

Development & Innovation on Additive Manufacturing

DIAM for High Energy Particle Physics

- Detectors for HEP
- Ing. Adriano Pepato INFN PD

http://diam.pd.infn.it

Parts for HEP accelerating machines

Future project proposals

Detectors for HEP

- Project AIDA 2020: cooling microchannels
- Parts for HEP accelerating machines
 Project ARIES2:
 - 1 strategy
 - 5 developments
 - 1 prototype

ARIES 2

ARIES2 Strategy

Additive Manufacturing for the Accelerator community (prof. M. Vedani – PoliMi)

The partners of the project were selected so as to

form a multidisciplinary team showing high

qualification for the proposed task

The uptake of AM in the accelerator sector implies deep expertise in fields such as

- ultra-high vaccum
- radiofrequency
- magnetism

- cryogenic behaviour of materials
- materials science
- cryogenic behaviour of
 manufacturing engineering
 - ecc.

ARIES2 - Strategy

Components Brief list of the Partners

The main role is summarized in the

Component	Ref.	Name Application	Short name	Materialtry	Estimated TRL ^{Conta}	act Þergðign	Institution Type*	following table Description	Requirements		Image
Fast beam wive scanner fork RF Filter 2 Riga	ecnico anigal [6] Techni	di Milano, Dept. of EngineeringN Beam Instrumentation Gr CLIC	Polil/li pup RTU	Al; Gtealy Tä6ed4Al; uplated oolyhaetvia	Maurizio maurizio milit Toms To	Vedani vedani@poli X band scanners rims rims team imscheam	This compo University The filter h so called fo desired freq Universitysir	onent the measures sizerojetheade . This compositions let pass the out as two functions let pass the out in two functions let pass the out of why that tenses the model is the electron beam asses the electron beam ed frequencies as possible outions	r Matel His sofr (@ & AMbarchnol chnology V: 20 ms ⁻¹ ns and ngt yer barcon prical asse erator (มีชาวิจมน์ เป็ตรัวย์ (Gbhapon for particle accelerators	pgy	
	n Univ	ersity of X-band technology to	tattech	SLA Estonia	Tauno Ot	to	University of	IWS AM technolog nent acts as activable" fiorpsepentati	g cal solution development on oi/ar/ut/ompartiald.0ccmalators	0)	
CLIC RF charger and inner filt@ons 4 Quadrupoleech Cent	nology eil Eur erche re Nati	the Ferro Circol (FG opéen pour la biologia Nucléaire logy Program onal de la USMag pot	c) soetern and	Ti6Al4V CH Nb₃Sn	** 3 Nicolas D	FCC design	high frequen The guadeup of the speces of the bemail	icy. It is designed to workenotment plegiowide the magner filgdconor arriech accis and all y and worth fingh arriech accis and share ic and factures by inducing a magnetic and factures	of AM companies Doinsarticle ac ler, development of the walloy pov ing solutions to ANK of RF components was a on Copp	ders	<u>)</u>
5 Rech	erche	cientifelement Progr	CNF(S ram o test	France	<u>delerue@</u>	lal.in2p3.fr	Laboratory This compor	moment on it. nent acts as a "cable" for super	Vacuum of 5·10 ⁻⁸ mabr	•	
Spiral loadFrau 6 Mate HOM coupler for-	nh ot er rial an	Institute Corcelerating	s IWS	Ti6Al4V Germany	Frank Bru Frank.Bru fraunhof	ieckner Xbox3 ieckner@iws. er.de	high frequen Research microwave Cersthenctio spectrum electromag	icy. It is designed to work in the region of the electromagnetic on is to provide a transverse m in the X-band frequency. gnetic kick to a proton bunch,	Bandwidth: 16.8MHz f: 200 Hz at 100 Hz 21 LW Vacuum of 5·10-8 mbar	Ø	
crab cavity DOWN 7 and Com	ch 4llte Atomic missior	Energy Elideriproject	C) CEA	France	**	FCC design	allowing bu Laboratoryin their uses co	nch-rotation-which leads to an ভুয়েৰঙ্গোদেশিয়ায় হেলেলৈ আৰু section of rrect horizontally and vertically	Ra: 0,07 μm RRR<300 Void%: 0,2-0,4	-04	
8 Nucl	ico Naz eare, P	oriale dPresical ogram adova the USMag- net	INFN am	Italy	Adriano F pepato@	'epatqudy Storage ring pd.infri it KARA	Laboratory The spring su	oy inducing a magnetic dipole moment on it poort a series of zirconium oxide	T ნილოფამთი K 7,5 – 15 N	A M	a 8
Beam screen.c. Stability Springs Solenoids Rösl 10 (Ital	iur[8]Gr [4] ar – Sui (), a coi	rface Technology Srl	C) HC .	TicAerman'ı Italy	Markus V Maurizio Pedretti	Ve(Karlanwhe Research FARRelerator) light source	(ArQ2) topher The soler oid controlled m accele Industry	res. These spheres are the only controls the manual field. The fact between the beam screen agnetic fields help to focus and erate the electron beam.	T: 2,7 – 3 K দ্বিগ্রহক্ষেক্রচণ্ণ ব্রুযান্দ্র Coil ব্রফিল্হেপ্নি র্ড 41 A Heat load: 280 – 560mW		88
Beam position monitor 11 Alsystem	ing Gm [5] om-Alco	oH PHIL Photoinjector MeV electrons) at en	(3 s	316L stainless steel France	IVI.Foppa er.com Eric Gigue egiguet@	ThomX t project alsyom-	This compor deviation Industry	nent is used to determinate the of the beam under vacuum condition.	Ultra-high vacuum of 10- ⁹ Pa		
					alcen.con	<u>n</u>					

Additive Manufacturing for the Accelerator community (prof. M. Vedani – PoliMi)

Five different Developments proposals have been formulated inside the Strategy

- Dev2.1 Validation of accelerators components built by additive manufacturing; N. Delerue CNRS/IN2P3;
- Dev2.2 Development of superconductive RF cavities, made by Nb or Cu coated thin film, to be tested at room and at cryogenic temperature; A. Pepato INFN Sezione di Padova;
- Dev2.3 Improvement of Additive Manufactured RF Components by Laser Radiation; A. Medvids, Riga Technical University;
- Dev2.4 Design of Magnet Poles by Additive Manufacturing; M. Vedani, Politecnico di Milano, DME;
- **Dev2.5** Repair of damaged accelerator components by AM technologies; E. Lopez, Fraunhofer Institute for Material and Beam Technology.

Dev2.1 - Validation of accelerators components built by additive manufacturing N. Delerue CNRS/IN2P3

This development aims at

- validation
- long-term test

of Accelerator components in real operation conditions.

During this development we will build on previous achievements to design and build accelerators components suitable to installation in accelerators. These components will then be installed in accelerators and their performances monitored during the project. This will allow to demonstrate that

- AM components can be used in accelerator
- there is no effect on their performances

during long service in the hostile accelerator environment.

Dev2.1 - Validation of accelerators components built by additive manufacturing *N. Delerue CNRS/IN2P3*

Short	Contact	Institution	
name	Person	Type*	
CNRS	Nicolas	Research Center	
	Delerue		
TalTec	Tauno Otto	University	
h			
IWS	Elena Lopez	Research Center	
PoLiM	Maurizio	University	
i	Vedani		
IP		Industry	

Dev2.2 - Superconductive RF cavities, made of Nb/Cu-coated thin film. To be tested at room and at cryogenic temperature

A. Pepato INFN Sezione di Padova

This development aims at

• design & test

the relevant properties of AM Nb-made RF cavities in room&cryogenic temperature conditions.

The relevant cost of the Nb powders induces also in investigate the feasibility of a partial or full replacement of it, with alternative materials (e.g. pure Cu / Cu alloys), for the realization of the RF cavity body, while providing the realization of a thin layer of Nb at the inner surface, to guarantee the superconducting performances of RF cavities.

	Name	Short	Countr	Contact	Institution Type*
		name	у	Person	
1	Istituto Nazionale di Fisica Nucleare	INFN	Italy	Adriano	Laboratory
	(INFN PD and LNL)			Pepato	
2	Centre National de la Recherche	CNRS	France	Nicolas	Labortory
	Scientifique CNRS			Delerue	
3	Fraunhofer Institute for Material and	IWS	Germa	Frank	AM Technological
	Beam Technology, IWS		ny	Brueckner	solution
					development

4	Roesler – Surface Technology srl (Italy) a	ROS	Italy	Maurizio	Industry
	company of Roesler Holding Gmbh			Foppa	
				Pedretti	
				<u>M.FoppaPedr</u>	
				etti@rosler.c	
				<u>om</u>	
5	H.C. Starck Tantalum and Niobium	HC	Germa	Markus	Industry
	GmbH		ny	Weinmann	

Dev2.5 - Repain of damaged dilicae least of actured & Drompente bly AWL teeh Roldigities n

A. Lopdzidsa Rigoteclnstical elforensity and Beam Technology

The improvement of crystallinity and stoichiometry od the propercanduating comparison and istrophysical using leaving the comparison of the provision of the

procedures for surface parenter parameters. Evaluation Topethe selection and deposition parameters. Evaluation Topethe ¹refigition and part performance is also tessering to raise ity confidence on this approach.

2	Politecnico di Milano, Dept. of Mechanical Engineering	PoliMi	Italy	Maurizio Vedani <u>maurizio.vedani@pol</u> imi it	University
3	Science and Technology Facilities Council	STFC	UK	Oleg Malyshev oleg.malyshev@stf c.ac.uk	Laboratory
4	Rösler – Surface Technology Srl (Italy), a company of the Rösler Holding GmbH	ROS	Italy	Maurizio Foppa Pedretti <u>M.FoppaPedretti@ro</u> <u>sler.com</u>	Industry

Dev2.4 - Design of Magnet Poles by Additive Manufacturing

M. Vedani, Politecnico di Milano DME

The project aims at the development of design approaches and at testing relevant properties of Additively Manufactured collarys for the contact as manufactured doles. Selection of suitable and system Perspect to per of ther printability by AM, setting of design and estimates for poles having complex shape are the main checives of this C Cenere National de la Bache Che t CNRS France Nicolas Laboratory Scientifique Delerue delerue@lal.i-Short Institution con2p3cfrPersor Country Name narhêeA *** Laboratorye CEA France 3 Germa Marrisio Vedani Industry HC Holstarkico di Milano, Dept. of Italyny PoliMi rhawgizia yedani@pol Úniversity Mechanical Engineering Rösler – Surface Technology Srl (Italy), ROS Maurizio Italy Industry ႞႖ႜႍၣၟ_{ၐၣ}ၣ႞ၮၭႜ ခုႏွင့္အကူဥခုဂုန္႔စုဒ္မthe Röster Holding GmbH Latvia University oppa Torims@rtu.lv Centre National de la Recherche NippleopBalpede CNRS France Laboratory deletti@edalein2p3.fr Scientifique FrankBrückner Fraunhofer Institute for Material Politecnico di Milano, Dept. of and Beam Technology Mechanical Engineering Research FrindsuBizieckner@iniversity Centre IWS Polivater nearly .fvedahpfer.de Istituto Nazionale di Fisica AdmiaurozPospeto INFN Italy Laboratory Nucleare, Padova emi@poliminifn.it H.C. Starck Tantalum and Niobium ↓t Markus Weinmann Industry Germany GmbH Maurizio Foppa Rösler – Surface Technology Srl Pedretti (Italy), a company of the Rösler ROS Italy Industry M.FoppaPedretti@ro Holding GmbH 10 sler.com

ARIES2		Name	Short name	Country	Contact Person	Institution Type*
Prototype	1	Politecnico di Milano, Dept. of Mechanical Engineering	PoliMi	Italy	Maurizio Vedani <u>maurizio.vedani@poli</u> <u>mi.it</u>	University
Design approach of new-ge	r 2 p	Riga Technical University mponen	t rty me	† Catvia ∖ (⊺. 1	Toms Torims <u>Toms.Torims@rtu.lv</u>	University
This prototyping project c	ii 3 ns	Conseil Européen pour la Recherche Nucléairend manufa		Switzerla nd a part	icle accelerator	Laboratory
component prototype, for relevant to the article ac	ollov 4 Cele	VCentre yNational decla Recherche Scientifique/ironment and rea	ation c CNRS Ulreme	f its speci France nts. The p	f Nicolas Delerue S m <mark>delerue@lal.in2p3.fr</mark>	Laboratory
based on outputs generative same theme	3 5 ⊖0	Istituto Nazionale ro di GyFisica Nucleare, Padova	INFN ela	p <mark>italy</mark> ent p	Adriano Pepatonging pepato@pd.infn.it	Paboratory
	6	Fraunhofer Institute for Material and Beam Technology	IWS	Germany	Frank Brückner Frank.Brueckner@iws. fraunhofer.de	Research Centre
	7	H.C. Starck Tantalum and Niobium GmbH	НС	Germany	Markus Weinmann	Industry
	8	Rösler – Surface Technology Srl (Italy), a company of the Rösler Holding GmbH	ROS	Italy	MaurizioFoppaPedrettiM.FoppaPedretti@rosler.com	Industry
	關於					

AIDA 2020

HEP detectors. Microchannels for cooling applications

AIDA 2020

THANK YOU!

 \odot

6

0

6