Recent results in high-energy neutrino astronomy

Luigi Antonio Fusco – Laboratoire APC, Paris

Neutrini, fotoni e onde gravitazionali: nuove prospettive per l'astrofisica di alte energie Catania, 26 Novembre 2019

Neutrino astronomy in a nutshell

Deep sea water

Baikal

Antares

0.01 km³ neutrino telescope

11+ years of data taking in the Mediterranean Sea (France)

The Detection Unit (DU) holds 18 DOMs

2 Building blocks, 115 DU each → ~km³ instrumented volume

KM3NeT/ARCA

The optical sensor: Digital Optical Module (DOM). Each DOM comprises 31 3" PMTs

36m

90m

J. Phys. G 43, 8: 084001 (2016)

KM3NeT/ORCA

Uniform KM3NeT detector design

Antares

Designed to assess NMO, but Low-E Astrophysics also accessible

See e.g. POS(ICRC2019)857 POS(ICRC2019)934

200 m

J. Phys. G 43, 8: 084001 (2016)

Baika

lceCube

5 clusters working now,

Event topologies in a neutrino telescope

All NC interactions v_e CC interactions

Good energy resolution Bad angular resolution

v_τ CC interactions with
 hadronic / electronic
 tau decay

Good energy resolution Angular resolution gets better with larger lengths

 v_{μ} CC interactions Atmospheric μ v_{τ} CC interactions with muonic tau decay

Bad energy resolution Good angular resolution

Simulated event displays in the IceCube detector

High-energy diffuse neutrino fluxes

High-energy diffuse neutrino fluxes

The discovery of HE cosmic neutrinos

Vetoing downward-going passing-through events → **rejection of accompanied atmospheric neutrinos**

Opens the sky to downward-going neutrino events → **highest energies**

Dependent on the proper modelisation of:

– CR muon flux at the detector – CR muons in the detector

11 / 62 JCAP **1807 (**2018) no.07, 047

The discovery of HE cosmic neutrinos

Vetoing downward-going passing-through events → **rejection of accompanied atmospheric neutrinos**

The HESE sample (7.5 years)

High-energy starting events above 60 TeV

– Southern sky accessible (veto)

PoS(ICRC2019)1004

– Northern sky more opaque (absorption)

 $\Phi^{1f}(100 \text{ TeV}) = (2.15^{+0.5}_{-0.15}) 10^{-18} (\text{GeV cm}^2 \text{ s sr})^{-1}$ $\Gamma = 2.9 \pm 0.2$ Too soft?

IceCube Preliminary щ Data Data Fivents per 2635 days (> 60 TeV) Astro 10^{2} Atmo. Conv. Atmo. Conv. **IceCube** Preliminary 10^{1} Events per 2635 days Atmo. Muons Atmo. Muons 10^{1} 10^{0} 10^{0} -North South 10^{-1} 10^{-} 10^{5} 10^{6} 10^{4} 10^{7} -0.50.00.5-1.01.0 $\cos\left(\theta_{z}\right)$ Deposited Energy [GeV]

Not really compatible with any reasonable atmospheric ^{13 / 62} assumption; however a null-prompt is fitted

Compatible with isotropy

The track sample (9.5 years)

Earth used as a shield against CR muons → cosmic excess at the highest energies (>100 TeV)

Extra-galactic sources should behave like that **Which ones?**

Best fit is a null-prompt also here (see backup)

 10^{6}

 10^{7}

PoS(ICRC2019)1017

A global view on IceCube HE cosmic neutrino measurements

 \rightarrow test for deviation from single power-law description

IceCube spectral analysis in the HESE shows that the difference between the 1- and 2-component model is ~1 σ

Tracks and HESE still compatible at 95% CL

The ANTARES search for HE neutrinos

3380 days of livetime

Considering the HE tail (~1% highest E)

→ data: 50 events (27 tracks + 23 showers)

→ bkg MC: 36.1 ± 8.7 (stat.+syst.) (19.9 tracks and 16.2 showers

→ signal MC: ~10 events expected (4.5 tracks and 5.5 showers)

Null-cosmic excluded at 90% C.L. 1.8σ excess

PoS(ICRC2019)891

The ANTARES search for HE neutrinos

Upward-going events, simultaneous fit for the shower and track sample

```
\Phi^{1f}(100 \text{ TeV}) = (1.5 \pm 1.0) \ 10^{-18} (\text{GeV cm}^2 \text{ s sr})^{-1}
\Gamma = 2.3 \pm 0.4
```


Putting it into context

KM3NeT/ARCA diffuse flux sensitivity

HE tau neutrinos in IceCube

No atmospheric background → tau flux can only be of cosmic origin

1 candidate events (+ one which is a PeV HESE)

PoS(ICRC2019)1015

17 m

γ and v: CR propagation in the Milky Way

Neutrinos carry direct information on CR propagation. e.g.:

- Non-homogeneous diffusion can enhance γ and ν emission

- Molecular clouds/dense environments boost γ and ν fluxes

FERMI-LAT map

* ApJ. **750:** 3, 2012 ** ApJ Lett. **815:** L25, 2015

ν models from GCR and γ

Plots by C.Haack, for the IceCube Collaboration

$\nu \textbf{s}$ from the GP

constrained to 8% of the all-sky flux

ApJ Lett 868: L20 (2018)

are different in the model

New IC cascade analysis: ApJ **886**: 1, 2019 (see backup)

Individual sources of neutrinos

IC170922A and TXS 0506+056

Fermi-LAT and MAGIC prompt follow-up >**3**σ **significance**

Not really compatible with other close-by emitters

Science **361, 6398**, eaat1378 DOI: 10.1126/science.aat1378

270 TeV muon

20:54:30.43 UTC

On 22 September 2017 at

TXS 0506+056

DOI: 10.1126/science.aat2890

TXS 0506+056

1.03 signal-like events fitted \rightarrow p-value = 3.4% (pre-trial)

3rd most significant candidate out of 107*

75° 60° ANTARES 45° 30° invisible 15° 120° 150° 180° 210° 240° 270° 300° 330° 60 30° 0° IC170922A -15° -30° **ANTARES** -45° visible -60° -75° Online data-stream analysis \rightarrow no coincident event

ATEL #10773 released by

ANTARES the following day

+ time dependent search for space-time clustering with the IC neutrino flare – no excess observed

* off the published 2007-2015 analysis; 87% post-trial

ApJ Lett 863 no.2: L30, 2018

Point source searches results

Point source searches results

PoS(ICRC2019)851 + arxiv:1910.08488

Point source searches results

Astrophysical catalogs

- Fermi 3LAC Blazars (1255 sources in FoV)
 [Ackermann et al. ApJ 2015]
- Star Forming Galaxy catalog observed in γ by Fermi (54 in FoV)
 [Ackermann et al. ApJ 2012]
- Giant radiogalaxies catalog selected in soft γ ray (53 in FoV) [Bassani et al. MNRAS 2016]
- Dust obscured AGN selected in X rays (10 in FoV)
 [Maggi et al. PhysRevD 2016]

HE Neutrino sample

IceCube high energy tracks (55 sources in FoV)
 (35 tracks from 8 yr up-going muons + 21 HESE 6 yr)
 [IceCube collaboration, ICRC 2017]

Catalog stacking

→ non significant excess with radio galaxies and 3LAC

PoS(ICRC2019)840

PoS(ICRC2019)840

Joint point source search results

Why a km³ neutrino telescope in the sea/underwater?

- Water is optimal for light
 - Limited scattering \rightarrow direct photons
 - Homogeneous medium \rightarrow easy to simulate, less systematics
 - \rightarrow 0.1 degree angular reconstruction accuracy

Why a km³ neutrino telescope in the Mediterranean Sea/North?

Soft spectra from γ obs. \rightarrow lowE threshold analysis

KM3NeT/ARCA and galactic sources

KM3Ne1

KM3NeT current status

KM3NeT

Multi-messenger follow-up program

Multi-messenger follow-up program

Neutrino searches from GW170817

i.e. neutrino telescopes also follow-up external triggers

Ultra HE diffuse neutrino fluxes

Radio neutrino detection – ANITA, ARA and ARIANNA

Shower Axis

Shower Front

Radio neutrino detection – ANITA, ARA and ARIANNA

A few circumpolar Antarctic flights →not too far from models, need exposure increase In-ice allows for cost-effective instrumentation of huge volumes → almost at discovery level

2 ANITA events

e.g. arxiv:1809.09615

Property	AAE 061228	AAE 141220	
Flight & Event	ANITA-I #3985267	ANITA-III #15717147	
Date & Time (UTC)	2006-12-28 00:33:20	2014-12-20 08:33:22.5	
Equatorial coordinates (J2000)	R.A. 282°14064, Dec. +20°33043	R.A. 50°78203, Dec. +38°65498	
Energy $\varepsilon_{\rm cr}$	$0.6\pm0.4{\rm EeV}$	$0.56^{+0.30}_{-0.20}{ m EeV}$	
Zenith angle z'/z	$117.4 / 116.8 \pm 0.3$	125°.0 / 124°.5 ± 0°.3	
Earth chord length ℓ	$5740\pm60\mathrm{km}$	$7210\pm55\mathrm{km}$	
Mean interaction length for $\varepsilon_{\nu} = 1 \mathrm{EeV}$	$290\mathrm{km}$	$265\mathrm{km}$	
$p_{\rm SM}(\varepsilon_{\tau} > 0.1 {\rm EeV})$ for $\varepsilon_{\nu} = 1 {\rm EeV}$	4.4×10^{-7}	$3.2 imes 10^{-8}$	
$p_{\rm SM}(z > z_{\rm obs})$ for $\varepsilon_{\nu} = 1 {\rm EeV}, \varepsilon_{\tau} > 0.1 {\rm EeV}$	6.7×10^{-5}	$3.8 imes 10^{-6}$	
$n_{\tau}(1-10 \mathrm{PeV}) : n_{\tau}(10-100 \mathrm{PeV}) : n_{\tau}(> 0.1 \mathrm{EeV})$	34:35:1	270:120:1	

TABLE I. Properties of the ANITA Anomalous Events.

2 "anomalous" events were observed in ANITA-I and III in searches for upward going showers (ANITA-IV analysis not ready yet) over a bkg of 10⁻²

Polarisation signature compatible with neutrino-induced/Earth-skimming events, but

- no real counterpart in the IceCube signal
- in some tension with predictions
- some possible human-related background could have produced them

Still, intriguing... and radio could be the way to go for EeV

What was not covered (in full) here

- Transient events (GRBs, FRBs, ...)
- Indirect searches for dark matter
- Neutrino oscillations
- Atmospheric neutrinos
- Particle physics (and BSM)
- Cosmic ray air shower physics
- Low energy astrophysics

Thanks for your attention!

Backup

ANTARES event reconstruction

KM3NeT/ARCA event reconstruction

tracks

showers

KM3NeT

SgrA*

IceCube Cascade

The track sample

astro-norm

conv-norm

Influence of nuisance parameters in the fit

The track sample

astro-norm

conv-norm

Influence of nuisance parameters in the fit

PoS(ICRC2019)1017

New cascade analysis

Φ^{1f}(100 TeV) ~ 1.5 10⁻¹⁸ (GeV cm² s sr)⁻¹ Γ ~ 2.5

ApJ 886: 1 (2019)

Cascade analysis for point-like emissions

54 / 62

ApJ 886: 1 (2019)

Cascade analysis for extended emissions

Galactic Plane		7yr Cascades			Previous Work			
Template	p-value	Sensitivity	Fitted Flux	UL	p-value	Sensitivity	Fitted Flux	UL
KRA^5_γ	0.021	0.58	0.85	1.7	0.29	0.81	0.47	1.19
$\mathrm{KRA}_{\gamma}^{50}$	0.022	0.35	0.65	0.97	0.26	0.57	0.37	0.90
Fermi-LAT π^0	0.030	2.5	3.3	6.6	0.37	2.97	1.28	3.83

The highest-energy cascade event

Partially contained events → allow for higher energies → need more sophisticated analysis to reject backgrounds

6 PeV cascade: candidate found in data → candidate Glashow-resonance event (work is still ongoing)

Low-energy astrophysics

(a) PeV neutrino interaction

PoS(ICRC2019)865

- (b) GeV neutrino interaction

(c) Detector noise event

– Properly select event topology

 Search for event in a short time window corresponding to transient sources

Solar flare

Low-energy astrophysics

KM3NeT

Supernovae bursts would produce a large amount of MeV interaction close to the OMs \rightarrow visible as an increase over the optical background rate

^{58 / 62}

PoS(ICRC2019)857

also ANTARES and IceCube do perform the same kind of searches

2 more ANITA events (in the standard diffuse search)

Baikal-GVD recent results

Air-shower imaging detection of neutrinos

Ashra-1 PoS(ICRC2019)970

Acoustic detection of UHE neutrinos

R. Abbasi et al.,arXiv:astro-ph/1103.1216; adapted from R. Nahnhauer, Ricap 2011 by R. Lahman at ARENA2018