observable, as in any quantum field theory. The pecu-
liarity of GFTs, with respect to ordinary QFTs, is the possibility for these kernels to have a richer
combinatorial structure, involving a non-local pairing of field arguments, i.e. relating only a subset
of the d arguments of a given GFT field with a subset of the arguments of a di↵erent one. Of
particular interest for LQG are ‘spin network observables’:
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triangulations (quantum gravity as a sum over random lattices) [8] and the main idea of quantum
Regge calculus[6] (quantum gravity as a sum over geometric data assigned to a give lattice).

In the following we will highlight structures and concepts shared with other ways of doing loop
quantum gravity, as well as points of departure and new concepts brought in by the GFT refor-
mulation. We will also discuss how GFTs cast the problem of defining a background independent
theory of quantum gravity based on LQG ideas in a more or less standard QFT language. This
allows the use of several powerful tools, to realise concretely the suggestive notion of ‘atoms of
quantum space’and to treat spacetime, indeed, like a condensed matter (or many-atom) quantum
system, suggesting new lines of developments.

GFT KINEMATICS: HILBERT SPACE AND OBSERVABLES

Fock space of quantum states - The Hilbert space of states for single-field GFTs is a
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G = Spin(4), SL(2,C) in dimension 4 (or their rotation subgroup SU(2), in order to connect with
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Each Hilbert space Hv provides the space of states of a single ”quantum” of the GFT field, a
quantum gravity ‘atom’. It can be understood as a fundamental spin network vertex, represented
by a node with d outgoing links (ending up in 1-valent nodes), labelled by group elements, or as
a 3-cell (polyhedron) with d boundary faces. This just a pictorial representation. Whether the
states represent quantum gravity spin network vertices or geometric polyhedra depends on the
type of data they carry and the dynamics they satisfy. For G = SU(2), and with the closure
condition '(gI) = '(hgI) 8h 2 G imposed on the fields, however, the polyhedral interpretation
is justified and the same is true for G = SL(2,C) and G = Spin(4) with simplicity constraints and
closure conditions correctly imposed. In particular, for d = 4, the GFT quanta represent quantum
tetrahedra, about which a lot is known in the spin foam literature [19]. In this last case, the basic
Hilbert space is Hv =
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Ji2N/2 Inv
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, where each HJi is the Hilbert space of an

irreducible unitary representation of SU(2) labeled by the half-integer Ji.

Quantum observables - Kinematical observables are functionals of the field operators O
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†
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.

Of special importance are polynomial observables, whose evaluation in the vacuum state defines
to GFT n-point functions[20]. Any convolution of a finite number of GFT field operators with
appropriate kernels would define one such observable, as in any quantum field theory. The pecu-
liarity of GFTs, with respect to ordinary QFTs, is the possibility for these kernels to have a richer
combinatorial structure, involving a non-local pairing of field arguments, i.e. relating only a subset
of the d arguments of a given GFT field with a subset of the arguments of a di↵erent one. Of
particular interest for LQG are ‘spin network observables’:
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gravity atom’ corresponding to a Hilbert space Hv = L
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. An orthonormal basis  ~�(~g) in

each Hv is given by the spin network wave functions for individual spin network vertices (labelled
by spins and angular momentum projections associated to their d open edges, and intertwiner
quantum numbers):
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The Hilbert space is then extended to include arbitrary numbers of QG atoms HGFT =L
1

V=0HV and can be turned into a Fock space by standard methods [16] introducing the fun-
damental GFT field operators
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satisfying the commutation relations introduced above. The choice of bosonic statistics, we stress
again, is, at this stage, an assumption to be better justified. Acting on the Fock vacuum, these
operators generate the GFT Fock space already introduced.

Similarly, quantum observables can be turned from 1st quantised operators (i.e. operators act-
ing on the many-atom Hilbert spaces HV ) to 2nd quantised operators on the Fock space, following
again standard procedures. Given the matrix elements On,m (~�1, ..., ~�m, ~�
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spondent functions in the group or flux basis) of the relevant operator \On,m in a basis of open spin
network vertices, take the appropriate convolutions of such functions with creation and annihila-
tion operators, according to which spin network vertices are acted upon by the operator and which
spin network vertices result from the same action, to obtain its 2nd quantized counterpart. The
result will thus be a linear combination of polynomials of creation and annihilation operators, i.e.
of GFT field operators, thus a GFT observable:
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Similarities and di↵erences with the LQG Hilbert space - The kinematical Hilbert space
of GFT is analogous to the one in LQG in the sense that its quantum states are the same type of
functions on group manifolds, associated to graphs, and characterised by the same representation
labels, group or Lie algebra elements. Thus they also encode quantum gravity degrees of freedom in
purely combinatorial and algebraic structures, and we have seen that, when restricting attention to
states associated to the same graph, the corresponding Hilbert spaces actually coincide. However,
there are also key di↵erences. First of all, there is a priori no embedding of GFT states into a
continuous manifold of given topology. Quantum states of the type we considered, thus, can be
associated to abstract graphs, in the spirit of ‘Algebraic LQG’[23]. This means that there is a
priori no action of di↵eomorphisms, nor any knotting degrees of freedom. Thus they also di↵er
from the s-knot states of the di↵eo-invariant Hilbert space of canonical LQG. The only symmetry
follows from choice of quantum statistics, i.e. symmetry under permutations of vertex labellings.
From this point of view, the GFT state space takes the combinatorial and algebraic nature of the
degrees of freedom of quantum space to be fundamental, and no continuum intuition is assumed.
In fact, there is no attempt to define a continuum limit at this kinematical level, if not in the
sense of a limit of infinite number of QG atoms (akin to a thermodynamic limit in condensed
matter). In particular, no cylindrical equivalence among GFT states is imposed, and graph links
labeled with trivial connection or zero representation label are not neglected (as atoms with zero

(Fock space = space of “disconnected spin network vertices”)DO, ‘13

' : G⇥d ! CQuantum field theories over group manifold  G (not spacetime!)

geometry from combinatorics and algebra!
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Even more radical disappearance of time 
at fundamental quantum gravity level?

time stops making sense altogether?

but then…. how does spacetime emerge?



how does the universe (space, time) “emerge” 
from such fundamental constituents? 

universe as a “condensate” of the “atoms of space”?
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described by single collective wave function 
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Quantum GFT condensates are continuum homogeneous (quantum) spaces

described by single collective wave function 

(depending on homogeneous anisotropic geometric data)

QG (GFT) analogue of Gross-Pitaevskii hydrodynamic equation in BECs 

is


non-linear extension of (loop) quantum cosmology equation for collective wave function

S. Gielen, DO, L. Sindoni, G. Calcagni, M. Sakellariadou, 
E. Wilson-Ewing, A. Pithis, M. De Cesare, ……….

cosmology as QG hydrodynamics!!!with correct classical limit, producing a quantum bounce, …

appropriate observables in fundamental theory acquire 
spatiotemporal interpretation (e.g. volume of universe, ..)

many recent results! 



Even more radical disappearance of time 
at fundamental quantum gravity level

time stops making sense altogether 


it can only be approximate, collective, emergent notion

but then…. how does spacetime emerge?

time (and space, and geometry) may emerge as “hydrodynamic observable” 
in particular phase of fundamental (and non-spatiotemporal) quantum gravity 
system (based on “pre-geometric” building blocks)



recap:  

levels of disappearance and emergence of 
space and time in quantum gravity

and new issues and possibilities……



3 levels of emergence for space and time

level 0:   from quantum spacetime to classical spacetime


fundamental dofs are “quantum continuum geometries”, result of “quantizing spacetime/metric”

“emergence of space and time”

if continuum spacetime and geometry are obtained from different, discrete structures, issue is: 


are these pre-geometric structures physical (or just regularisation tools)?

if physical, then:

level I: from “atoms of space” to continuum (quantum) spacetime, approximately

emergence of space and time

Emergent Time (and Space)
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• renormalization group analysis of spin foam and GFT models 

• inequivalent representations (macroscopic phases) in LQG and GFT
B. Dittrich, M. Geiller, ‘14T. Koslowski, H. Sahlmann, '11 S. Gielen, DO, L. Sindoni, ‘13

Benedetti, Ben Geloun, DO, ’14 ; Ben Geloun, Martini, DO, ’15, ’16, Benedetti, Lahoche, ’15; Duarte, DO, ‘16
Ben Geloun, Rivasseau, ’11; Carrozza, DO, Rivasseau, ’12. ’13; Lahoche, DO, ’15; Carrozza, Lahoche, DO, ‘16B. Bahr, B. Dittrich, ’09, ’10; B. Bahr, B. 

Dittrich, F. Hellmann, W. Kaminski, ‘12

A. Kegeles, DO, ‘18
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(e.g. possible “elementary volume/extension attributes”)
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continuum quantum fields and spacetime) 


this implies:


the atoms of space do not and cannot have spatio-temporal properties 


(e.g. possible “elementary volume/extension attributes”)

even deeper, true “emergence”: 


fundamental degrees of freedom of spacetime may -not- give rise to spacetime at all, in any approximation 
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if continuum spacetime and geometry are obtained from different, discrete structures, issue is: 


are these pre-geometric structures physical (or just regularisation tools)?

if physical, then:

level I: from “atoms of space” to continuum (quantum) spacetime, approximately

emergence of space and time
if different phases are possible:

level II: from atoms of space to (quantum) spacetime, approximately and only in some regime

emergence+ of space and time
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The idea of “Geometrogenesis”

from non-geometric phase (no spacetime and geometry even at macroscopic scales)

to geometric phase (spacetime and geometry emerge at macroscopic scales)

is geometrogenesis a physical “process”?

if it is physical, what physics does it capture?

hypothesis: cosmological interpretation


geometrogenesis is what replaces the Big Bang in Quantum Gravity?


possible realisation: GFT condensation

non-trivial phase diagram (different possible phases)
phase transitions

Geometrogenesis
Markopoulou, Smolin, 
Magueijo, DO, ……

(...., Hu ’95;….; Konopka-Markopoulou-Smolin, ’06; Volovik, ’04, ’11, ’12; DO ’07, ’11, ’13)



geometrogenesis
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Space and Time in Quantum Gravity - level III

Time and dynamical evolution in the geometrogenesis scenario many new questions….

can the phase transition be a physical event/process?

can we “evolve” in the QG phase diagram (across theory space)? 

can we give a “proto-temporal” characterisation of such evolution?

recall: we are already at level II - no continuum space, no continuum time

need to have a background-independent,                          
non-spatio-temporal “evolution” of QG coupling constants

three related problems:


no external observer tuning the coupling constants 


timelessness of QG (and GR): no time in QG framework 


timelessness of statistical field theory: no time interpretation of phase diagram and of RG flow (at equilibrium)
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if continuum spacetime and geometry are obtained from different, discrete structures, issue is: 


are these pre-geometric structures physical (or just regularisation tools)?

if physical, then:

level I: from “atoms of space” to continuum (quantum) spacetime, approximately

emergence of space and time
if different phases are possible:

level II: from atoms of space to (quantum) spacetime, approximately and only in some regime

emergence+ of space and time

emergence++ of space and time

if atoms of space are physical, and can organize in different phases, are these phases all physical?

level III: from “atoms of space” to continuum (quantum) spacetime, approximately, or to something 
different, as a physical, dynamical process (geometrogenesis)

if physical, then phase transitions are physical as well: 
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Emergent Time (and Space)

prima facie ontological issues with spacetime emergence

•   are space and time real, if emergent? from 
“necessarily-spatio-temporal ontology” to “no 

ontological relevance for space and time at all”?

•    what is the ontological status of the non-
spatio-temporal regimes (and phases) and of 

the “atoms of space” themselves?    

•  call for multi-level, non-reductionist ontology?

• can we define a new ontology, a new notion 
of “existence” and of “reality” of a physical 
object that does not assume existence in 

space and in time?
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Beyond spacetime?

Einstein (1936): “the introduction of  a space-time continuum may be considered as contrary to nature in view 
of  the molecular structure of  everything which happens on a small scale. [...] perhaps the success of  the 
Heisenberg method points to a purely algebraic method of  description of  nature, that is to the elimination of  
continuous functions from physics. Then, however, we must also give up, by principle, the space-time continuum. 
It is not unimaginable that human ingenuity will some day find methods which will make it possible to proceed 
along such a path. At the present time, however, such a program looks like an attempt to breathe in empty space.”

slowly, rather painfully (but still enthusiastically), 
we are learning to breathe in empty space....

… learn to think without space and time ….





Thank you for your attention!


