

Tecnologie additive manufacturing di metalli applicate al settore calzaturiero

Ing. Marco Marigo – INFN Padova

Progetto

La Riviera del Brenta costituisce un famoso distretto dell'eccellenza calzaturiera a livello mondiale.

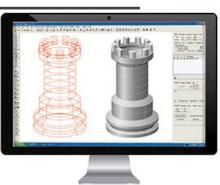
	Venezia	Padova	Totale
Calzaturifici	829.39	568.03	1397.42
Accessori	227.41	127.12	354.53
Modellisti	43.64	56.15	99.79
Ditte commerciali	132.14	102.69	234.83
Totale	1232.58	853.99	2086.57

Obiettivi

Dal progetto alla realizzazione...

La moda, in continua innovazione, è sempre alla ricerca di nuove forme e materiali.

- La tecnologia additive permette di realizzare forme assai complesse
 - nessun vincolo geometrico
 - totale personalizzazione
 - ottima prototipia
 - svincolo uso stampi
 - progettazione in assenza di sottoassemblaggi



Technical data	EOS M100
Building volume	Ø 100 mm x 95 mm (height incl. Build plate)
Laser type	Yb-fiber laser; 200 W
Precision optics	F-theta-lens; high-speed scanner
Scan speed	up to 7.0 m/s (23 ft./sec)
Focus diameter	40 μm
Power supply	200 - 240 V
Power consumption	max. 1.7 kW
Inert gas supply	max. 4,000 hPa, 50 l/min

Tecnologia SLM

- R&D
- Piccoli componenti

Materiale 316L

- Diametro massimo particelle 63 μm
 - ottima resistenza meccanica
 - ottima resistenza a corrosione

Physical and chemical properties of parts

Applicazioni

- Orologi e montature per occhiali
- Elementi funzionali nell'elettronica di consumo.
- Automotive ed Aereospace

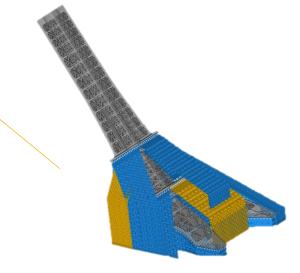
EOS StainlessSteel 316L

Material composition	Element	Min	Max	
	Fe	balance		
	Cr	17.00	19.00	
	Ni	13.00	15.00	
	Mo	2.25	3.00	
	C		0.030	
	Mn		2.00	
	Cu		0.50	
	Р		0.025	
	S		0.010	
	Si		0.75	
	N		0.10	
Relative density with standard parameters	approx. 100 %			
Density with standard parameters	min. 7.9 g/cm³			
	min. 0.285 lb/in3			

I/II Torre Eiffel

Riprogettazione AM

- Nessun uso di assemblaggio
 - Si limitano le debolezze del componente nella trasmissione dei carichi
 - Si mantiene il design originale incrementando la resistenza meccanica



Riprogettazione AM

I supporti sono progettati con Materialise Magics

 L'inserimento dei supporti serve a sostenere il peso del componente durante la fase di stampa Per preservare spigoli e particolari, alcuni supporti sono inseriti manualmente.

Prodotto finito

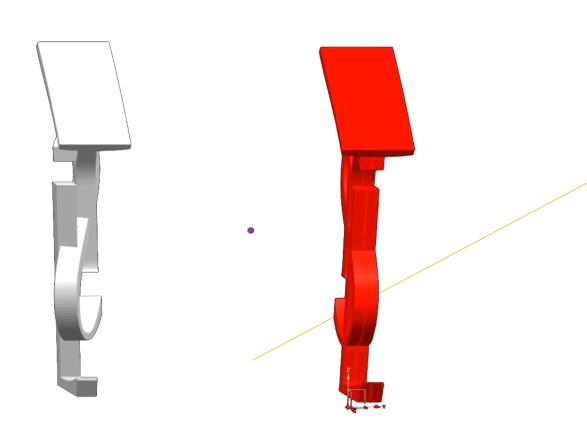
Elettroerosione a filo

Rimozione manuale dei supporti

Trattamenti meccanici di Pallinatura Sabbiatura

Trattamenti superficiali di rifinitura

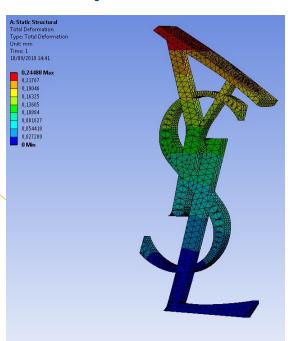
II/II YSL

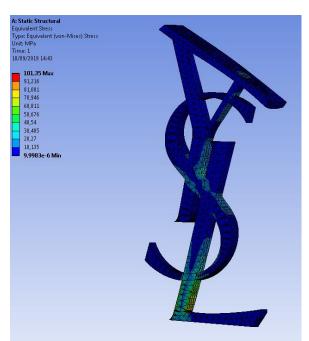


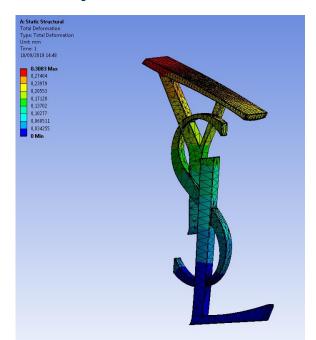
Riprogettazione AM

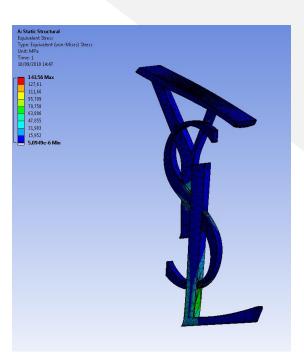
L'additive permette di stravolgere l'uso dello spazio

- le lettere Y e S ruotate
- la lettera L traslata


Miglior prospettiva senza stravolgere il marchio

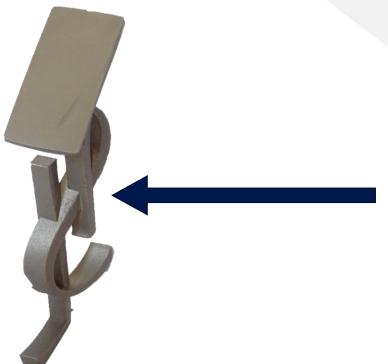



Simulazione Ansys

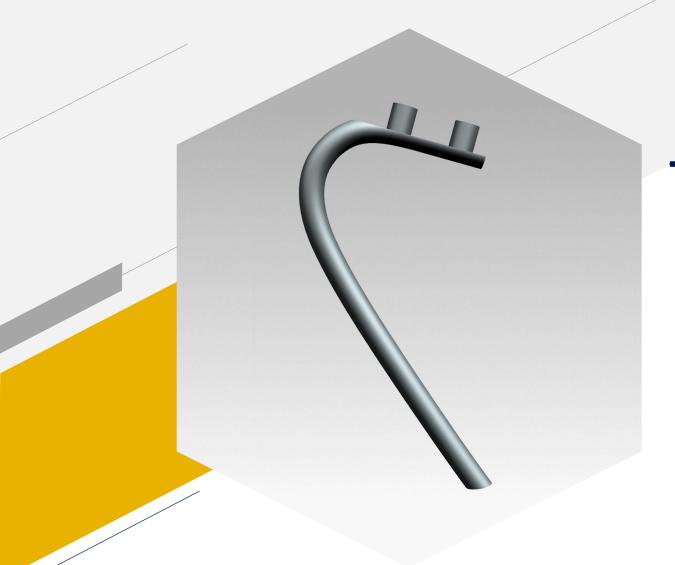

Campione tradizionale

Campione additive

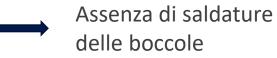
- Nel caso AM si evidenzia uno sforzo maggiore
- Minore volume resistente alla sollecitazione
- Passa la prova statica $\sigma_{eq} < \sigma_{S}$



Post-processing


 Ulteriori trattamenti chimici ed elettrochimici per uniformare la superficie

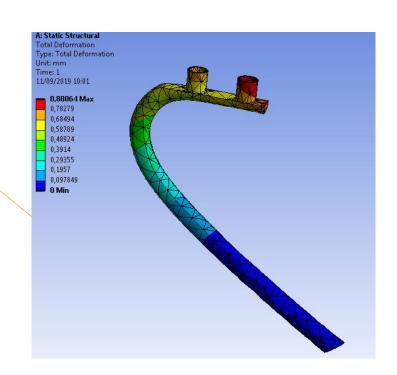
- Elettrolucidatura
- Polverizzazione anodica

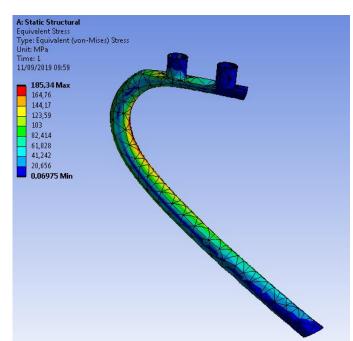


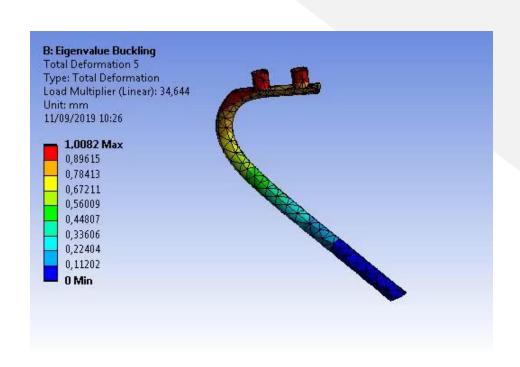
Tacco Spina

Realizzazione additive del prototipo

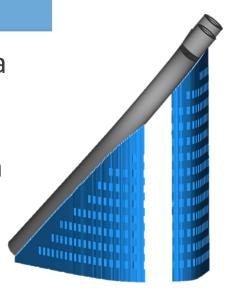
Versatilità nella realizzazione delle diverse misure




Riduzione presenza di difetti


- Porosità
- Impurezze
- Microstrutture indesiderate

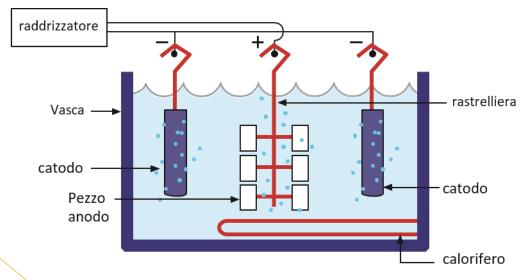
Simulazione Ansys

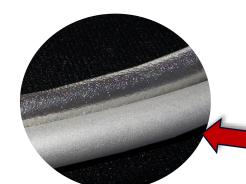

- Passa la prova statica $\sigma_{eq} < \sigma_{S}$
- L'analisi al buckling evidenzia il moltiplicatore di carico rispetto allo sforzo applicato

Processo additive

 I supporti minimizzano la massa necessaria per i sostegni e permettono il recupero della polvere in eccesso

Sviluppi futuri

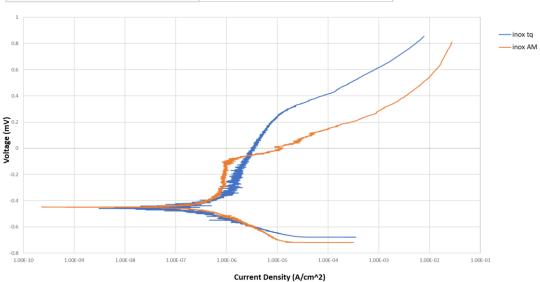




Elettrolucidatura

- Tecnica chimica di finitura superficiale, con la quale il metallo viene rimosso elettroliticamente.
 - Riduce microrugosità
 - I componenti trattati non sono soggetti a stress termico o meccanico

- La minore rugosità aumenta la vita a fatica del componente
- Lo strato superficiale si arricchisce in cromo, aumentando la resistenza alla corrosione



Caratterizzazione 316L

	316L
σ _{0.2} (XY)	640 ± 50 MPa
σ _{0.2} (Z)	540 ± 50 MPa
$\sigma_{R}(XY)$	530 ± 60 MPa
$\sigma_{R}(Z)$	470 ± 90 MPa
E (XY)	185 GPa
E (Z)	180 GPa
$\varepsilon_{R}(XY)$	40 %
$\varepsilon_R(Z)$	50 %
Durezza	100
Densità	10

Add a footer

Conclusioni

- L'additive manufacturing stravolge il rapporto stilista-progettista ribaltandolo in un perfetto rapporto di simbiosi collaborativa.
- Produzione di forme complesse
- Ottimizzazione dell'uso dello spazio
- Elimina punti deboli della tecnologia tradizionale (es. assemblaggi e saldature)
- Versatilità nella personalizzazione dei prodotti
- Prodotti meccanicamente performanti

Add a footer 22