

ICP-MS facility for radio-pure material screening

S. Nisi LNGS Chemistry Department

stefano.nisi@Ings.infn.it

IBS – INFN One-day workshop on underground physics LNGS-May 30, 2019

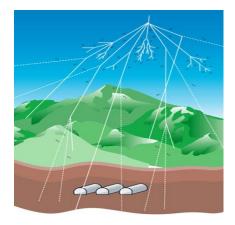
Outline

✓ Gran Sasso National Laboratory

✓ Low Radioactive Techniques (LRTs) at LNGS

✓ICP-MS: instrumentation and performances

✓ Interdisciplinary application examples


✓Conclusion

Gran Sasso National Laboratory

Detection of extremely weak events

1400 m of rock (3600 mwe) Cosmic ray flux reduction: 10⁶ Neutron flux reduction: 10⁴

- The underground facility provides the necessary <u>low</u> <u>radioactive background</u>

- Selection of highly radio-pure materials

K Pb Th U

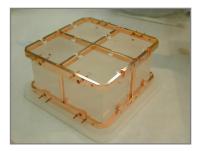
Neutron Attivation Analysis, y-Ray Spectroscopy, ICP-Mass Spectrometry

Ultra-low level radioactivity counting facilities

STELLA SubTErranean Low Level Assay

- Y spectrometry High-Purity Ge Detectors (HPGE)
- α spectrometry Silicon PIPS detectors
- Liquid scintillation counters
- + Sample treatment free (GRS)
- Sensitivity depend on the sample mass (Kg)
- Long measurement time is requested to achieve high sensitivity (weeks)

ICP-Mass Spectrometry



- Quadrupole and double focusing ICPMS
- ISO 6 Clean room
- Reagents purification systems
- Sample treatment device
- + Small sample (g)
- + Relatevely quick measurement
- Sample treament is mandatory and delicate

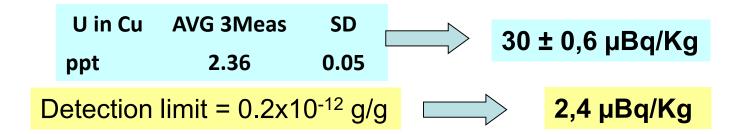
R&MS are often applied both to check for secular equilibrium of decay chain

ICPMS low radioactivity measurements

≈ 200 samples/year (complex matrices) hundreds samples/year (reagents and water)

Cu, TeO2 and reagents -CUORE-

Printed Circuit Board (PCB) -GERDA-


Metals and alloys -GERDA, XENON, DARK SIDE

Al-Mylar insulating foils -XENON, DARK SIDE-

Our 'routine' ICP-MS detection limits:

Sample	Liquid	Metals (solid)		Plastic (solid)
		Dissolution and dilution	Analyte separation	
Element	[pg g ⁻¹]	[pg g⁻¹]	[pg g ⁻¹]	[pg g ⁻¹]
К	50	5×104	-	5×10 ⁴
Pb	0.5	500	-	100
Th	0.05	50	1.0	10
U	0.05	50	0.5	10

LRTs performances comparison

		ICPMS LNGS	ULL GRS LNGS	ULLGS+NAA Milano-Pavia
		Primordial parents	Y emitters	Primordial parents
		Surface/bulk	Bulk	Surface/bulk
Destructive		Yes	No	Yes
DL	[10 ⁻¹² g/g]	Th=0.5 U=0.5	Th= 10-20 U= 10-20	Th(²³³ Pa)= 0.5 U(²³⁹ Np)= 3-5
Sample size	[g]	0.1-10	1-10000	200
Sample treatment		Contamination risk not negligible	Almost free	Hot sample handling Low cont risk
Analysis Time		Days	Weeks	Days-week

Additive Manufacturing at LNGS

For several years now the Mechanical Workshop is operating 3D printing devices to realize pieces with **photo-polymeric** and MultiJet Hi-performance **thermoplastic resins** Carbon PEEK 3D printing is coming soon

The facility is equipped with a stereoscopic Hi-Res 3D scanning station for quality analysis and reverse engineering

Additive Manufacturing: Future Outlook in Designing Pure Copper Components for LB detectors

AM allows to produce parts:

- complex geometries
- high Resolution
- hollow components
- w/o final traditional machining
- w/o surface cleaning
- mass savings with a factor \approx 2-3
- reduction of number of components

LRTs play a fundamental role for production process monitoring

Crystal Holder

Traditional CNC mass=27g

M/3

AM same support mass=11g

AM new design mass=9g

Center for Excellence on Aging (CeSi)

Fondazione Università Gabriele d'Annunzio Validation of a method for the quantitative multi-element profiling of brain tissues

Neurodegenerative deseases

Changes in brain levels of some elements, among them:

Ciavardelli et al, "Characterization of element profile changes induced by long-term dietary supplementation of zinc in the brain and cerebellum of 3xTg-AD mice by alternated cool and normal plasma ICP MS", Metallomics, 2012

Investigation of the geographical origin of saffron trough elemental finger-print approach

Three set of samples from different production areas :

Crocus sativus

Medio

Dried stigmas of Crocus sativus

Analysis of the mineral composition of Italian saffron by ICP-MS and classification of geographical origin, Food Chemistry 157 (2014) 485–489 Angelo Antonio D'Archivio, Andrea Giannitto, Angela Incani, Stefano Nisi

Laboratory of Isotopic Mass Spectrometry (LIMS)

MC Thermal Ionization Mass Spectrometry

- Discrimination between isotopic ratio values: <0.01%
- Internal precision of the measurement>0.005%

Applications (Cultural Heritage Network-INFN)

- Archaeometry (Pb, Sr)
- Human science: mobility ancient population study
- Food traceability (Sr)

Slow Food Pecorino di Farindola

Conclusion and perspective

- ICPMS is a fundamental technique for the experiments searching for rare and low energy events
- By the application of both ICPMS and RMs it is possible to have more complete and complementary information
- The R&D about new sample preparation procedures allow the achievement of better and better detection limits and reliable analysis
- The experience and the knowhow developed in ultra-trace measurement often make a significant contribute in interdisciplinary activities
- The purchasing of last generation quadrupole based ICPMS equipped with Laser Ablation System is under evaluating (direct measurement of solid sample)