

Istituto Nazionale di Fisica Nucleare

Trattamenti di superficie per migliorare le finiture superficiali dei manufatti prodotti per AM

Surface treatments to improve the surface finishes of products produced by AM

- G. Keppel giorgio.keppel@Inl.infn.it
- E. Chyhyrynets eduard.chyhyrynets@Inl.infn.it
- D. Orlandi donato.orlandi@lngs.infn.it

Istituto Nazionale di Fisica Nucleare – Laboratori Nazionali di Legnaro

Outline

- Material Science and Technologies for Nuclear Physics Service @LNL
 - Accelerating Cavities
 - Surface treatments facility @ LNL
- Additive Manufacturing Surface Finishing
 - AM Post-processing for surface finishing improvements
 - Post-processing status of the art
- LNL tecniques
 - Tumbling
 - Vibro-tumbling
 - Electropolishing
 - Fast Electropolishing
 - Chemical Etching

Conclusion

Material Science and Technologies for Nuclear Physics Service @LNL

Accelerating Supercunductive RF cavities

1.5 GHz elliptical cavity

160 MHz QWR cavity

- Very Low power dissipation
- Very high accelerating field 30-40 MV/m
- Very low surface roughness <20nm</p>
- High purity material

AM Workshop 2019 - G. Keppel - keppel@Inl.infn.it - INFN - 20/09/2019

Chemical Facility

Coating Plant

Cryogenic Plant

Material characterizations

CUORE: Cryogenic Underground Observatory for Rare Events

CUORE: Cleaning Level

Technology Transfer

Technology Transfer

Additive Manufacturing

AM Advantages:

- Unbounded geometric freedom.
- To control the local geometric (micro-structure).
- Avoid the use of tooling.
- Lowered inventory requirements.
- Waste-less fabrication.
- Unattended operation (allowed fully automated operation).
- Customer-driven design.

AM disadvantages:

- Demand for better materials.
- Existing CAD systems.
- Data management (Size of STL file).
- Low-volume production.
- Financial overheads.
- Surface Quality of Products.

J. Inst. Eng. India Ser. C (August 2018) 99(4):481-487

AM Surface Finishing

- The Additive Manufacturing (AM) Industry requires improved surface finishes to enhance component performance.
- Surface finishing of AM parts is a leading challenge as the industry pushes for broader application
- Metal AM, has very rough surface finish: typically 5-40 µm Ra

Name of process	Minimum Layer thickness (mm)	Surface roughness (Ra) (µm)
Selective Laser Sistering (SLS)	0.125	5-35
Fused Deposition Modelling (FDM)	0.254	9-40
3D printing (3DP)	0.175	12-27

J. Inst. Eng. India Ser. C (August 2018) 99(4):481-487

Post-processing techniques: an overview

There are a number of common **post-processing techniques** that can bring a 3D printed part to the necessary **smoothness**.

- Ultrasound cleaning (removes the debris deposited on the component)
- Centrifugal Disc polishing
- High-energy centrifuge (Centrifugal deburring)
- Ultrasonic abrasion finishing
- Vibratory grinding
- Stream Finishing
- Abrasive Flow Machinig
- Fluidized bed machining
- Magnetic Abrasive Finishing
- Laser polishing
- Electrochemical polishing
- Chemical polishing

Polishing **small internal passages is a very challenging task**, in particular for AM parts where the initial average roughness is high.

At the extreme, **post-processing costs** can erode the advantages 3D printing brings in the first place by **adding steps** (and time) to the manufacturing process.

Post-processing techniques: an overview

Vibratory grinding

Centrifugal Disc polishing

Post-processing techniques: an overview

Stream Finishing

Vibratory Grinding

Post-processing techniques: Abrasive Flow Machining (AFM)

- One Way
- Two Way Abrasive Flow Machining (AFM)
- Orbital

AFM:

- Easy flowability
- Better self deformability
- Fine abrading capability
- Layer thickness of material removed is, order of about 1μm to 10 μm
- Best surface finish that has been achieved as 50nm and tolerances +/-0,5 µm

Post-processing techniques: Abrasive Flow Machining (AFM)

- One-way flow AFM processing pushes abrasive media through the work piece in only one direction.
- two-way flow AFM process uses two vertically opposed cylinders to extrude an abrasive media back and forth through or around passages formed by the workpiece and tooling.
- Orbital AFM: surface and edge finishing are achieved by rapid, low-amplitude, oscillations of the work piece relative to a self-forming elastic plastic abrasive polishing tool.

Post-processing techniques: Fluidized bed machining

Journal of Materials Processing Technology 209 (2009) 6087–6102

Post-processing techniques: an overview

Magnetic

Flexible magnetic ⁄ abrasive brush

Laser Finishing

Figure 6. Examples of visual inspections upon laser surface modification (LSM) with laser beam wobbling, 2 mm amplitude at 400 Hz frequency: (**A**) flat-built; (**B**) 45°-built; and (**C**) upright-built samples.

Materials 2017, 10(1), 30; https://doi.org/10.3390/ma10010030

Specimen

J. Inst. Eng. India Ser. C (August 2018) 99(4):481-487

Magnetic Abrasive Finishing

N-Pole

S-Pole

Equipotential

line

Post-processing techniques: Electropolishing

Cathode (electrode)

Electrolyte

0

(a)

۲

۲

Hydrogen gas

ECP

Electropolishing can improve metal surface quality through electrochemical dissolution and levelling

International Journal of Precision Engineering and Manufacturing-Green Technology https://doi.org/10.1007/s40684-019-00019-2

(b)

Istituto Nazionale di Fisica Nucleare

Post-processing techniques: Electropolishing

Voltage (Volts)

The peaks dissolve faster than the valleys, which produces a leveling effect on the surface

Electropolishing and chemical polishing techniques have been developed to produce copper surfaces of Ra<20 nm.

Post Processing on 3DP Copper

Base			
Long, 6mm		Short, 1 mm	
Ra, nm	Rq, nm	Ra	Rq
10757	13832	8655	10457
12063	14733	11403	14499
11943	15151	12635	15690
~11588	~14572	~10898	~13548

3D-PRINTED SAMPLES

Ra ~11 µm

Copper 3DP in LNGS – INFN laboratory

Post Processing on 3DP Copper: TUMBLING

Parameters	Values
Time	24 h
Speed	~40 rev/min
Media quantity	~3500 ml
Water quantity	~1250 ml
Rodaclean soap quantity	5 ml

Sample Ra, nm (6 mm) Ra, nm (1mm) Tumbling 1 5600 6312 Tumbling 2 4294 5561 Tumbling non fixed 2691 3037 Avarage 4970 4195

MECHANICAL POLISHING

LISTITUTE OF A CONTRACT OF A C

Ra using tumbling : from ~ 11 µm to ~ 4,5 µm

Post Processing on 3DP Copper: Vibro-Tumbling

UNDER DEVELOPEMENT

Post Processing on 3DP Copper: Chemical Polishing

SUBU TREATMENT

Parameters	Value
Volume	4
Time	5 min
Sulfamic acid	5 g /l
Ammonium citrate	1 g/l
Hydrogen peroxide	50 ml/l
Butanol	50 ml/l

Sample	Ra, nm (6 mm)	Ra, nm (1mm)
SUBU avarage	9706	7843

Ra using Chemical Etching : from ~ 11 μm to ~ 8 μm

Post Processing on 3DP Copper: Electropolishing

EP, TO IMPROVE MICRO-ROUGHNESS

Parameters	Value
Volume	variable
Time	10-45 min
Phosphoric acid	60%
Butanol	40%
Working voltage /current density	Smart choose, based on conductivity value

Sample	Ra, nm (6 mm)	Ra, nm (1mm)	
UNDER MEASURMENT			

Post Processing on 3DP Copper: Fast Electrolpolishing

- Similar to electrochemistry (electrodes, solution and etc.)
- Absence of hazardous compounds
- Hight productivity & low time
- Higher metals spectre of treatment
- Perfect for planar and elliptical shapes
- Quick surface decontamination (from 30 seconds)
- Continuous polishing process
- removal of various contaminations (paints, oils, scales, rust/oxides, abrasive impurities)

Process time	Long, 6mm		Short, 1mm	
riocess time	Ra	Rq	Ra	Rq
12	1666	2087	639,5	784,28
8:30	1323	1855	975	1834

Ra using Chemical Etching : from ~ 11 μm to ~ 1 μm

Quality could be increased, by using pre-treatment mechanical polishing. The more we got better and smooth on both micro and macro – levels, the more polishing effect is possible to achieve.

Conclusion and comments

Chemical process seems to be very promising for reducing 3DP surface roughness.

Fast EP reduce in short time 3DP roughness

The surface treatments technologies can be converted to industrial application.

A combination of different process need to be further investigated for improving 3DP surface quality.

MASTER in SURFACE TREATMENTS for Industrial Applications A.Y. 2019/2020-17th edition

SURFACETREATMENTS.IT

Surface analysis techniques Vacuum, Ultra-hight vacuum PVD and CVD deposition techniques Chemical and Electrochemical finishing Additive manufacturing, 3D Cad drawing Protective, functional and decorative coatings

Master in Surface Treatments for **Industrial Applications**

- Organized by INFN and UNIPD •
- Registration Deadline: 03/10/2019
- More than 300 h of lectures plus • more than 400 h of practical activities in laboratory and/or industrial stage

For more info: keppel@Inl.infn.it martin@lnl.infn.it

https://www.unipd.it/corsi-master/surface-treatments-industrial-applications

www.surfacetreatments.org