Baryogenesis via leptogensis from asymmetric dark matter and radiatively generated neutrino mass.

Sujay Shil

Institute of Physics

4th July, 2019

Contents:

- Known results
- Asymmetric dark matter frameworks
- Model
- Asymmetry generation
- Active neutrino mass
- Transfer of asymmetry from dark sector to visible sector
- Annihilation of the symmetric component of dark matter
- Constrain from collider and dark matter searches.
- Conclusion

Results known so far:

- Dark matter relics $\Omega_{\text {DM }} \mathrm{h}^{2}=0.1199 \pm 0.0027$
- Baryonic matter relics $\Omega_{\mathrm{B}} \mathrm{h}^{2}=0.02225 \pm 0.00016$
- Baryon asymmetry $5.8 \times 10^{-8}<\eta<6.6 \times 10^{-10}$ where $\eta=\frac{\mathrm{n}_{\mathrm{B}}}{\mathrm{n}_{\gamma}}$
- $\frac{\Omega_{D M}}{\Omega_{B}} \sim 5$

Planck Collaboration arXiv:1502.01589 [astro-ph.CO]

Asymmetric dark matter(ADM) framwork

- DM carries a conserved quantum number, e.g. $U(1)_{B}, U(1)_{L}$, $U(1)_{B-L}$
- An asymmetry is generated in the early universe, $n_{\Delta \chi}=n_{\chi}-n_{\bar{\chi}}>0$ or $n_{\Delta L}=n_{L}-n_{\bar{L}}>0$
- Transfer the asymmetry from one sector to other. DM \rightarrow SM or $\mathrm{SM} \rightarrow \mathrm{DM}$
- If the asymmetry is in the leptonic sector then electroweak sphaleron process converted it into baryon asymmetry.
- The symmetric component is annihilated away, $\chi+\bar{\chi} \rightarrow a+b$

$$
\sigma>\sigma_{0}=3 \times 10^{-26} \mathrm{~cm}^{3} / \mathrm{sec}
$$

Now the abundance is set by $n_{\Delta \chi}$ instead of σ if $n_{\Delta \chi} \sim n_{B}$ then $\Omega_{D M} \sim \Omega_{B}$ for $m_{\chi} \sim m_{p} \sim \mathrm{GeV}$
S. Nussinov 1985, D.B. Kaplan 1992, D.E. Kaplan, M.Luty and K.Zurek 2009

Model

Fields	$S U(3)_{C}$	$S U(2)_{L}$	$U(1)_{Y}$	$U(1)_{(B-L)}$	$U(1)_{D}$	Z_{2}
N_{R}	$\mathbf{1}$	$\mathbf{1}$	0	-1	1	-
χ	$\mathbf{1}$	$\mathbf{1}$	0	-1	$\frac{1}{3}$	-
ϕ^{\prime}	$\mathbf{1}$	$\mathbf{1}$	0	0	0	+
ϕ^{\prime}	$\mathbf{1}$	$\mathbf{1}$	0	0	$\frac{2}{3}$	+
ϕ_{B-L}	$\mathbf{1}$	$\mathbf{1}$	0	+2	-2	+

$$
\begin{align*}
\mathcal{L} & \supset{\overline{N_{R j}} i \gamma^{\mu} D_{\mu} N_{R j}+\bar{\chi} i \gamma^{\mu} D_{\mu} \chi+\frac{1}{2}\left(\partial_{\mu} \phi\right)\left(\partial^{\mu} \phi\right)}+{\left(\partial_{\mu} \phi^{\prime}\right)^{\dagger}\left(\partial^{\mu} \phi^{\prime}\right)+\left(D_{\mu} \phi_{B-L}\right)^{\dagger}\left(D^{\mu} \phi_{B-L}\right)}+M_{\chi} \bar{\chi} \chi+\lambda_{B-L} \phi_{B-L} \overline{\left(N_{R i}\right)^{c}} N_{R j}+\lambda_{\mathrm{DM}} \bar{\chi} \chi \phi \\
& +y_{i} \overline{N_{R i}} \chi \phi^{\prime}+\text { h.c. }-V\left(H, \phi, \phi^{\prime}\right)
\end{align*}
$$

N.Narendra, S.Patra, N.Sahu and S.S. Phys.Rev.D98(2018)

Model

$$
\begin{align*}
V\left(H, \phi, \phi^{\prime}\right) & =-\mu_{H}^{2} H^{\dagger} H+\lambda_{H}\left(H^{\dagger} H\right)^{2}+\frac{1}{2} M_{\phi}^{2} \phi^{2} \\
& +\frac{1}{4} \lambda_{\phi} \phi^{4}+M_{\phi^{\prime}}^{2} \phi^{\prime \dagger} \phi^{\prime}+\lambda_{\phi^{\prime}}\left(\phi^{\prime \dagger} \phi^{\prime}\right)^{2} \\
& +\frac{1}{2} \lambda_{H \phi}\left(H^{\dagger} H\right) \phi^{2}+\mu_{\phi} \phi\left(H^{\dagger} H\right)+\mu_{\phi}^{\prime} \phi\left(\phi^{\prime \dagger} \phi^{\prime}\right) \\
& +\lambda_{H \phi^{\prime}}\left(H^{\dagger} H\right)\left(\phi^{\prime \dagger} \phi^{\prime}\right)+\frac{\lambda_{\phi \phi^{\prime}}}{2} \phi^{2}\left(\phi^{\prime \dagger} \phi^{\prime}\right) . \tag{2}
\end{align*}
$$

Asymmetric dark matter: generation of asymmetry

$$
\begin{align*}
& \epsilon_{\chi}=\frac{\Gamma\left(N_{1} \rightarrow \chi_{j} \phi\right)-\Gamma\left(N_{1} \rightarrow \bar{\chi}_{j} \phi\right)}{\Gamma_{N_{1}}} \\
& \simeq-\frac{3}{8 \pi}\left(\frac{M_{1}}{M_{2}}\right) \frac{\operatorname{Im}\left[\left(y^{\dagger} y\right)^{2}\right]_{12}}{\left(y^{\dagger} y\right)_{11}} . \tag{3}\\
&\left(n_{\mathrm{B}-\mathrm{L}}\right)_{\text {total }}=\frac{n_{N_{1}}^{e q}(T \rightarrow \infty)}{s} \times \epsilon_{\chi} \kappa s . \tag{4}
\end{align*}
$$

Neutrino Mass:

The lepton number is violated by the Majorana mass term of the heavy right handed neutrinos. Note that the term: $\overline{N_{R}} \tilde{H}^{\dagger} L$ is not allowed as N_{R} is odd under the Z_{2} symmetry.

$$
\begin{gather*}
\mathcal{O}_{\nu}=\frac{\left(\overline{N_{R}} \tilde{H}^{\dagger} L\right)^{2}}{\Lambda^{4}} \\
\Lambda \approx 7.66 \times 10^{11} \mathrm{GeV}\left(\frac{0.1 \mathrm{eV}}{M_{\nu}}\right)\left(\frac{M_{N} / \Lambda}{0.1}\right) \tag{5}
\end{gather*}
$$

Transfer of asymmetry from dark sector to visible sector.

$$
\begin{align*}
& \mathcal{O}_{8}=\frac{1}{M_{\text {asy }}^{4}} \bar{\chi}^{2}(L H)^{2} . \tag{6}\\
& \Gamma_{\mathrm{D}} \simeq\left(\frac{T_{D}^{4}}{M_{\text {asy }}^{4}}\right)^{2} T_{D}, \tag{7}\\
& M_{\text {asy }}^{8}>M_{P I} T_{D}^{7} . \tag{8}
\end{align*}
$$

- Here we consider that $T_{D} \gtrsim T_{\text {sph }}$, where $T_{\text {sph }}$ is the sphaleron decoupling temperature.
- For Higgs mass $M_{h}=125 \mathrm{GeV}$, the sphaleron decoupling temperature $T_{s p h}>M_{W}$.
- $M_{\text {asy }}>0.9 \times 10^{4} \mathrm{GeV}$

Standard equilibrium method:

The asymmetry in the equilibrium number densities of particle n_{i} and anti-particle \bar{n}_{i} is,

$$
\begin{equation*}
n_{i}-\overline{n_{i}}=\frac{g_{i}}{2 \pi^{2}} \int_{0}^{\infty} d q q^{2}\left[\frac{1}{e^{\frac{E_{i}(q)-\mu_{i}}{T}} \pm 1}-\frac{1}{e^{\frac{E_{i}(q)+\mu_{i}}{T}} \pm 1}\right] \tag{9}
\end{equation*}
$$

In the approximation of a weakly interacting plasma, $\beta \mu_{i} \ll 1$,

$$
\begin{align*}
n_{i}-\overline{n_{i}} & \sim \frac{g_{i} T^{3}}{6} \times\left[2 \beta \mu_{i}+\mathcal{O}\left(\left(\beta \mu_{i}\right)^{3}\right)\right. \text { bosons } \\
& \sim \frac{g_{i} T^{3}}{6} \times\left[\beta \mu_{i}+\mathcal{O}\left(\left(\beta \mu_{i}\right)^{3}\right)\right. \text { fermions } \tag{10}
\end{align*}
$$

Standard equilibrium method:chemical equilibrium conditions:

Below electroweak phase transition, the Yukawa interactions can be given as:

$$
\begin{align*}
\mathcal{L}_{\text {Yukawa }} & =g_{e_{i}} \bar{e}_{i L} h e_{i R}+g_{u_{i}} \bar{u}_{i L} h u_{i R} \\
& +g_{d_{i}} \bar{d}_{i L} h d_{i R}+h . c, \tag{11}
\end{align*}
$$

which gives the following chemical potential condition,

$$
\begin{equation*}
0=\mu_{h}=\mu_{u_{L}}-\mu_{u_{R}}=\mu_{d_{L}}-\mu_{d_{R}}=\mu_{e_{i L}}-\mu_{e_{i R}} \tag{12}
\end{equation*}
$$

Sphaleron condition $\left(\prod_{\mathrm{i}} \mathrm{Q}_{\mathrm{i}} \mathrm{Q}_{\mathrm{i}} \mathrm{Q}_{\mathrm{i}} \mathrm{L}_{\mathrm{i}}=0\right.$ conserve $\mathrm{B}-\mathrm{L}$ but violate $\left.\mathrm{B}+\mathrm{L}\right)$ are equilibrium above EW phase transition,

$$
\begin{equation*}
\mu_{u_{L}}+2 \mu_{d_{L}}+\mu_{\nu}=0 \tag{13}
\end{equation*}
$$

Charge neutrality of the universe gives,

$$
\begin{equation*}
Q=4\left(\mu_{\mu_{L}}+\mu_{u_{R}}\right)+6 \mu_{W}-3\left(\mu_{d_{L}}+\mu_{d_{R}}\right)-\sum_{i=1}^{3}\left(\mu_{e_{i L}}+\mu_{e_{i R}}\right)=0 . \tag{14}
\end{equation*}
$$

Chemical equilibrium conditions:

The charge current interactions,

$$
\begin{gather*}
\mathcal{L}_{i n t}^{(W)}=g W_{\mu}^{+} \bar{u}_{L} \gamma^{\mu} d_{L}+g W_{\mu}^{+} e_{i L} \gamma^{\mu} \bar{\nu}_{e_{i L}} . \tag{15}\\
\mu_{W}=\mu_{u_{L}}-\mu_{d_{L}} \tag{16}\\
\mu_{W}=\mu_{\nu}-\mu_{e_{i L}}, \forall i \tag{17}
\end{gather*}
$$

Solving above equations,

$$
\begin{equation*}
n_{B}=-\frac{90}{29} \mu_{\nu} \text { and } n_{L}=\frac{201}{29} \mu_{\nu} \tag{18}
\end{equation*}
$$

Total baryon and lepton number densities in visible sector,

$$
\begin{gather*}
\left(n_{B-L}\right)_{\mathrm{vis}}=-\frac{291}{29} \mu_{\nu} \tag{19}\\
n_{\mathrm{B}}=\frac{30}{97}\left(n_{\mathrm{B}-\mathrm{L}}\right)_{\mathrm{vis}} \tag{20}
\end{gather*}
$$

Chemical equilibrium conditions:

We assume that, the dark matter χ is also in thermal equilibrium with the visible sector via the dimension eight operator \mathcal{O}_{8} until the sphaleron decoupling temperature $T_{\mathrm{sph}}>M_{W}$. This gives chemical equilibrium condition:

$$
\begin{equation*}
-\mu_{\chi}+\mu_{\nu}=0 \tag{21}
\end{equation*}
$$

we get the number density of χ asymmetry, which is also the $B-L$ number density in the dark sector:

$$
\begin{gather*}
n_{\chi}=\left(n_{\mathrm{B}-\mathrm{L}}\right)_{\mathrm{dark}}=-2 \mu_{\chi}=\frac{58}{291}\left(n_{B-L}\right)_{\mathrm{vis}} . \tag{22}\\
\left(n_{\mathrm{B}-\mathrm{L}}\right)_{\mathrm{total}}=\frac{349}{291}\left(n_{B-L}\right)_{\mathrm{vis}} . \tag{23}
\end{gather*}
$$

$$
\begin{gather*}
n_{\mathrm{B}}=\frac{90}{349}\left(n_{B-L}\right)_{\text {total }} . \tag{24}\\
n_{\chi}=\frac{58}{349}\left(n_{B-L}\right)_{\text {total }} . \tag{25}\\
n_{\phi^{\prime}}=\left(n_{B-L}\right)_{\text {total }} . \tag{26}\\
\frac{\Omega_{D M}}{\Omega_{B}}=\frac{\sum_{\mathrm{i}} n_{\mathrm{x}_{\mathrm{i}}} \cdot \mathrm{~m}_{\mathrm{x}_{\mathrm{i}}}}{B \cdot m_{B}} \sim 5 \tag{27}
\end{gather*}
$$

For $\frac{n_{B}}{s} \sim 6 \times 10^{-10}$ the $\epsilon_{\chi} \sim 10^{-6}$
Dark matter mass $m_{\chi} \sim m_{\phi^{\prime}} \sim 1 \mathrm{GeV}$

Annihilation of the symmetric component of DM:

The annihilation cross-section for the process: $\bar{\chi} \chi \rightarrow \bar{f} f$ or $\overline{\phi^{\prime}} \phi^{\prime} \rightarrow \bar{f} f$ through $\phi-\mathrm{H}$ mixing is given by:

$$
\begin{align*}
\sigma v & =\frac{\sqrt{s-4 M_{f}^{2}}}{16 \pi s \sqrt{s}} \\
& \times \frac{\lambda_{D M}^{2} \lambda_{f}^{2} \cos ^{2} \gamma \sin ^{2} \gamma}{\left[\left(s-M_{h_{1}}^{2}\right)^{2}+\Gamma_{h_{1}}^{2} M_{h_{1}}^{2}\right]\left[\left(s-M_{h_{2}}^{2}\right)^{2}+\Gamma_{h_{2}}^{2} M_{h_{2}}^{2}\right]} \\
& \times\left\{\left[2 s-\left(M_{h_{1}}^{2}+M_{h_{2}}^{2}\right)\right]^{2}+\left[\Gamma_{h_{1}} M_{h_{1}}+\Gamma_{h_{2}} M_{h_{2}}\right]^{2}\right\} \\
& \times\left\{\left(s-2 M_{\chi}^{2}\right)\left(s-2 M_{f}^{2}\right)-2 M_{f}^{2}\left(s-2 M_{\chi}^{2}\right)\right. \\
& \left.-2 M_{\chi}^{2}\left(s-2 M_{f}^{2}\right)+4 M_{\chi}^{2} M_{f}^{2}\right\} \tag{28}
\end{align*}
$$

Baryogenesis via leptogensis from asymmetric
4th July, 2019
$15 / 17$

Conclusion:

- Asymmetric dark matter naturally explain the cosmic coincidence problem i.e. number density of baryonic matter and dark matter have of the same order.
- In our model fermionic and bosonic both are contributing to dark matter relics and both are asymmetric.
- At one loop level the active neutrinos accquired masses via a dimension eight operator.

