

INFN AM Workshop 2019

20th September 2019, Padova, Italy

The role of powder properties on Precision Additive Metal Manufacturing

Mirko Sinico

mirko.sinico@kuleuven.be

PAM² | KU Leuven AM Research Group

Belgium

Precision Additive Metal Manufacturing

Horizon 2020 European Union funding for Research & Innovation

The PAM² project (https://pam2.eu/)

- Precision Additive Metal Manufacturing
- with 6 Academic partners
- and 6 Industrial partners

People •

Project 🗸

vents Dissemination •

Θ

Q

Consortium

Home

Full Network Participants (Beneficiaries) Academic partners KU Leuven, Mechanical Engineering Department, Belgium Technical University of Denmark, Denmark University of Padua, Italy

- Karlsruhe Institute of Technology, Germany
- Delft University of Technology, The Netherlands
- The University of Nottingham, United Kingdom

Industrial partners

- 3D Systems Leuven, Belgium
- NP TEC (Nuovo Pignone Technologie s.r.l), Italy
- Alicona, Austria
- LEGO System A/S, Denmark

Associated Partners

- ASML, The Netherlands
- MAGMA GmbH, Germany

About

Contact

Consortium

Objectives

The PAM² project (https://pam2.eu/)

- Precision Additive Metal Manufacturing
- with 6 Academic partners
- and 6 Industrial partners
- **&** 15 young researchers

The PAM² project (https://pam2.eu/)

- Precision Additive Metal Manufacturing
- with 6 Academic partners
- and 6 Industrial partners
- Our goal is to improve the precision of the LPBF process, covering all the value chain of the AM manufacturing

and...test our research on end-users cases

The role of powder properties on PAM²

precision precision precision

Slide 2

Powder properties influence LPBF part properties

Slide 3

Mirko Sinico – mirko.sinico@kuleuven.be

The role of powder properties on PAM²

Simulations

Characterization

Processability

Novel full physical meso-scale numerical model

Characterization of AM Metal Powder with an Industrial Microfocus CT Influence of the Particle Size Distribution on surface quality

KU LEUVEN

Slide 2

The role of powder properties on PAM²

Simulations

Slide 4

Mirko Sinico – mirko.sinico@kuleuven.be

Novel full physical meso-scale numerical model

Novel full physical meso-scale model:

- <u>Analyze</u> thermal fields, cooling rates, formation of voids, surface porosities, **surface roughness**...
- <u>Taking into account melting</u>/solidification, evaporation, keyhole formation, radiation, ray-particle interactions, **particle distribution, powder deposition**....
- **BUT:** e.g. Maraging 300 no surface tension and viscosity parameters

KU LEUVEN

Slide 5

The role of powder properties on PAM²

Characterization

Characterization of AM Metal Powder with an Industrial Microfocus CT

PA

Slide 6

Medical vs. industrial CT scanners

Slide 7

Influence factors

KU LEUVEN

Slide 8

Characterization of metal AM powders with µ-CT

- > Pushing to the limits our μ -CT Nikon XT H 225 ST by measuring metal powders from 10 μ m of Ø
- The metrological traceability is maintained by referencing our measurements to Laser Diffraction analyses (both dry and wet) compliant with ISO 13320-1

Characterization of metal AM powders with µ-CT

Specimens preparation

- · Minimum specimen size to reach high mag.
- Dispersion via dry spraying to avoid particles in contact
- Powders from AI to W analyzed (various ρ)

- High mag. (69)
 Low power (< 7 W)
- Low power (< 7 w
 Voval reasoling with
- Voxel rescaling via calibration artifact

µ-CT scan

Surface determination

- Global ISO 50% thres.
- Our developed local thres. for comparison

MATLAB analysis

- In-house developed code
- Multiple outputs for particle size distribution
- Multiple outputs for particle shape analysis

Powder distribution, powder shape, powder porosity, and powder contamination can be analyzed

KU LEUVEN

The role of powder properties on PAM²

Processability

KU LEUVEN

Influence of the Particle Size Distribution on surface quality

Starting backwards: an industrial user-case

Starting backwards: an industrial user-case

M. Sinico, R. Ranjan, M. Moshiri, C. Ayas, M. Langelaar, A. Witvrouw, F. van Keulen, and W. Dewulf, **A mold insert case study on Topology Optimized design for Additive Manufacturing**, *Proceedings of the 2019 Annual International Solid Freeform Fabrication Symposium*, 2019.

Slide 11

Mirko Sinico – mirko.sinico@kuleuven.be

Industrial user-case requirements

Mold top surface by SPI standard SPI, Society of Plastic Industry

- From A-3, normal glossy finish,
 0.10 μm R_a down to 0.05 μm R_a
- To A-1, super high glossy finish,
 0.025 μm R_a down to 0.012 μm R_a

Typical surface roughness of metal AM

Slide 13

Industrial user-case requirements

Mold top surface by SPI standard SPI, Society of Plastic Industry

- From A-3, normal glossy finish, 0.10 μ m R_a down to 0.05 μ m R_a
- To A-1, super high glossy finish,
 0.025 μm R_a down to 0.012 μm R_a
- Several post-processing operations: rough-milling, grinding, semi-finishing plus finishing and a final EDM/polishing

Industrial user-case requirements

Mold top surface by SPI standard SPI, Society of Plastic Industry

Several post-processing operations: rough-milling, grinding, semi-finishing plus finishing and a final EDM/polishing

Powder properties influence LPBF part properties

If we \downarrow decrease average particle size:

↑ Increase in purchase cost of the powder (typically)

KU LEUVEN

- ↓ **Decrease** in flowability
- ↑ Increase in parts surface quality (lower R_a)

Slide 14

Research methodology

• GOAL:

Test 3 different distributions of Maraging steel 300

• **HOW**:

Full powder characterization & repeated build job DoE on a ProX 320A machine

Array of specimens ~ 20x10x10 mm

t = 30 μm, *h* = 70 μm

KU LEUVEN

Laser Diffraction

	D10	D50	D90
	[µm]	[µm]	[µm]
Mar	15.50	29.29	44.04
15-45	±0.78	±0.88	± 2.20
Mar	7.48	17.26	27.34
10-30	±0.37	± 0.52	±1.37
Mar	4.82	8.99	14.20
5-15	±0.24	±0.27	±0.71

KU LEUVEN

Laser Diffraction

	$C=\frac{4\pi A}{P^2}$			
	D10	D50	D90	Circularity,
	[µm]	[µm]	[µm]	mean [-]
Mar	15.50	29.29	44.04	0.800 ±
15-45	±0.78	±0.88	± 2.20	0.100
Mar	7.48	17.26	27.34	0.861 ±
10-30	±0.37	±0.52	± 1.37	0.098
Mar	4.82	8.99	14.20	0.849 ±
5-15	±0.24	±0.27	±0.71	0.087

Laser Diffraction

+ Optical microscope

+ Industrial µ-CT

	D10	D50	D90	Circularity,	Sphericity,
	[µm]	[µm]	[µm]	mean [-]	mean [-]
Mar	15.50	29.29	44.04	0.800 ±	0.958 ±
15-45	±0.78	± 0.88	± 2.20	0.100	0.025
Mar	7.48	17.26	27.34	0.861 ±	0.962 ±
10-30	±0.37	± 0.52	± 1.37	0.098	0.025
Mar	4.82	8.99	14.20	0.849 ±	0.951 ±
5-15	±0.24	±0.27	±0.71	0.087	0.027

+ ASTM B213, B212 and B527 testing

➢ For flowability (Hall Flow), apparent density ρ_{app} and tap density ρ_{tap}

	Hall Flow,	ρ _{app} / ρ _{true}	ρ _{tap} / ρ _{true}	Hausner
	50 g [s]	[%]	[%]	Ratio [-]
Mar	14.64 ±	52.3 ±	60.2 ±	1.15
15-45	0.23	0.3	0.1	
Mar 10-30	No flow	48.9 ± 0.2	58.8 ± 0.1	1.20
Mar 5-15	No flow	39.7 ± 0.3	55.1 ± 0.1	1.39 >> 1.25

Slide 16

Slide 17

- Mar 15-45, optimum parameter set $R_a = 12.12 \ \mu m$
- Mar 10-30, optimum parameter set $R_a = 5.34 \mu m$, 56 % reduction

KU LEUVEN

Slide 17

Slide 17

- **Surface roughness** is **inversely** proportional to E_v , **directly** proportional to the **laser power**, at the same E_v
- On average, ~40 % R_a reduction
 with Mar 10-30
- Stability zone seems wider for the Mar 10-30 distribution

KU LEUVEN

Slide 17

Typical surface roughness of metal AM

Slide 13

• Through a Sensofar S neox 3D surface profiler

- Through a Sensofar S neox 3D surface profiler
- Step 1: Acquisition (CLSM) and F-operator (form removal, plane)

Mar 15-45 specimen

Mar 10-30 specimen

Novel RM specimen

KU LEUVEN

- Through a Sensofar S neox 3D surface profiler
- **Step 1:** Acquisition (CLSM) and F-operator (form removal, plane)
- Step 2: S-filter (8 µm) and L-filter (140 µm) to highlight scanning tracks

Mar 15-45 specimen

Mar 10-30 specimen

Novel RM specimen

KU LEUVEN

- Through a Sensofar S neox 3D surface profiler
- **Step 1:** Acquisition (CLSM) and F-operator (form removal, plane)
- Step 2: S-filter (8 µm) and L-filter (140 µm) to highlight scanning tracks
- Step 3: Rescaling to the same Z range

Mar 15-45 specimen Mar 10-

Mar 10-30 specimen

Novel RM specimen

KU LEUVEN

Slide 19

The role of powder properties on PAM²

Simulations

Characterization

Processability

Novel full physical meso-scale numerical model

Characterization of AM Metal Powder with an Industrial Microfocus CT Influence of the Particle Size Distribution on surface quality

KU LEUVEN

Slide 2

Thank you!

Mirko Sinico^{1,2}, Wim Dewulf¹, and Ann Witvrouw^{1,2}

¹ Department of Mechanical Engineering, KU Leuven, 3001 Leuven, BE ² Member of Flanders Make - Core lab PMA-P, KU Leuven, 3001 Leuven, BE

A digression in the decrease of flowability

$\phi = 1 - \text{very good flowability}$	$\phi = 2 - \text{sufficient flowability}$	$\phi = 3 - critical flowability$	$\phi = 4 - unsufficient flowability severe agglomerations$
no agglomerations	Very loose agglomerations	loose agglomerations	

from A. B. Spierings, M. Voegtlin, T. Bauer, and K. Wegener, 'Powder flowability characterisation methodology for powder-bed-based metal additive manufacturing', *Prog Addit Manuf*, vol. 1, no. 1–2, pp. 9–20, Jun. 2016.

Powder with particle sizes < 5 μm

<u>µ-PBF</u>, modified SLM-50 machine from Realizer

Future steps

- Complete powders characterization (SEM, rotatory drum flowability test)
- Establish the evolution of surface quality for angled surfaces, and downfacing surfaces

Slide 12

Future steps

- Complete powders characterization (SEM, rotatory drum flowability test)
- Establish the evolution of surface quality for angled surfaces, and downfacing surfaces
- Establish melt pool variability through the analysis of cross-section micrographs
- Understand the development of surface texture through full **3D topographic measurements**

Conclusions

• Three Maraging 300 powders with different PSDs where tested

- The Mar 5-15 was deemed unsuitable for the ProX 320A recoating system
- A decrease > 50 % of top surface R_a was obtained for the Mar 10-30 distribution
- A novel remelting strategy was developed, resulting in top surface R_a of 1.5 µm

