CP VIOLATION IN THE CHARM SECTOR IN THE SM AND BEYOND

Luca Silvestrini CERN & INFN, Rome

- Introduction
- CP violation in D decays
- CPV in mixing: present and future
- Conclusions

Bounds on NP effective scale (Λ/JC) from $\Delta F=2$ processes

- No tree-level Flavour Changing Neutral Current in the SM
 - FCNC processes are finite and computable (at least in principle)
 - in the SM they arise at the loop level
 - New Physics can compete with SM
 - predictable once quark masses and Cabibbo Kobayashi-Maskawa mixing matrix known
 - CKM matrix can be extracted from tree-level processes

- CKM matrix is unitary, 3 angles and 1 phase
 - CKM phase generates CP violation in weak int.
- CKM matrix has hierarchical structure
 - can be expanded in a small parameter λ

$$V = \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3 (\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3 (1 - \overline{\rho} - i\overline{\eta}) & -A\lambda^2 & 1 \end{pmatrix} \qquad \begin{aligned} \lambda &= 0.2255 \pm 0.0005 \\ A &= 0.826 \pm 0.012 \\ \overline{\rho} &= 0.148 \pm 0.013 \\ \overline{\eta} &= 0.348 \pm 0.010 \end{aligned}$$

Pisa, 14/5/20

 CKM unitarity implies GIM cancellation of SM loop contributions to FCNCs:

$$- \mathcal{A}(u_i \to u_j) \propto \sum_k V_{jk} V_{ik}^* f\left(\frac{m_{d_k}^2}{m_W^2}\right)$$

- For $c \rightarrow u$ transitions:
 - $V_{ud}V_{cd}^* \sim \lambda$ and $m_d \ll m_D$ (long-distance)
 - $V_{us}V_{cs}^* \sim \lambda$ and $m_s \ll m_D$ (long-distance)
 - $V_{ub}V_{cb}^* \sim \lambda^5$ and $m_b \gg m_D$ (short-distance)

• CKM unitarity implies GIM cancellation of SM loop contributions to FCNCs:

$$- \mathcal{A}(u_i \to u_j) \propto \sum_k V_{jk} V_{ik}^* f\left(\frac{m_{d_k}^2}{m_W^2}\right)$$

- For $c \rightarrow u$ transitions:
 - $V_{ud}V_{cd}^* \sim \lambda$ and $m_d \ll m_D$ (long-distance)

-
$$V_{us}V_{cs}^* \sim \lambda$$
 and $m_s \ll m_D$ (long-distance)

-
$$V_{ub}V_{cb}^* \sim \lambda^5$$
 and $m_b \Rightarrow m_b$ (short-distance)
Negligible

- short-distance contribution of bottom quarks negligible in c \leftrightarrow u transitions
- effectively a two-generation theory with slightly non-unitary mixing matrix:
 - $-\lambda_{d} + \lambda_{s} = -\lambda_{b}$, where $\lambda_{q} = V_{cq} V_{uq}$
 - CP violation arises at $O(\lambda^4)$, suppressed by $r_{CKM} = Im(\lambda_b/\lambda_{d,s}) \approx 6.5 \ 10^{-4}$
 - GIM cancellation ⇔ s↔d ⇔ U-spin subgroup of SU(3)
 flavour symmetry of strong interactions

- Charm weak interactions described by the $\Delta C\text{=}1$ effective Hamiltonian:

$$\mathcal{H}_{\text{eff}}^{\Delta C=1} = \frac{4G_F}{\sqrt{2}} \sum_{i,j=1,2} V_{cd_i}^* V_{ud_j} \left(C_1 Q_1^{ij} + C_2 Q_2^{ij} \right) \qquad Q_{1,2}^{ij} \sim \bar{d}_i \gamma^{\mu} P_L c \bar{u} \gamma_{\mu} P_L d_j$$

- Cabibbo Allowed ($\propto V_{cs} * V_{ud}$) and Doubly Cabibbo-Suppressed ($\propto V_{cd} * V_{us}$) decays: real CKM factor up to $O(\lambda^5)$
- Singly Cabibbo Suppressed decays: CKM imaginary part at O(λ^5), r_{CKM} \approx 6.5 10-4
- ΔC =2 processes generated by two insertions of ΔC =1

CPV IN SCS DECAYS

• effective Hamiltonian for SCS decays:

$$\mathcal{H}_{\text{eff}}^{\text{SCS}} = \frac{2G_F}{\sqrt{2}} \left\{ \left(\lambda_d - \lambda_s \right) C_1 \left(Q_1^{dd} - Q_1^{ss} \right) + C_2 \left(Q_2^{dd} - Q_2^{ss} \right) \right\} \quad \Delta U=1$$
$$-\lambda_b \ C_1 \left(Q_1^{dd} + Q_1^{ss} \right) + C_2 \left(Q_2^{dd} + Q_2^{ss} \right) \right\} \quad \Delta U=0$$

• to get CPV in decay, i.e. $|A(D \rightarrow f)| \neq |A(\overline{D} \rightarrow \overline{f})|$, need λ_b and strong phase difference δ between contribution of $\Delta U=1$ and $\Delta U=0$ terms:

$$A_{CP} = r_{CKM} < \Delta U = 0 > / < \Delta U = 1 > \sin \delta$$

$\Delta I = \frac{1}{2} IN D DECAYS?$

- Perform isospin analysis of $D \rightarrow \pi\pi$ decays:
 - $|A_0| \sim 2 |A_2|$
 - $Arg(A_0/A_2) \sim 90^{\circ}$ Franco, Mishima & L.S. '12
- No $\Delta I = \frac{1}{2}$ rule, but maximal FSI effects
 - extremely tough for nonperturbative methods: Khodjamirian & Petrov '17; no quark-hadron duality on the resonance Chala et al '19
 - no dynamical assumption \Leftrightarrow no prediction

Muller, Nierste & Schacht '15; ...

- To cancel systematics (initial pp state), LHCb measures $\Delta A_{CP} = A_{CP}(K^+K^-) A_{CP}(\pi^+\pi^-)$
- Natural expectations in the SM:
 - $A_{CP}(KK) \sim -A_{CP}(\pi\pi) \sim O(r_{CKM} < \Delta U = 0 > / < \Delta U = 1 > \sin\delta) \sim r_{CKM}$ Brod, Kagan & Zupan '11
 - $\Delta A_{CP} \sim 2 r_{CKM} \sim 0.13 \%$

Franco, Mishima & L.S. '12

- LHCb result:
 - $\Delta A_{CP} = (-15.6 \pm 2.9) 10^{-4}$

CAN ΔA_{CP} BE NP?

• Need

$$\frac{C_{\rm NP}}{M_{\rm NP}^2} \sim \frac{4G_F}{\sqrt{2}} \lambda_b \Rightarrow \frac{M_{\rm NP}}{\sqrt{C_{NP}}} \sim 10^4 \,\rm GeV$$

• A double insertion of the NP $\Delta C=1$ operator generates a $\Delta C=2$ transition with amplitude

$$\left(\frac{C_{\rm NP}}{M_{\rm NP}^2}\right)^2 \frac{\Lambda^2}{16\pi^2} \sim 10^{-19} \Lambda^2 \,{\rm GeV}^{-4}$$

• The bound from CPV in D mixing requires $10^{-19}\Lambda^2 \text{GeV}^{-4} \le 10^{-14} \text{GeV}^{-2} \implies \Lambda \le 200 \text{ GeV}$

MOVING FORWARD FROM ΔA_{CP} : THEORY

- LHCb obtained a fantastic observation of ΔA_{CP} in the ballpark of the SM expectation
- Not yet clear which theory approach can do best; most promising ones imho:
 - assume FSI dominance + dynamical info on rescattering
 - assume SU(3) + hierarchy in SU(3)-breaking
 - get some dynamical info from LQCD

MOVING FORWARD FROM ΔA_{CP} : EXPERIMENT

- All SCS channels give precious information:
 - on SU(3) breaking
 - on FSI and strong dynamics
- individual $A_{CP}(\pi^+\pi^-)$, $A_{CP}(K^+K^-)$ and $A_{CP}(K_SK_S)$ crucial
- all PP, PV and VV relevant for phenomenological description of CPV in mixing

D-D MIXING

• D mixing is described by the T-product of two $\Delta C=1$ Hamiltonians:

D-D MIXING

- Dispersive D-D amplitude M₁₂ (off-shell intermediate states):
 - SM: long-distance dominated, not calculable
 - NP: short-distance, calculable on the lattice
- Absorptive D- \overline{D} amplitude Γ_{12} (on-shell intermediate states):
 - SM: long-distance, not calculable
 - NP: negligible
- Observables: M_{12} , Γ_{12} , Φ_{12} =arg(Γ_{12}/M_{12})

Discussion based on Grossman, Kagan, Ligeti, Perez, Petrov & LS, arXiv:19xx.xxxx Pisa, 14/5/2019 Luca Silvestrini 16

APPROXIMATE UNIVERSALITY

- CPV effects in $\Delta C=2$ amplitudes enhanced by $1/\epsilon$ (factor of 3-5)
- No enhancement expected (confirmed by ΔA_{CP}) for CPV in $\Delta C=1$ amplitudes
- Work at leading order in r_{CKM}/ϵ : take all decay amplitudes real, but allow for CPV in $\Delta C=2$, with SM~1/8° plus NP in M₁₂ only

APPROXIMATE UNIVERSALITY

- Working at linear order in r_{CKM}/ϵ , two different sources of CPV arise:
 - "dispersive CPV", measured by Φ_{M} = arg (M_{12}), sensitive to NP in ΔC =2;
 - "absorptive CPV", measured by Φ_{Γ} = arg (Γ_{12}), sensitive to CPV in decay amplitudes thanks to the U-spin enhancement;
- Can we disentangle the two phases? Can we test approximate universality?

UNIVERSALITY AT WORK

- Define $|D_{S,L}|=p|D^{0}|\pm q|D^{0}|$, $\delta_{CP}=(1-|q/p|^{2})/(1+|q/p|^{2})$, $x=\Delta m/\Gamma$ and $y=\Delta\Gamma/2\Gamma$
- For small CP violation ($\delta_{CP} \ll 1$) one has
 - $-\Delta m \sim 2|M_{12}|$
 - $-\Delta\Gamma \sim 2|\Gamma_{12}|$
 - $\delta_{CP} \sim xy/(x^2 + y^2) \sin \Phi_{12}$

UNIVERSALITY AT WORK

- For D^o decays to a CP eigenstate final state f, "direct" and "mixed" amplitudes interfere: relevant parameter is $\lambda_f = q/p \overline{A}_f/A_f$
- Introduce final-state dependent $\phi_f = arg(\Lambda_f) = arg(q/p \overline{A}_f/A_f)$
- Taking all decay amplitudes real,
 \$\phi_f=\$\phi=arg(q/p)\$

UNIVERSALITY AT WORK

- At zeroth order in r_{CKM}/ϵ , one has $\Phi_{\Gamma}=0$, $\Phi_{12}=arq(\Gamma_{12}/M_{12})=-\Phi_{M}, \phi_{f}=\phi=arg(q/p)$
- The relation $\Phi_{\Gamma} + \phi = \arg(y + i\delta_{CP}x)$ becomes $\phi = arg(y + i\delta_{CP}x)$: everything depends on x, y and δ_{CP} only
- Perform a universal fit for x, y and $\left|\frac{q}{p}\right|$, or equivalently for $|M_{12}|$, $|\Gamma_{12}|$ and Φ_{12}

Cluchini et al '07 Kagan, Sokoloff '09

- Combine all available experimental data assuming no CPV in decay amplitudes. For decays to CP eigenstates one has
- $$\begin{split} &\Gamma(D^{0}(t) \rightarrow f) \propto \exp[-\hat{\Gamma}_{D^{0} \rightarrow f} t] & \hat{\Gamma}_{D^{0} \rightarrow f} = \Gamma_{D}[1 + \eta_{f}^{\text{CP}} |q/p| (y \cos \phi x \sin \phi)] \\ &\Gamma(\overline{D^{0}}(t) \rightarrow f) \propto \exp[-\hat{\Gamma}_{\overline{D^{0}} \rightarrow f} t] & \hat{\Gamma}_{\overline{D^{0}} \rightarrow f} = \Gamma_{D}[1 + \eta_{f}^{\text{CP}} |p/q| (y \cos \phi + x \sin \phi)] \\ &A_{\Gamma} = \left(\left| \frac{q}{p} \right| \left| \frac{p}{q} \right| \right) \frac{y}{2} \cos \phi \left(\left| \frac{q}{p} \right| + \left| \frac{p}{q} \right| \right) \frac{x}{2} \sin \phi \\ \bullet \text{ New LHCb result presented at FPCP last} \end{split}$$

week:

 $A_{\Gamma}(K^+K^- + \pi^+\pi^-, 2011 - 2016) = (0.9 \pm 2.1 \pm 0.7) \times 10^{-4}$

- Combine all available experimental data assuming no CPV in decay amplitudes:
 - y_{CP} and A_{Γ} world average
 - $D^{\scriptscriptstyle 0} \to K_{\!\scriptscriptstyle s} \pi \pi$ from BaBar, Belle and LHCb
 - CLEO-c quantum correlated $D\!\to\!K\pi$
 - $D \rightarrow K\pi$ from BaBar, Belle, CDF and LHCb
 - $D \rightarrow K\pi\pi\pi$ from LHCb

APPROXIMATE UNIVERSALITY AT WORK

- At linear order in r_{CKM}/ϵ , one has $\Phi_{\Gamma} \neq 0$, $\Phi_{12} = \arg(\Gamma_{12}/M_{12}) = \Phi_{\Gamma} - \Phi_{M}$, but still $\phi_{f} = \phi = \arg(q/p)$
- Clever piece of work by A. Di Canto et al. : define and measure CP-averaged x_{CP} , y_{CP} and CP-violating differences Δx and $\Delta y = A_{\Gamma}$
- At this order,

 $-\Delta x \propto |\Gamma_{12}| \sin \Phi_{\Gamma}, \Delta y = A_{\Gamma} \propto |M_{12}| \sin \Phi_{M}$

CURRENT FIT RESULTS w. APPROXIMATE UNIVERSALITY

CURRENT FIT RESULTS w. APPROXIMATE UNIVERSALITY

CURRENT FIT RESULTS w. APPROXIMATE UNIVERSALITY

- Remarkable improvement: stringent constraints on the NP-sensitive $\Phi_{\rm M}$ even when allowing for nonvanishing $\Phi_{\rm \Gamma}$!!
- We are now ready to switch to approximate universality!
- What will be the impact of LHCb upgrade II?

ASSESSING THE IMPACT OF LHCb UPGRADE II

- Consider foreseen experimental improvements
- Determine global sensitivity to CPV parameters $\Phi_{\rm M}$ and $\Phi_{\rm \Gamma}$

EXP. INPUTS: $D \rightarrow K\pi$

• LHCb analysis for no direct CPV scaled by luminosity, correlation matrix kept fixed:

No direct CP violation							
Parameter	Value	R_D	y'^+	$(x'^{+})^{2}$	y'^-	$(x'^{-})^{2}$	
R_D	$3.454 \pm 0.028 \pm 0.014$	1.000	-0.883	0.745	-0.883	0.749	
y'^+	$5.01 \pm 0.48 \pm 0.29$		1.000	-0.944	0.758	-0.644	
$(x'^{+})^{2}$	$0.061 \pm 0.026 \pm 0.016$			1.000	-0.642	0.545	
y'^-	$5.54 \pm 0.48 \pm 0.29$				1.000	-0.946	
$(x'^{-})^{2}$	$0.016 \pm 0.026 \pm 0.016$					1.000	

Phys. Rev. D97 (2018) 031101

EXP. INPUTS: $D \rightarrow K_s \pi \pi$

 Latest LHCb result scaled by luminosity, correlation matrix kept fixed (statistical errors only)

Parameter	Value	Stat. correlations			Syst. correlations		
	$[10^{-3}]$	y_{CP}	Δx	Δy	y_{CP}	Δx	Δy
x_{CP}	$2.7 \pm 1.6 \pm 0.4$	-0.17	0.04	-0.02	0.15	0.01	-0.02
y_{CP}	$7.4 \pm 3.6 \pm 1.1$		-0.03	0.01		-0.05	-0.03
Δx	$-0.53 \pm 0.70 \pm 0.22$			-0.13			0.14
Δy	$0.6 \pm 1.6 \pm 0.3$						

arXiv:1903.03074

EXP. INPUTS: $D \rightarrow K\pi\pi\pi$

• Expected uncertainties from HL YR, correlation matrix invented due to lack of information (i.e. taken from CPV-allowed Belle $K_s \pi \pi$)

Sample (\mathcal{L})	Yield ($\times 10^6$)	$\sigma(x'_{K\pi\pi\pi})$	$\sigma(y'_{K\pi\pi\pi})$	$\sigma(q/p)$	$\sigma(\phi)$
Run 1-2 (9 fb $^{-1}$)	0.22	2.3×10^{-4}	2.3×10^{-4}	0.020	1.2°
Run 1-3 (23 fb ⁻¹)	1.29	0.9×10^{-4}	0.9×10^{-4}	0.008	0.5°
Run 1-4 (50fb^{-1})	3.36	0.6×10^{-4}	0.6×10^{-4}	0.005	0.3°
Run 1-5 (300fb^{-1})	22.5	0.2×10^{-4}	0.2×10^{-4}	0.002	0.1°

EXP. INPUTS: A_{Γ}

• Taken from HL YR:

Sample (L)	Tag	Yield K^+K^-	$\sigma(A_{\Gamma})_{K^{+}K^{-}}$	Yield $\pi^+\pi^-$	$\sigma(A_{\Gamma})_{\pi^+\pi^-}$
Run 1–2 (9 fb ⁻¹)	Prompt	60M	0.013%	18M	0.024%
Run 1–3 (23 fb ⁻¹)	Prompt	310M	0.0056%	92M	0.0104 %
Run 1–4 (50 fb $^{-1}$)	Prompt	793M	0.0035%	236M	0.0065 %
Run 1–5 (300 fb ⁻¹)	Prompt	5.3G	0.0014%	1.6G	0.0025 %

Luca Silvestrini

IMPACT OF INDIVIDUAL MEASUREMENTS

- All measurements:
 - $\delta(\phi_{\rm M}) = 0.06^{\circ}, \ \delta(\phi_{\Gamma}) = 0.1^{\circ}, \ \delta(\mathbf{x}) = 1.7 \ 10^{-5}, \ \delta(\mathbf{y}) = 1.9 \ 10^{-5}$
- No K_Sππ:
 - $\delta(\phi_{\rm M}) = 0.06^{\circ}$, $\delta(\phi_{\Gamma}) = 0.12^{\circ}$, $\delta(\mathbf{x}) = 2 \ 10^{-5}$, $\delta(\mathbf{y}) = 1.9 \ 10^{-5}$
- No Κπππ:
 - $\delta(\phi_{\rm M}) = 0.07^{\circ}$, $\delta(\phi_{\Gamma}) = 0.16^{\circ}$, $\delta(\mathbf{x}) = 3.7 \ 10^{-5}$, $\delta(\mathbf{y}) = 5.5 \ 10^{-5}$

SUMMARY OF MIXING PROJECTIONS

- Successfully reconstruct the input value with $\delta \Phi_{\rm M}$ = 0.06° and $\delta \Phi_{\rm \Gamma}$ = 0.1°
- LHCb Upgrade II will probe up to, and hopefully even into, the SM expectation!
- More than one order of magnitude for NP to show up in $\Phi_{\rm M}!$

CONCLUSIONS

- Amazing experimental progress in charm CPV recently achieved by LHCb:
 - observation of direct CPV in $\Delta A_{\mbox{\tiny CP}},$ in the ballpark of the SM
 - improvements in the D mixing fit, now starting to be viable also with approximate universality

OUTLOOK

- Very bright prospects for LHCb Upgrade II:
 - at least one order of magnitude of NP contributions to CPV in mixing to be explored
 - SM order of magnitude in Φ_M and Φ_{Γ} within reach!
 - very nice interplay with measurements of direct
 CP violation:
 - check of SM estimates for $\Phi_{\!\!\!\Gamma}$
 - very useful test of our understanding of D decay matrix elements

OUTLOOK II

- I'm sure that as always LHCb will do better than the most optimistic expectations
- Will be definitely difficult to keep the pace from the theory point of view
- With more data available, hopefully new ideas will allow us to find even more stringent tests of NP