THE "FUTURE" OF GAMMA-RAY ASTRONOMY

Patrizia Caraveo INAF

INAF IS VERY ACTIVE IN GAMMA-RAY SPACE ASTRONOMY

Integral Swift Agile Fermi (MAGIC)

Exosat 1975 BEPPO-SAX XMM-Newton Integral Geminga G.F.Bignami & J.Halpern 1998 Agile 1993 2007

2011

201

Cos-b

Rossi prizes

tomorrow: CTA

Fermi

GAMMA-RAYS AS THE MISSING LINK

photons- ground and space telescopes Cosmic rays neutrinos GravitationI waves

E' la somma che fa il totale

WHAT ABOUT THE FUTURE?

WHY IS INAF INVESTING IN CHERENKOV TELESCOPES ?

The challenge of ground based γ-ray astronomy

ISS021E031766

CTA Telescope Simulation

Run 1, event 2, array 0, telescope 1

Time = 11.0 nanoseconds

Primary: gamma of 50.000 TeV at 107 m distance

of Cherenkov light produced by air-showers into ns-sensitive cameras.

How to do better with IACT arrays?

More events

- More photons = better spectra, images, fainter sources
 - Larger collection area for gamma-rays

• Better events

- More precise measurements of atmospheric cascades and hence primary gammas
 - Improved angular resolution
 - Improved background rejection power
- → More telescopes!

Simulation: Superimposed images Grond 8 cameras

Major IACT Instruments

MAGIC Canary Islands 2200 m asl 2 x 17m telescopes. Magic I in operation since Oct 2003, Magic II first light shown at ICRC09

Each object is a cosmic particle accelerator...

cherenkov telescope array

Science-optimization under budget constraints:
Low-energy γ high γ-ray rate, low light yield
→ require small ground area, large mirror
High-energy γ low γ-rate, high light yield
→ require large ground area, small mirror

few large telescopes for lowest energies

4 LSTs

~km² array of medium-sized telescopes

large 7 km² array of small telescopes,

~70 SSTs

HOW?

Theme 1: Cosmic Particle Acceleration

WHY?

- How and where are particles accelerated?
- How do they propagate?
- What is their impact on the environment?

Theme 2: Probing Extreme Environments

- Processes close to neutron stars and black holes?
- Processes in relativistic jets, winds and explosions?
- Exploring cosmic voids

Theme 3: Physics Frontiers – beyond the SM

What is the nature of Dark Matter? How is it distributed?

- Is the speed of light a constant for high energy photons?
- Do axion-like particles exist?

STRONG LINK BETWEEN NEUTRINOS AND GAMMA-RAYS

NEWS

GRB 190114C

New emission model

Rendering of the southern Array

WHO? CTA CONSORTIUM SPOKESPERSON WERNER HOFMANN (HEIDELBERG) CO-SPOKESPERSON RENÉ ONG (UCLA)

cta

Consortium status

Country	Members	FTE	FTE (%)
Italy	268	101,6	20,0%
Germany	204	87,2	17,1%
France	221	86,4	17,0%
Spain	112	50,4	9,9%
Japan	124	37,4	7,4%
USA	74	22,0	4,3%
Poland	60	18,1	3,6%
United Kingdom	57	17,0	3,3%
Switzerland	27	16,7	3,3%
Brazil	46	14,6	2,9%
Chile	49	7,6	1,5%
Czech Republic	29	6,8	1,3%
Netherlands	13	4,8	0,9%
South Africa	19	4,2	0,8%
Australia	25	3,4	0,7%
Croatia	12	2,9	0,6%
Ukraine	9	2,8	0,5%
Norway	7	2,5	0,5%
Slovenia	10	2,5	0,5%
Greece	23	2,3	0,5%
Mexico	10	2,3	0,5%
Austria	9	2,2	0,4%
India	10	2,2	0,4%
Canada	6	2,0	0,4%
Thailand	5	1,9	0,4%
Argentina	10	1,7	0,3%
Ireland	10	1,4	0,3%
Sweden	6	1,2	0,2%
Finland	5	1,1	0,2%
Armenia	4	0,9	0,2%
Bulgaria	7	0,6	0,1%
Namibia	2	0,3	0,1%

Breakdown:

Scientists: 901 (296 FTE) Engineers: 254 (121 FTE) Students: 231 (63 FTE) Administration: 23 (5 FTE)

Chair Consortium Board

Jürgen Knödlseder

WHERE? CTA SITES

La Palma

FINAL LAYOUT – SOUTHERN AND NORTHERN SIDE

4 LSTs, 25 MSTs, 70 SSTs

cherenkov telescope

Science with the Cherenkov Telescope Array

Contents

Chapters and corresponding authors:

1. Introduction to CTA Science — J.A. Hinton, R.A. Ong, D. Torres	
2. Synergies — S. Markaff, J.A. Hinton, R.A. Ong, D. Torres	
3. Core Programme Overview — J.A. Hinton, R.A. Ong, D. Torres	
4. Dark Matter Programme – E. Moulin, J. Carr, J. Gaskins, M. Doro, C. Farnier, M. Wood, H. Zechlin	
5. KSP: Galactic Centre – C. Farnier, K. Kosack, R. Terrier	
6. KSP: Galactic Plane Survey - R. Chaves, R. Mukherjee, R.A. Ong	
7. KSP: LMC Survey - P. Martin, C. Lu, H. Voeik, M. Renaud, M. Filipovic	
8. KSP: Extragalactic Survey - D. Mazin, L. Gerard, J.E. Ward, P. Giommi, A.M. Brown	
9. KSP: Transients - S. Inoue, M. Ribo, E. Bernardini, V. Connaughton, J. Granot, S. Markoff, P. O Brien, F. Schur	ssier110
10. KSP: Cosmic Ray PeVatrons - R. Chaves, E. De Ona Wilhelmi, S. Gablel, M. Renaud	
11. KSP: Star Forming Systems - S. Casanova, S. Ohm, L. Tibakto	
12. KSP: Active Galactic Nuclei - A. Zech, D. Mazin, J. Biteau, M. Daniel, T. Hassan, E. Lindtors, M. Meyer	
13. KSP: Clusters of Galaxies - F. Zandanel, M Formasa	
14. Capabilities beyond Gamma Rays - R. Bühler, D. Dravins, K. Egberts, J.A. Hinton, D. Parsons	
15. Appendix: Simulating CTA – a. Maier	
Acknowledgements	
Reierences	

published as an open access e-book by World Scientific
 International Journal of Modern Physics D, Gravitation;
 Astrophysics and Cosmology

Where are we? TECHNICAL DESIGN & PROTOTYPING

Optimized for Energies < 100 GeV

23 m diameter
389 m² dish area
28 m focal length
1.5 m mirror facets

4.5° field of view 0.1° pixels Camera Ø over 2 m

Carbon-fibre structure for 20 s positioning

Active mirror control

4 LST on South site 4 LST on North site Prototype 1st telescope

LST 1

Medium Size Telescope

Optimized for 100 GeV - 10 TeV Range

12 m diameter100 m2 dish area16 m focal length1.2 m mirror facets

8° field of view 0.18° pixels (~2000 pixels) Camera Ø over 1.5 m

Active mirror control

25 MST on South site15 MST on North site

Small Size Telescope (SST-1M)

Optimize for Energy range above 10 TeV

- Davies-Cotton Design
- 4m diameter single mirror
- ► f/D = 1.4
- SiPM camera with new hexagonal sensor

Dual-Mirror Design

Reduce plate size
 Reduce PSF
 Uniform PSF across FoV

Cost-Effective small telescopes with compact camera

Higher-performance telescopes with big FoV

SST-GATE

SST-ASTRI end-to-end prototype

SST harmonization → ASTRI-like

ASTRI : the telescope @ Serra La Nave

The prototype is placed at 1725 m. on the Etna volcano @ INAF-Catania mountain station in Serra La Nave

ASTRI Astrofisica con Specchi a Tecnologia Replicante Italiana

Astrophysics with Mirrors via Italian Replication Technology (No mirrors, no party!)

ASTRI Prototype: PSF across the field of view

Astronomy & Astrophysics manuscript no. a'a'paper'optical'quality'ver3'arXiv September 28, 2017 © ESO 2017

 FoV position (deg)	D80 (mm)
4.5	6.72
3.0	6.32
1.5	7.28
0.0	6.86
-1.5	6.32
-3.0	5.50
-4.5	6.90

First optical validation of a Schwarzschild Couder telescope: the ASTRI SST-2M Cherenkov telescope

E. Giro^{1,2}, R. Canestrari², G. Sironi², E. Antolini³, P. Conconi², C.E. Fermino⁴, C. Gargano⁵, G. Rodeghiero^{1,6}, F. Russo⁷, S. Scuderi⁸, G. Tosti³, V. Vassiliev⁹, and G. Pareschi²

1.5°

5000

30

SiPM pixel linear dimension: 7 mm $\xrightarrow{20000}$ 11.2 arcmin

ASTRI Prototype: First Cherenkov Light

25th of May 2017 First Cherenkov light with the ASTRI camera

Press Release

CTA Prototype Telescope, ASTRI, Achieves First Light

Download full release: 2 MB / PDF

SITEMAP TYPE SEARCH TEXT HERE

During the nights of 25 and 26 May, the camera of the ASTRI telescope prototype (pictured to the left) recorded its first ever Cherenkov light while undergoing testing at the astronomical site of Sera La Nave (Mount Etna) in Sicily managed by INAF-Catania. This comes not long after its optical validation was achieved in November 2016 (read story here). This accomplishment was the first optical demonstration for astronomical telescopes using the novel Schwarzschild Couder dualmirror design. The ASTRI telescope is a proposed Small-Sized Telescope design for the Cherenkov Telescope Array (CTA).

CTA MEMBERS LOG IN

Although the camera was not fully configured, the ASTRI team was still able to capture its first Cherenkov light and produce beautiful images of the showers generated by cosmic rays in the Earth's atmosphere. The image below shows one of the events captured by the team. This information will allow scientists to reconstruct the direction of gamma-ray photons emitted from celestial sources (indicated by the yellow line on the image on the left). The camera is based on novel SiPM small pixel sensors (7 mm x 7 mm) and CITIROC ASICS peak-finder frontend electronics. The camera was specifically designed to fit on the dual mirror ASTRI telescopes for covering a large field of view of 10° x 10°.

- Runs in December, January, May February & March bad weather
- Technical calibrations (lots) and scientific observations (very few up to now) on going

ASTRI Prototype: Variance data

Run January 2018

- Implemented at level of front end electronics
- Data taken in parallel to science data

STRI Prototype: Dedication to Horn D'Arturo

10th of November 2018 Dedication of ASTRI prototype telescope to Guido Horn D'Arturo \rightarrow ASTRI – HORN telescope

Horn d'Arturo: Italian- Jewish astronomer, inventor of the "segmented" astronomical mirrors

ASTRI – Horn: Crab Nebula Detection

Observations between 5th and 11th december 2018

Tenerife, 13 Nov 2019

ASTRI – HORN: Crab Nebula Detection

Astronomy & Astrophysics manuscript no. letter June 6, 2019 © ESO 2019

Letter to the Editor

First detection of the Crab Nebula at TeV energies with a Cherenkov telescope in dual-mirror Schwarzschild-Couder configuration: the ASTRI-Horn telescope

S. Lombardi^{1,2}, L. A. Antonelli¹, O. Catalano³, S. Scuderi⁴, G. Pareschi⁵, E. M. de Gouveia Dal Pino⁶, and M. Böttcher⁷ on behalf of the ASTRI Collaboration⁸

(Affiliations can be found after the references)

Received: XXX / Accepted: XXX

ABSTRACT

We report on the first detection of very-high-energy (VHE) gamma-ray emission from the Crab Nebula by a Cherenkov telescope in dual-mirror Schwarzschild-Couder (SC) configuration. The result has been achieved by means of the end-to-end 4 m diameter ASTRI-Horn telescope, operated on Mt. Etna (Italy) and developed in the context of the Cherenkov Telescope Array Observatory preparatory phase. The dual-mirror SC design is aplanatic and characterized by a small plate scale, allowing us to implement large field of view cameras with small pixel sensors and a high compactness. The curved focal plane of the ASTRI Camera is covered by silicon photo-multipliers (SiPMs), managed by an unconventional front-end electronics based on a customized peak-detector mode. The system embraces an end-to-end approach, which includes internal and external calibration systems, hardware and software for control and acquisition, and the complete data archiving and processing chain. The observations of the Crab Nebula were carried out in December 2018, during the telescope verification phase, for a total observation time (after data selection) of 24.4 h, equally divided into on- and off-axis source exposure. The camera system was still under assessment and its functionality not completely exploited. Furthermore, due to recent eruptions of the Etna Volcano, the mirror reflection efficiency was partially reduced. Nevertheless, the observations led to the detection of the source with a statistical significance of 5.4 σ above an energy threshold of ~3.5 TeV. This result provides a significant step towards the use of dual-mirror systems in Cherenkov gamma-ray astronomy. A pathfinder mini-array based on nine large field of-view ASTRI-like end-to-end telescopes is under implementation.

Key words. Very high energy gamma rays — Ground-based gamma-ray astronomy — Imaging atmospheric Cherenkov telescopes — Dualmirror Schwarzschild-Couder optical design — Cherenkov Telescope Array Observatory — ASTRI-Horn — Data reduction and analysis methods.

Submitted to A&A Letter (with full author list)

4⁴

Updated Mechanical Structure

Tenerife, 13 Nov 2019

Second leg of the journey: ASTRI mini-array

End-to-end implementation of a mini-array of 9 Telescopes

and be ready for the next

- neutrinos
- GRBs
- whatever