Quality assessment of parts produced by Selective Laser Melting

AM Workshop 2019 Padova, 20-09-20 **Jocelyn Delahaye,**

Mattia Lago, Marco Marigo, Irene Calliari

Università degli Studi di Padova

DIPARTIMENTO DI INGEGNERIA INDUSTRIALE

Motivations

Aim of the job

- Mechanical properties (static, fatigue) parts defined by its microstructure (phases, size, orientation) and defects (porosities, oxide contamination)
- Microstructure and defects related to process parameters (power, scan speed, powder ...)
- Qualified the process trough microstructural analysis guarantee good mechanical properties of parts

Powder storage issue

3 mm

Motivations

Sample fabrication

Microstructure and porosity analysis on Stainless steel 316L SLM

- Experimental methods
- Results
- Summary

Microstructure and porosity analysis on Titanium alloy TA6V SLM

- Experimental methods
- Results
- Summary

Motivations

Sample fabrication

Microstructure and porosity analysis on Stainless steel 316L SLM

- Experimental methods
- Results
- Summary

Microstructure and porosity analysis on Titanium alloy TA6V SLM

- Experimental methods
- Results
- Summary

Sample fabrication

Motivations

Sample fabrication

Microstructure and porosity analysis on Stainless steel 316L SLM

- Experimental methods
- Results
- Summary

Microstructure and porosity analysis on Titanium alloy TA6V SLM

- Experimental methods
- Results
- Summary

Experimental methods

Sample preparation

- Sectioning and resin mounting
- Polishing until 0.05 alumina suspension
- Electro-etching with oxalic acid solution (10g/100 mL Water) 2 V 10-20s for microstructure analysis

Analysis

- Porosity, surface roughness, microstructure analysis with optical microscope and ImageJ software

Motivations

Sample fabrication

Microstructure and porosity analysis on Stainless steel 316L SLM

- Experimental methods
- Results
- Summary

Microstructure and porosity analysis on Titanium alloy TA6V SLM

- Experimental methods
- Results
- Summary

Results 1/5

Melt pool

 Process parameters : hatching space 75 µm scan rotation 67° between layers

Results 2/5

Melt pool

- Melt pool size 54.4 µm
- Melt pool size related to thermal history (super statured matrix, grain size ...)

Results 3/5

Porosity

- Full dense part
- Low pore density

Results 4/5

Porosity

- Mainly small pores and few big ones
- Porosity probably due to gas entrapped (Circularity and aspect ratio ~1)

Results 5/5

Surface roughness

- Roughness high (not good fatigue resistance)

arithmetical
mean height
$$R_a = \frac{1}{l} \int_0^l |Z(x)| dx$$
Rootmean square
deviation $R_q = \sqrt{\frac{1}{l} \int_0^l Z^2(x) dx}$ Kurtosis $R_{ku} = \frac{1}{R_q^4} \left[\frac{1}{l} \int_0^l Z^4(x) dx \right]$ Skewness $R_{sk} = \frac{1}{R_q^3} \left[\frac{1}{l} \int_0^l Z^3(x) dx \right]$

Motivations

Sample fabrication

Microstructure and porosity analysis on Stainless steel 316L SLM

- Experimental methods
- Results
- Summary

Microstructure and porosity analysis on Titanium alloy TA6V SLM

- Experimental methods
- Results
- Summary

Summary

- Melt pool analysis gives informations about process parameters (retro-engineering) and part thermal history
- Full dense part, value in agreement with EOS's ones
- Process parameters not optimized for surface roughness

Roughness, Ra	Density	Reference
[µm]	[%]	[-]
14.75	99.94	This study
13+/-5	~100	[Eos14]

Motivations

Sample fabrication

Microstructure and porosity analysis on Stainless steel 316L SLM

- Experimental methods
- Results
- Summary

Microstructure and porosity analysis on Titanium alloy TA6V SLM

- Experimental methods
- Results
- Summary

Experimental methods

Sample preparation

- Sectioning and resin mounting
- Polishing until 0.05 alumina suspension
- Etching with Kroll's Reagent
- Sample heat treated

Analysis

- Porosity, microstructure analysis with optical microscope and ImageJ software, hardness test

Motivations

Sample fabrication

Microstructure and porosity analysis on Stainless steel 316L SLM

- Experimental methods
- Results
- Summary

Microstructure and porosity analysis on Titanium alloy TA6V SLM

- Experimental methods
- Results
- Summary

[Haa18] Gerrit Ter Haar et al., Selective Laser Melting Produced Ti-6AI-4V: Post-Process Heat Treatments to Achieve Superior Tensile Properties, Materials. 11 (2018) 146.

Results 2/4

Porosity analysis

Results 3/4

Hardness

 Same hardness value for as-built and annealed sample -> oxygen diffusion (embrittlement)

Results 4/4

Mechanical properties - SLM vs conventional process (normalized data) from literature :

Cast^{1*} Wrought^{2*} SLM as-built^{3*} SLM anneal^{3*}

¹ data from [asm04]

 2 data from [asm04], tensile data : anneal 1065°c + WQ, fracture toughness and fatigue data : anneal

³ data from [agi18,liu19]

* fatigue : number of cycle to failure for a load of 400 MPa, crack growth speed for a KIC=15 MPa.m^{1/2}

22

[Liu19] S. Liu, Y.C. Shin, Additive manufacturing of Ti6Al4V alloy: A review, Materials & Design. 164 (2019) 107552.

[Agi18] D. Agius, K. Kourousis, C. Wallbrink, A Review of the As-Built SLM Ti-6AI-4V Mechanical Properties towards Achieving Fatigue Resistant Designs, Metals. 8 (2018) 75. [Asm04] ASM Handbook Volume 2: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials - ASM International, (2004).

Motivations

Sample fabrication

Microstructure and porosity analysis on Stainless steel 316L SLM

- Experimental methods
- Results
- Summary

Microstructure and porosity analysis on Titanium alloy TA6V SLM

- Experimental methods
- Results
- Summary

Summary

- Full dense part, porosity value in agreement with EOS's one
- Heat treated sample preferred : increase ductilty with potential better mechanical properties (fatigue, crack growth)
- Pay attention to oxygen when performed heat treatment (embrittlement)

Motivations

Sample fabrication

Microstructure and porosity analysis on Stainless steel 316L SLM

- Experimental methods
- Results
- Summary

Microstructure and porosity analysis on Titanium alloy TA6V SLM

- Experimental methods
- Results
- Summary

- SLM parts exhibit fine microstructure with enhanced mechanical properties compared to traditional routes
- Full dense 316L SLM and TA6V SLM parts produced by university of Padova
- Optimization of process parameters needed for special purpose (e.g. surface roughness)
- Heat treatments (HT) further increase mechanical properties of SLM parts
- Special attention has to be given when performed HT (oxygen contamination of TA6V parts)