Baryogenesis via leptogensis from asymmetric dark matter and radiatively generated neutrino mass.

Sujay Shil

Institute of Physics

4th July, 2019

Sujay Shil (Institute of Physics) Baryogenesis via leptogensis from asymmetric

Contents:

- Known results
- Asymmetric dark matter frameworks
- Model
- Asymmetry generation
- Active neutrino mass
- Transfer of asymmetry from dark sector to visible sector
- Annihilation of the symmetric component of dark matter
- Constrain from collider and dark matter searches.
- Conclusion

Results known so far:

- Dark matter relics $\Omega_{DM}h^2 = 0.1199 \pm 0.0027$
- Baryonic matter relics $\Omega_B h^2 = 0.02225 \pm 0.00016$
- Baryon asymmetry $5.8 \times 10^{-8} < \eta < 6.6 \times 10^{-10}$ where $\eta = \frac{n_B}{n_e}$
- $\frac{\Omega_{DM}}{\Omega_B} \sim 5$

Planck Collaboration arXiv:1502.01589 [astro-ph.CO]

Asymmetric dark matter(ADM) framwork

- DM carries a conserved quantum number, e.g. $U(1)_B$, $U(1)_L$, $U(1)_{B-L}$
- An asymmetry is generated in the early universe, $n_{\Delta\chi} = n_{\chi} n_{\bar{\chi}} > 0$ or $n_{\Delta L} = n_L - n_{\bar{L}} > 0$
- $\bullet~$ Transfer the asymmetry from one sector to other. $DM \rightarrow SM$ or $SM \rightarrow DM$
- If the asymmetry is in the leptonic sector then electroweak sphaleron process converted it into baryon asymmetry.
- The symmetric component is annihilated away, $\chi + ar{\chi}
 ightarrow a + b$

$$\sigma > \sigma_0 = 3 \times 10^{-26} \mathrm{cm}^3/\mathrm{sec}$$

Now the abundance is set by $n_{\Delta\chi}$ instead of σ if $n_{\Delta\chi} \sim n_B$ then $\Omega_{DM} \sim \Omega_B$ for $m_{\chi} \sim m_p \sim \text{GeV}$ S. Nussinov 1985, D.B. Kaplan 1992, D.E. Kaplan, M.Luty and K.Zurek 2009

Model

Fields	SU(3) _C	$SU(2)_L$	$U(1)_Y$	$U(1)_{(B-L)}$	$U(1)_D$	Z ₂
N _R	1	1	0	-1	1	-
χ	1	1	0	-1	1/2	-
ϕ	1	1	0	0	ŏ	+
ϕ'	1	1	0	0	2	+
ϕ_{B-L}	1	1	0	+2	-2	+

$$\mathcal{L} \supset \overline{N_{Rj}} i \gamma^{\mu} D_{\mu} N_{Rj} + \overline{\chi} i \gamma^{\mu} D_{\mu} \chi + \frac{1}{2} (\partial_{\mu} \phi) (\partial^{\mu} \phi) + (\partial_{\mu} \phi')^{\dagger} (\partial^{\mu} \phi') + (D_{\mu} \phi_{B-L})^{\dagger} (D^{\mu} \phi_{B-L}) + M_{\chi} \overline{\chi} \chi + \lambda_{B-L} \phi_{B-L} (\overline{N_{Ri}})^c N_{Rj} + \lambda_{DM} \overline{\chi} \chi \phi + y_i \overline{N_{Ri}} \chi \phi' + h.c. - V(H, \phi, \phi')$$
(1)

N.Narendra, S.Patra, N.Sahu and S.S. Phys.Rev.D98(2018)

イロト イヨト イヨト イヨト

Model

$$V(H, \phi, \phi') = -\mu_{H}^{2} H^{\dagger} H + \lambda_{H} (H^{\dagger} H)^{2} + \frac{1}{2} M_{\phi}^{2} \phi^{2} + \frac{1}{4} \lambda_{\phi} \phi^{4} + M_{\phi'}^{2} \phi'^{\dagger} \phi' + \lambda_{\phi'} (\phi'^{\dagger} \phi')^{2} + \frac{1}{2} \lambda_{H\phi} (H^{\dagger} H) \phi^{2} + \mu_{\phi} \phi (H^{\dagger} H) + \mu_{\phi}' \phi (\phi'^{\dagger} \phi') + \lambda_{H\phi'} (H^{\dagger} H) (\phi'^{\dagger} \phi') + \frac{\lambda_{\phi\phi'}}{2} \phi^{2} (\phi'^{\dagger} \phi') .$$
(2)

Sujay Shil (Institute of Physics)

Baryogenesis via leptogensis from asymmetric

Asymmetric dark matter: generation of asymmetry

$$\epsilon_{\chi} = \frac{\Gamma(N_1 \to \chi_j \phi) - \Gamma(N_1 \to \bar{\chi}_j \phi)}{\Gamma_{N_1}}$$

$$\simeq -\frac{3}{8\pi} \left(\frac{M_1}{M_2}\right) \frac{\operatorname{Im}\left[(y^{\dagger}y)^2\right]_{12}}{(y^{\dagger}y)_{11}}. \qquad (3)$$

$$(n_{\mathrm{B-L}})_{\mathrm{total}} = \frac{n_{N_1}^{eq}(T \to \infty)}{s} \times \epsilon_{\chi} \kappa s. \qquad (4)$$

Sujay Shil (Institute of Physics)

Baryogenesis via leptogensis from asymmetric

Neutrino Mass:

The lepton number is violated by the Majorana mass term of the heavy right handed neutrinos. Note that the term: $\overline{N_R}\tilde{H}^{\dagger}L$ is not allowed as N_R is odd under the Z_2 symmetry.

$$\mathcal{O}_{\nu} = \frac{(N_R H^{\dagger} L)^2}{\Lambda^4}$$

$$\Lambda \approx 7.66 \times 10^{11} GeV\left(\frac{0.1 eV}{M_{\nu}}\right) \left(\frac{M_N/\Lambda}{0.1}\right).$$
 (5)

Transfer of asymmetry from dark sector to visible sector.

$$\mathcal{O}_{8} = \frac{1}{M_{asy}^{4}} \overline{\chi}^{2} (LH)^{2}.$$
(6)

$$\Gamma_{D} \simeq \left(\frac{T_{D}^{4}}{M_{asy}^{4}}\right)^{2} T_{D},$$
(7)

$$M_{asy}^{8} > M_{Pl} T_{D}^{7}.$$
(8)

- Here we consider that $T_D \gtrsim T_{\rm sph}$, where T_{sph} is the sphaleron decoupling temperature.
- For Higgs mass $M_h = 125 \, {
 m GeV}$, the sphaleron decoupling temperature $T_{sph} > M_W$.
- M_{asy} > $0.9 \times 10^4 \, {
 m GeV}$

Standard equilibrium method:

The asymmetry in the equilibrium number densities of particle n_i and anti-particle \bar{n}_i is,

$$n_{i} - \overline{n_{i}} = \frac{g_{i}}{2\pi^{2}} \int_{0}^{\infty} dqq^{2} \left[\frac{1}{e^{\frac{E_{i}(q) - \mu_{i}}{T}} \pm 1} - \frac{1}{e^{\frac{E_{i}(q) + \mu_{i}}{T}} \pm 1} \right]$$
(9)

In the approximation of a weakly interacting plasma, $\beta \mu_i << 1$,

$$n_{i} - \overline{n_{i}} \sim \frac{g_{i} T^{3}}{6} \times [2\beta\mu_{i} + \mathcal{O}((\beta\mu_{i})^{3}) \text{ bosons}$$
$$\sim \frac{g_{i} T^{3}}{6} \times [\beta\mu_{i} + \mathcal{O}((\beta\mu_{i})^{3}) \text{ fermions}.$$
(10)

4th July, 2019 10 / 17

・ 何 ト ・ ヨ ト ・ ヨ ト

Standard equilibrium method:chemical equilibrium conditions:

Below electroweak phase transition, the Yukawa interactions can be given as:

$$\mathcal{L}_{Yukawa} = g_{e_i} \bar{e}_{iL} h e_{iR} + g_{u_i} \bar{u}_{iL} h u_{iR} + g_{d_i} \bar{d}_{iL} h d_{iR} + h.c,$$

$$(11)$$

which gives the following chemical potential condition,

$$0 = \mu_h = \mu_{u_L} - \mu_{u_R} = \mu_{d_L} - \mu_{d_R} = \mu_{e_{iL}} - \mu_{e_{iR}}.$$
 (12)

 $\begin{array}{l} \mbox{Sphaleron condition}(\prod_i Q_i Q_i Q_i L_i = 0 \mbox{ conserve } B-L \mbox{ but violate } B+L) \\ \mbox{are equilibrium above EW phase transition,} \end{array}$

$$\mu_{u_L} + 2\mu_{d_L} + \mu_{\nu} = 0 \tag{13}$$

Charge neutrality of the universe gives,

$$Q = 4(\mu_{u_L} + \mu_{u_R}) + 6\mu_W - 3(\mu_{d_L} + \mu_{d_R}) - \sum_{i=1}^{3} (\mu_{e_{iL}} + \mu_{e_{iR}}) = 0.$$
(14)
Suive Shill (Institute of Physics) Baryogenesis via lentogenesis from asymptetic 4th luly 2019 11/17

Chemical equilibrium conditions:

The charge current interactions,

$$\mathcal{L}_{int}^{(W)} = g W_{\mu}^{+} \bar{u}_{L} \gamma^{\mu} d_{L} + g W_{\mu}^{+} e_{iL} \gamma^{\mu} \bar{\nu}_{e_{iL}}.$$
 (15)

$$\mu_W = \mu_{u_L} - \mu_{d_L},\tag{16}$$

$$\mu_W = \mu_\nu - \mu_{e_{iL}}, \forall i. \tag{17}$$

Solving above equations,

$$n_B = -\frac{90}{29}\mu_{\nu} \text{ and } n_L = \frac{201}{29}\mu_{\nu}.$$
 (18)

Total baryon and lepton number densities in visible sector,

$$(n_{B-L})_{\rm vis} = -\frac{291}{29}\mu_{\nu}.$$
 (19)

$$n_{\rm B} = \frac{30}{97} (n_{\rm B-L})_{\rm vis}$$
 (20)

Baryogenesis via leptogensis from asymmetric

(- ~)

Chemical equilibrium conditions:

We assume that, the dark matter χ is also in thermal equilibrium with the visible sector via the dimension eight operator \mathcal{O}_8 until the sphaleron decoupling temperature $T_{\rm sph} > M_W$. This gives chemical equilibrium condition:

$$-\mu_{\chi} + \mu_{\nu} = 0 \tag{21}$$

we get the number density of χ asymmetry, which is also the B - L number density in the dark sector:

$$n_{\chi} = (n_{\rm B-L})_{\rm dark} = -2\mu_{\chi} = \frac{58}{291}(n_{B-L})_{\rm vis}.$$
 (22)

$$(n_{\rm B-L})_{\rm total} = \frac{349}{291} (n_{B-L})_{\rm vis}.$$
 (23)

Sujay Shil (Institute of Physics) Baryogenesis via leptogensis from asymmetric 4t

$$n_{\rm B} = \frac{90}{349} (n_{B-L})_{\rm total} \,.$$
 (24)

$$n_{\chi} = \frac{58}{349} (n_{B-L})_{\text{total}} \,.$$
 (25)

$$n_{\phi'} = (n_{B-L})_{\text{total}} \,. \tag{26}$$

$$\frac{\Omega_{DM}}{\Omega_B} = \frac{\sum_{i} n_{x_i} . m_{x_i}}{B.m_B} \sim 5$$
(27)

For $\frac{n_B}{s} \sim 6 \times 10^{-10}$ the $\epsilon_{\chi} \sim 10^{-6}$ Dark matter mass $m_{\chi} \sim m_{\phi'} \sim 1 GeV$

Sujay Shil (Institute of Physics)

Baryogenesis via leptogensis from asymmetric

Annihilation of the symmetric component of DM:

The annihilation cross-section for the process: $\overline{\chi}\chi \rightarrow \overline{f}f$ or $\overline{\phi'}\phi' \rightarrow \overline{f}f$ through $\phi - H$ mixing is given by:

$$\sigma v = \frac{\sqrt{s - 4M_{f}^{2}}}{16\pi s\sqrt{s}} \\ \times \frac{\lambda_{DM}^{2}\lambda_{f}^{2}\cos^{2}\gamma \sin^{2}\gamma}{\left[(s - M_{h_{1}}^{2})^{2} + \Gamma_{h_{1}}^{2}M_{h_{1}}^{2}\right]\left[(s - M_{h_{2}}^{2})^{2} + \Gamma_{h_{2}}^{2}M_{h_{2}}^{2}\right]} \\ \times \left\{\left[2s - (M_{h_{1}}^{2} + M_{h_{2}}^{2})\right]^{2} + \left[\Gamma_{h_{1}}M_{h_{1}} + \Gamma_{h_{2}}M_{h_{2}}\right]^{2}\right\} \\ \times \left\{(s - 2M_{\chi}^{2})(s - 2M_{f}^{2}) - 2M_{f}^{2}(s - 2M_{\chi}^{2}) - 2M_{\chi}^{2}(s - 2M_{\chi}^{2})\right\}$$
(28)

Sujay Shil (Institute of Physics)

Baryogenesis via leptogensis from asymmetric

4th July, 2019 16 / 17

Conclusion:

- Asymmetric dark matter naturally explain the cosmic coincidence problem i.e. number density of baryonic matter and dark matter have of the same order.
- In our model fermionic and bosonic both are contributing to dark matter relics and both are asymmetric.
- At one loop level the active neutrinos accquired masses via a dimension eight operator.