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malization scales will be fixed at order Q0 and not
1/bT since there is no need for resummation of log-
arithms of the type ln(qT/Q0) or ln(bTQ0).

• We will nevertheless perform evolution to Q � Q0

in coordinate space, and switch to a ⇠ 1/bT scale,
but only at a later step.

• Also for Q ⇡ Q0, we will explicitly impose approx-
imate matching to the fixed order asymptotic be-
havior at qT ⇡ Q0.

• In nonperturbative parametrizations of TMD cor-
relation functions at Q = Q0, we will explicitly im-
pose a version of Eq. (3). We will do this in momen-
tum space with a large transverse momentum cuto↵
to regulate UV divergences and to match with what
is typically done in phenomenological models.

• Our approach will include an explicit interpolation
between purely nonperturbative and purely pertur-
bative descriptions of transverse momentum depen-
dence in the TMD correlation functions.

Along the way, we will highlight the advantages of these
choices by using explicit examples. At the end, we will
translate the expressions into forms that are more famil-
iar from standard TMD factorization implementations in
the CSS formalism.

We will start by reminding the reader of the basic setup
of TMD factorization and evolution in Sec. II. Section III
discusses the role of integral constraints for nonpertur-
bative parametrizations of TMD correlation functions in
more detail. Sections IV and V will focus on the details of
modeling nonperturbative parts of TMD functions at an
input scale Q0 and in momentum space. The steps for
using input parametrizations to evolve to higher scales
are summarized in a practical phenomenological recipe
in Sec. VI. In Sec. VII we use concrete toy examples to
illustrate the steps, including plots. In Sec. VIII we re-
turn the integral relation and discuss it in light of the
bottom-up approach. In Sec. IX we explain how to con-
nect the bottom-approach to standard CSS expressions.
We o↵er our concluding remarks in Sec. X.

Explaining some intermediate steps will require a more
pedantic system of notation than what is normally nec-
essary. To help the reader keep track of symbols and
conventions, we have therefore included a notation glos-
sary in Appendix A.

II. TMD FACTORIZATION AND EVOLUTION

We begin by reviewing some of the basic setup of TMD
factorization to establish context and introduce notation
for later sections. While all of what we discuss is meant
to apply to any of the basic processes for which there
are TMD factorization theorems, it will be instructive to
work within a specific example. For this we will use semi-
inclusive annihilation (SIA) of a lepton-antilepton pair

(usually electron-positron) into a pair of nearly back-to-
back hadrons with a sum over all other final state parti-
cles X,

e�(l) + e+(l̄) ! HA(pA) +HB(pB) +X . (7)

A quark-antiquark pair is produced in the hard vertex,
and hadrons HA and HB are measured in the final state.
This is among the simplest processes to work with theo-
retically, and it is ideal for illustrating the basics of TMD
factorization. (See, for example, the discussion in chapter
13 of Ref. [3].)

The process is illustrated graphically in Figure 1: An
electron (l) and a positron (l̄) annihilate to create a
virtual photon of momenta q, which creates a quark-
antiquark pair. The two hadrons measured in the final
state with momenta pA and pB are then produced when
partons A and B fragment. The momentum of the vir-
tual photon sets the hard scale of the process Q, with
q2 ⌘ Q2. See also Refs.[69–71] for more details about
the general kinematical setup.

In a reference frame where the hadrons are back-to-
back, the transverse momentum of the photon qT is
the relevant observed final state transverse momentum.
When it is small relative to the hard scale, qT ⌧ Q, it is
sensitive to intrinsic transverse momenta of the hadroniz-
ing quark and antiquark respectively. The usual Lorentz
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FIG. 1: Schematic of the semi-inclusive e
+
e
�-annihilation

process.

invariant kinematic variables related to collinear momen-
tum fractions are

zA =
pA · pB
q · pB

⇡
p+A,h

q+h
, zB =

pA · pB
q · pA

⇡
p�B,h

q�h
(8)

where the “⇡” means we drop terms that are power sup-
pressed in the current fragmentation region (by which we
mean zA and zB are fixed and not too small relative to
1). The “h” subscripts on lightcone momentum compo-
nents indicate that they are with respect to the hadron
frame.

In TMD factorization, the unpolarized cross section
di↵erential in zA, zB and q2

T
is written [3]
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Q2
d�A,B

dzA dzB dq2
T

= Hjj̄(µQ;C2)

Z
d2kAT d2kBT Dj/A

�
zA, zAkAT;µQ, Q

2
�
Dj̄/B

�
zB , zBkBT;µQ, Q

2
�
�(2) (qT � kAT � kBT)+

Y A,B(qT, Q;µQ) +O (m/Q) . (9)

The second line has the familiar form from the TMD
parton model, but with extra auxiliary arguments for
evolution. The capital Dj/A and Dj̄/B are the TMD ↵s
for a quark of flavor j (j̄) to fragment into hadron A (B).
A sum over flavors is implied.

In addition to the longitudinal and transverse parton
momentum arguments zA,B and kA,BT, the TMD ↵s also
depend on a renormalization group scale µ and a rapid-
ity evolution scale ⇣, which in Eq. (9) we have already
fixed equal to µ = µQ ⌘ C2Q and ⇣ = Q2 to optimize
perturbation theory. Here, C2 is an arbitrary numeri-
cal constant of order unity. (Throughout this paper, we
will assume C2 = 1.) H(µQ;C2) is a hard factor of the
form H = 1+O (↵s (µQ)), up to an uninteresting overall
constant. The Y (qT, Q)-term on the last line is an abbre-
viation for the correction needed for the qT ⇡ Q behav-
ior, and it is calculable entirely in fixed order collinear
factorization. The second line in Eq. (14) is exactly the
TMD parton model familiar from typical Type I appli-

cations if we drop the auxiliary µ and ⇣ arguments and
set H(µQ;C2) = 1.

We will focus on a very specific combination of phys-
ical observables in order to simplify later illustrative ex-
amples. Say that hadron A is h+ and hadron B is its
antiparticle h�. Then we can consider the combination

d�NS

dzA dzB dq2
T

=

d�h+,h�

dzA dzB dq2
T

+
d�h�,h+

dzA dzB dq2
T

� d�h+,h+

dzA dzB dq2
T

� d�h�,h�

dzA dzB dq2
T

. (10)

We will also consider only the j = “up quark” contribu-
tion to Eq. (9). Then, summing the corresponding terms
on the right hand side of Eq. (9) gives

Huū(µQ;C2)

Z
d2kAT d2kBT

⇥
Du/h+

�
zA, zAkAT;µQ, Q

2
�
�Du/h�

�
zA, zAkAT;µQ, Q

2
�⇤

⇥
⇥
Dū/h�

�
zB , zBkBT;µQ, Q

2
�
�Dū/h+

�
zB , zBkBT;µQ, Q

2
�⇤

�(2) (qT � kAT � kBT)

+ Y NS(qT, Q;µQ) +O (m/Q) . (11)

Then we can define non-singlet TMD fragmentation functions,

DA

�
zA, zAkAT;µQ, Q

2
�
⌘ Dj/h+

�
zA, zAkAT;µQ, Q

2
�
�Dj/h�

�
zA, zAkAT;µQ, Q

2
�

(12)

DB

�
zB , zBkBT;µQ, Q

2
�
⌘ Dj̄/h�

�
zB , zBkBT;µQ, Q

2
�
�Dj̄/h+

�
zB , zBkBT;µQ, Q

2
�
. (13)

And, we can drop the j index for the rest of this paper and rewrite Eq. (9) in a more abbreviated way as

Q2
d�NS

dzA dzB dq2
T

= H(µQ;C2)

Z
d2kAT d2kBT DA

�
zA, zAkAT;µQ, Q

2
�
DB

�
zB , zBkBT;µQ, Q

2
�
�(2) (qT � kAT � kBT)

+ Y NS(qT, Q;µQ) +O (m/Q) . (14)

Our results are general and independent of the specific
hadrons in the final state, but organizing the discussion
around this channel will simplify illustrative example cal-

culations later on by allowing us to drop explicit flavor
indices and consider only non-singlet ↵s in parts of calcu-
lations that involve collinear DGLAP evolution. Specifi-

Large qT Corrections 
 important but focus on W for now. 

Consider 

CSS formalism  
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W (qT, Q) = H(↵s(µQ);C2)

Z
d2bT
(2⇡)2

e�iqT·bT D̃A(zA, bT;µQ0 , Q
2

0
) D̃B(zB , bT;µQ0 , Q

2

0
)

⇥ exp

(
K̃(bT;µQ0) ln

✓
Q2

Q2
0

◆
+

Z µQ

µQ0

dµ0

µ0


2�(↵s(µ

0); 1)� ln
Q2

µ02 �K(↵s(µ
0))

�)
. (20)

We could express the same evolved W with TMD ↵s
in transverse momentum space, and in some cases that
might help with intuition since it more closely matches
the TMD parton model. But then the Fourier transforms
of simple factors become transverse momentum convolu-

tion integrals of several functions. For the purposes of
implementing evolution, we will continue to work with
Eq. (20) in coordinate space, as is normally done.
When Q = Q0, Eq. (20) exactly reproduces the TMD

parton model form of the factorization,

W (qT, Q0) = H(µQ0 ;C2)

Z
d2bT
(2⇡)2

e�iqT·bT D̃A(zA, bT;µQ0 , Q
2

0
) D̃B(zB , bT;µQ0 , Q

2

0
)

= H(µQ0 ;C2)

Z
d2kAT d2kBT DA

�
zA, zAkAT;µQ0 , Q

2

0

�
DB

�
zB , zBkBT;µQ0 , Q

2

0

�
�(2) (qT � kAT � kBT) .

(21)

So far, Eq. (20) and Eq. (21) still involve no approxi-
mations at all on the W -term. However, approximations
are ultimately necessary, of course, for getting practical
results.

Rather di↵erent kinds of approximations to Eq. (20)
can enter in a number of di↵erent ways, so the language
can become confusing. We will be as precise as possible
with our wording here. There are at least four di↵erent
types of approximation that generally take place simul-
taneously, including

1. The choices of models, assumptions, or approxi-
mations used to describe nonperturbative contri-
butions,

2. The neglect of power suppressed corrections to fac-
torization, like the last term in Eq. (14),

3. Truncation of high powers of ↵s in perturbative
parts of the calculation and,

4. In phenomenological applications involving fits,
whatever assumptions and approximations are used
at the level of fit extractions.

When we discuss an “nth-order” perturbative treatment,
we will mean by this that all parts that are calcula-
ble in fixed order perturbative QCD have been included
through order n, and they are optimized using the renor-
malization group and Collins-Soper evolution (Eq. (17)).
These “perturbative parts” include the right sides of
Eqs. (17)–(19), which in Eq. (20) appear as �K(↵s(µ0)),
�(↵s(µ0); 1) and K̃(bT;µQ0) when bT (or kT) is small

(large) enough that its bT-dependence is perturbative. In
Eq. (20) it also includesH(µQ;C2) and the D̃A, D̃B func-
tions in regions of small bT (or large kT). An “(n)” super-
script on a function means that it has been replaced by
its truncated, fixed order perturbation theory calculation
through order n. When we discuss nonperturbative parts
in later sections, it should be understood to be in the con-
text of phenomenological extractions. We will assume for
the sake of our discussion here that all nonperturbative
parametrizations have been made flexible enough that
the significant errors come only from the limitations of
factorization and truncated perturbation theory, and not
from a poor choice of nonperturbative parametrizations
or artifacts of the fitting procedure. Thus, a function like

D̃(n)
A should be read as “a D̃A parametrization including

nonperturbative parts extracted from measurements and
using an nth-order perturbation theory treatment for its
perturbative ingredients.”

Also, when we use the phrase “nonperturbative part,”
(e.g., the g-functions of the CSS formalism) it should gen-
erally be understood that we are not necessarily referring
to parts of a calculation that cannot ever be improved
with small coupling techniques. It only refers to contri-
butions that we choose to exclude from those factors that
we explicitly identify as perturbative.

Now consider how one might use Eq. (20) to do phe-
nomenology in a Type I scenario and from a bottom-up
perspective. Near the input scale, Q ⇡ Q0, the evolu-
tion factor on the second line is nearly unity and we can,
to a good approximation, just work with Eq. (21). If
Q0 is only of order ⇠ 1 � 2 GeV, then a phenomenolog-

  W term

At Q0=Q resembles parton model picture 



9

W (qT, Q) = H(↵s(µQ);C2)

Z
d2bT
(2⇡)2

e�iqT·bT D̃A(zA, bT;µQ0 , Q
2

0
) D̃B(zB , bT;µQ0 , Q

2

0
)

⇥ exp

(
K̃(bT;µQ0) ln

✓
Q2

Q2
0

◆
+

Z µQ

µQ0

dµ0

µ0


2�(↵s(µ

0); 1)� ln
Q2

µ02 �K(↵s(µ
0))

�)
. (20)

We could express the same evolved W with TMD ↵s
in transverse momentum space, and in some cases that
might help with intuition since it more closely matches
the TMD parton model. But then the Fourier transforms
of simple factors become transverse momentum convolu-

tion integrals of several functions. For the purposes of
implementing evolution, we will continue to work with
Eq. (20) in coordinate space, as is normally done.
When Q = Q0, Eq. (20) exactly reproduces the TMD

parton model form of the factorization,

W (qT, Q0) = H(µQ0 ;C2)

Z
d2bT
(2⇡)2

e�iqT·bT D̃A(zA, bT;µQ0 , Q
2

0
) D̃B(zB , bT;µQ0 , Q

2

0
)

= H(µQ0 ;C2)

Z
d2kAT d2kBT DA

�
zA, zAkAT;µQ0 , Q

2

0

�
DB

�
zB , zBkBT;µQ0 , Q

2

0

�
�(2) (qT � kAT � kBT) .

(21)

So far, Eq. (20) and Eq. (21) still involve no approxi-
mations at all on the W -term. However, approximations
are ultimately necessary, of course, for getting practical
results.

Rather di↵erent kinds of approximations to Eq. (20)
can enter in a number of di↵erent ways, so the language
can become confusing. We will be as precise as possible
with our wording here. There are at least four di↵erent
types of approximation that generally take place simul-
taneously, including

1. The choices of models, assumptions, or approxi-
mations used to describe nonperturbative contri-
butions,

2. The neglect of power suppressed corrections to fac-
torization, like the last term in Eq. (14),

3. Truncation of high powers of ↵s in perturbative
parts of the calculation and,

4. In phenomenological applications involving fits,
whatever assumptions and approximations are used
at the level of fit extractions.

When we discuss an “nth-order” perturbative treatment,
we will mean by this that all parts that are calcula-
ble in fixed order perturbative QCD have been included
through order n, and they are optimized using the renor-
malization group and Collins-Soper evolution (Eq. (17)).
These “perturbative parts” include the right sides of
Eqs. (17)–(19), which in Eq. (20) appear as �K(↵s(µ0)),
�(↵s(µ0); 1) and K̃(bT;µQ0) when bT (or kT) is small

(large) enough that its bT-dependence is perturbative. In
Eq. (20) it also includesH(µQ;C2) and the D̃A, D̃B func-
tions in regions of small bT (or large kT). An “(n)” super-
script on a function means that it has been replaced by
its truncated, fixed order perturbation theory calculation
through order n. When we discuss nonperturbative parts
in later sections, it should be understood to be in the con-
text of phenomenological extractions. We will assume for
the sake of our discussion here that all nonperturbative
parametrizations have been made flexible enough that
the significant errors come only from the limitations of
factorization and truncated perturbation theory, and not
from a poor choice of nonperturbative parametrizations
or artifacts of the fitting procedure. Thus, a function like

D̃(n)
A should be read as “a D̃A parametrization including

nonperturbative parts extracted from measurements and
using an nth-order perturbation theory treatment for its
perturbative ingredients.”

Also, when we use the phrase “nonperturbative part,”
(e.g., the g-functions of the CSS formalism) it should gen-
erally be understood that we are not necessarily referring
to parts of a calculation that cannot ever be improved
with small coupling techniques. It only refers to contri-
butions that we choose to exclude from those factors that
we explicitly identify as perturbative.

Now consider how one might use Eq. (20) to do phe-
nomenology in a Type I scenario and from a bottom-up
perspective. Near the input scale, Q ⇡ Q0, the evolu-
tion factor on the second line is nearly unity and we can,
to a good approximation, just work with Eq. (21). If
Q0 is only of order ⇠ 1 � 2 GeV, then a phenomenolog-

31

D̃A(z, bT;µ, ⇣) = D̃A(z, b⇤;µ, ⇣) exp

⇢
�gA(z, bT)� gK(bT) ln

✓p
⇣

Q0

◆�

= D̃A(z, b⇤;µb⇤ , µ
2

b⇤) exp

(Z µ

µb⇤

dµ0

µ0


�(↵s(µ

0); 1)� ln

p
⇣

µ0 �K(↵s(µ
0))

�
+ ln

p
⇣

µb⇤

K̃(b⇤;µb⇤)

)

⇥ exp

⇢
�gA(z, bT)� gK(bT) ln

✓p
⇣

Q0

◆�
. (109)

Recall that µb⇤ is defined in Eq. (102). There is of course an exactly analogous equation for D̃B(z, b⇤;µb⇤ , µ
2

b⇤
).

Substituting the evolved versions of D̃A(z, b⇤;µb⇤ , µ
2

b⇤
) and D̃B(z, b⇤;µb⇤ , µ

2

b⇤
) into the W -term factorization formula

Eq. (15) and setting the final scales equal to µ = µQ and ⇣ = Q2 in Eq. (15) gives

W (qT, Q) = H(µQ;C2)

Z
d2bT
(2⇡)2

e�iqT·bTD̃A(zA, b⇤;µb⇤ , µ
2

b⇤)D̃B(zB , b⇤;µb⇤ , µ
2

b⇤)

⇥ exp

(
2

Z µQ

µb⇤

dµ0

µ0


�(↵s(µ

0); 1)� ln
Q

µ0 �K(↵s(µ
0))

�
+ ln

Q2

µ2

b⇤

K̃(b⇤;µb⇤)

)

⇥ exp

⇢
�gA(zA, bT)� gB(zB , bT)� gK(bT) ln

✓
Q2

Q2
0

◆�
. (110)

Equation (110) is very close to the standard way of ex-
pressing the CSS-evolved W -term.3 As we have writ-
ten it, there are still no approximations; the solutions
to the evolution equations are exact and the steps above
simply reorganize the original factorization formula in
Eq. (15). However, by writing W (qT, Q) as in Eq. (110),
we have isolated on the first two lines those factors that
can be confidently approximated in perturbation theory
using collinear factorization. The value of bT never rises
above bmax and the scale µb⇤ never drops below C1/bmax.
Therefore, one obtains well-behaved perturbative calcu-
lations by replacing H(µQ;C2), �(↵s(µ0); 1), �K(↵s(µ0))
and K̃(b⇤;µb⇤) by their nth-order perturbative calcula-
tions.

For the TMD ↵s themselves on the first line, the choice
of µ =

p
⇣ = µb⇤ implements RG improvement for the

limit of small bT. As long as bmax is small enough,
D̃A,B(zA,B , b⇤;µb⇤ , µ

2

b⇤
) can be expanded in an OPE:

D̃(n,dr)(z, b⇤;µb⇤ , µ
2

b⇤)

=

Z
1

z

dẑ

ẑ3�2✏
dr(ẑ;µb⇤)C̃

(n)
D (z/ẑ, bT;µ

2

b⇤ , µb⇤ ,↵s(µb⇤))

+O (mbT) , (111)

which is a more explicit version of Eq. (25) but in
bT-space. (Here, as usual, m represents any of the

3 There are, however, a large number of minor but not always
obvious variations in the form of the expression in the literature.
There are also many di↵erent systems of notation. See [38] for
some translation.

small intrinsic mass scales, including now 1/bmax.) Sub-
stituting Eq. (111) for both D̃A(zA, b⇤;µb⇤ , µ

2

b⇤
) and

D̃B(zB , b⇤;µb⇤ , µ
2

b⇤
), along with the other perturbative

approximations mentioned above, recovers the standard
CSS expression – compare, for example, with the Drell-
Yan version of TMD factorization in Eq. (22) of [65].
The b⇤ method, as it is explained here, has several de-

sirable properties. There is the elegant feature that, in
dealing with the nonperturbative region of large bT, one
never modifies or approximates the operator definitions
of the TMD ↵s themselves. Rather, on the first line of
Eq. (110) we have simply changed their arguments from
bT to b⇤. Along the same lines, the g-functions on the last
line have explicit definitions in terms of the underlying
QCD operators. The final result for the cross section,
Eq. (110), is exactly independent of the choice of the
b⇤(bT) function in Eq. (100) or of the value of parame-
ters like bmax. Since changing them simply amounts to
reshu✏ing contributions between the perturbative and
non-perturbative factors, the b⇤-independence is a ver-
sion of RG invariance that we can express as

d

dbmax

W (qT, Q) = 0 . (112)

Or, if we consider other more general b⇤(bT) functions
determined by a collection of possibly many parameters
{b-params}, we can express the same relation schemati-
cally as

d

d{b-params}W (qT, Q) = 0 . (113)

These relations are exact for Eq. (110). Therefore, it is le-
gitimate to say that perturbative calculations of the first

WOPE (pQCD)

  W term  (with pQCD constraints from WOPE)
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W (qT, Q) = H(↵s(µQ);C2)

Z
d2bT
(2⇡)2

e�iqT·bT D̃A(zA, bT;µQ0 , Q
2

0
) D̃B(zB , bT;µQ0 , Q

2

0
)

⇥ exp

(
K̃(bT;µQ0) ln

✓
Q2

Q2
0

◆
+

Z µQ

µQ0

dµ0

µ0


2�(↵s(µ

0); 1)� ln
Q2

µ02 �K(↵s(µ
0))

�)
. (20)

We could express the same evolved W with TMD ↵s
in transverse momentum space, and in some cases that
might help with intuition since it more closely matches
the TMD parton model. But then the Fourier transforms
of simple factors become transverse momentum convolu-

tion integrals of several functions. For the purposes of
implementing evolution, we will continue to work with
Eq. (20) in coordinate space, as is normally done.
When Q = Q0, Eq. (20) exactly reproduces the TMD

parton model form of the factorization,

W (qT, Q0) = H(µQ0 ;C2)

Z
d2bT
(2⇡)2

e�iqT·bT D̃A(zA, bT;µQ0 , Q
2

0
) D̃B(zB , bT;µQ0 , Q

2

0
)

= H(µQ0 ;C2)

Z
d2kAT d2kBT DA

�
zA, zAkAT;µQ0 , Q

2

0

�
DB

�
zB , zBkBT;µQ0 , Q

2

0

�
�(2) (qT � kAT � kBT) .

(21)

So far, Eq. (20) and Eq. (21) still involve no approxi-
mations at all on the W -term. However, approximations
are ultimately necessary, of course, for getting practical
results.

Rather di↵erent kinds of approximations to Eq. (20)
can enter in a number of di↵erent ways, so the language
can become confusing. We will be as precise as possible
with our wording here. There are at least four di↵erent
types of approximation that generally take place simul-
taneously, including

1. The choices of models, assumptions, or approxi-
mations used to describe nonperturbative contri-
butions,

2. The neglect of power suppressed corrections to fac-
torization, like the last term in Eq. (14),

3. Truncation of high powers of ↵s in perturbative
parts of the calculation and,

4. In phenomenological applications involving fits,
whatever assumptions and approximations are used
at the level of fit extractions.

When we discuss an “nth-order” perturbative treatment,
we will mean by this that all parts that are calcula-
ble in fixed order perturbative QCD have been included
through order n, and they are optimized using the renor-
malization group and Collins-Soper evolution (Eq. (17)).
These “perturbative parts” include the right sides of
Eqs. (17)–(19), which in Eq. (20) appear as �K(↵s(µ0)),
�(↵s(µ0); 1) and K̃(bT;µQ0) when bT (or kT) is small

(large) enough that its bT-dependence is perturbative. In
Eq. (20) it also includesH(µQ;C2) and the D̃A, D̃B func-
tions in regions of small bT (or large kT). An “(n)” super-
script on a function means that it has been replaced by
its truncated, fixed order perturbation theory calculation
through order n. When we discuss nonperturbative parts
in later sections, it should be understood to be in the con-
text of phenomenological extractions. We will assume for
the sake of our discussion here that all nonperturbative
parametrizations have been made flexible enough that
the significant errors come only from the limitations of
factorization and truncated perturbation theory, and not
from a poor choice of nonperturbative parametrizations
or artifacts of the fitting procedure. Thus, a function like

D̃(n)
A should be read as “a D̃A parametrization including

nonperturbative parts extracted from measurements and
using an nth-order perturbation theory treatment for its
perturbative ingredients.”

Also, when we use the phrase “nonperturbative part,”
(e.g., the g-functions of the CSS formalism) it should gen-
erally be understood that we are not necessarily referring
to parts of a calculation that cannot ever be improved
with small coupling techniques. It only refers to contri-
butions that we choose to exclude from those factors that
we explicitly identify as perturbative.

Now consider how one might use Eq. (20) to do phe-
nomenology in a Type I scenario and from a bottom-up
perspective. Near the input scale, Q ⇡ Q0, the evolu-
tion factor on the second line is nearly unity and we can,
to a good approximation, just work with Eq. (21). If
Q0 is only of order ⇠ 1 � 2 GeV, then a phenomenolog-
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D̃A(z, bT;µ, ⇣) = D̃A(z, b⇤;µ, ⇣) exp

⇢
�gA(z, bT)� gK(bT) ln

✓p
⇣

Q0

◆�

= D̃A(z, b⇤;µb⇤ , µ
2

b⇤) exp

(Z µ

µb⇤

dµ0

µ0


�(↵s(µ

0); 1)� ln

p
⇣

µ0 �K(↵s(µ
0))

�
+ ln

p
⇣

µb⇤

K̃(b⇤;µb⇤)

)

⇥ exp

⇢
�gA(z, bT)� gK(bT) ln

✓p
⇣

Q0

◆�
. (109)

Recall that µb⇤ is defined in Eq. (102). There is of course an exactly analogous equation for D̃B(z, b⇤;µb⇤ , µ
2

b⇤
).

Substituting the evolved versions of D̃A(z, b⇤;µb⇤ , µ
2

b⇤
) and D̃B(z, b⇤;µb⇤ , µ

2

b⇤
) into the W -term factorization formula

Eq. (15) and setting the final scales equal to µ = µQ and ⇣ = Q2 in Eq. (15) gives

W (qT, Q) = H(µQ;C2)

Z
d2bT
(2⇡)2

e�iqT·bTD̃A(zA, b⇤;µb⇤ , µ
2

b⇤)D̃B(zB , b⇤;µb⇤ , µ
2

b⇤)

⇥ exp

(
2

Z µQ

µb⇤

dµ0

µ0


�(↵s(µ

0); 1)� ln
Q

µ0 �K(↵s(µ
0))

�
+ ln

Q2

µ2

b⇤

K̃(b⇤;µb⇤)

)

⇥ exp

⇢
�gA(zA, bT)� gB(zB , bT)� gK(bT) ln

✓
Q2

Q2
0

◆�
. (110)

Equation (110) is very close to the standard way of ex-
pressing the CSS-evolved W -term.3 As we have writ-
ten it, there are still no approximations; the solutions
to the evolution equations are exact and the steps above
simply reorganize the original factorization formula in
Eq. (15). However, by writing W (qT, Q) as in Eq. (110),
we have isolated on the first two lines those factors that
can be confidently approximated in perturbation theory
using collinear factorization. The value of bT never rises
above bmax and the scale µb⇤ never drops below C1/bmax.
Therefore, one obtains well-behaved perturbative calcu-
lations by replacing H(µQ;C2), �(↵s(µ0); 1), �K(↵s(µ0))
and K̃(b⇤;µb⇤) by their nth-order perturbative calcula-
tions.

For the TMD ↵s themselves on the first line, the choice
of µ =

p
⇣ = µb⇤ implements RG improvement for the

limit of small bT. As long as bmax is small enough,
D̃A,B(zA,B , b⇤;µb⇤ , µ

2

b⇤
) can be expanded in an OPE:

D̃(n,dr)(z, b⇤;µb⇤ , µ
2

b⇤)

=

Z
1

z

dẑ

ẑ3�2✏
dr(ẑ;µb⇤)C̃

(n)
D (z/ẑ, bT;µ

2

b⇤ , µb⇤ ,↵s(µb⇤))

+O (mbT) , (111)

which is a more explicit version of Eq. (25) but in
bT-space. (Here, as usual, m represents any of the

3 There are, however, a large number of minor but not always
obvious variations in the form of the expression in the literature.
There are also many di↵erent systems of notation. See [38] for
some translation.

small intrinsic mass scales, including now 1/bmax.) Sub-
stituting Eq. (111) for both D̃A(zA, b⇤;µb⇤ , µ

2

b⇤
) and

D̃B(zB , b⇤;µb⇤ , µ
2

b⇤
), along with the other perturbative

approximations mentioned above, recovers the standard
CSS expression – compare, for example, with the Drell-
Yan version of TMD factorization in Eq. (22) of [65].
The b⇤ method, as it is explained here, has several de-

sirable properties. There is the elegant feature that, in
dealing with the nonperturbative region of large bT, one
never modifies or approximates the operator definitions
of the TMD ↵s themselves. Rather, on the first line of
Eq. (110) we have simply changed their arguments from
bT to b⇤. Along the same lines, the g-functions on the last
line have explicit definitions in terms of the underlying
QCD operators. The final result for the cross section,
Eq. (110), is exactly independent of the choice of the
b⇤(bT) function in Eq. (100) or of the value of parame-
ters like bmax. Since changing them simply amounts to
reshu✏ing contributions between the perturbative and
non-perturbative factors, the b⇤-independence is a ver-
sion of RG invariance that we can express as

d

dbmax

W (qT, Q) = 0 . (112)

Or, if we consider other more general b⇤(bT) functions
determined by a collection of possibly many parameters
{b-params}, we can express the same relation schemati-
cally as

d

d{b-params}W (qT, Q) = 0 . (113)

These relations are exact for Eq. (110). Therefore, it is le-
gitimate to say that perturbative calculations of the first

Models characterizing 
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W (qT, Q) = H(↵s(µQ);C2)

Z
d2bT
(2⇡)2

e�iqT·bT D̃A(zA, bT;µQ0 , Q
2
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2

0
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⇥ exp

(
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Q2
0

◆
+

Z µQ
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0); 1)� ln
Q2

µ02 �K(↵s(µ
0))

�)
. (20)

We could express the same evolved W with TMD ↵s
in transverse momentum space, and in some cases that
might help with intuition since it more closely matches
the TMD parton model. But then the Fourier transforms
of simple factors become transverse momentum convolu-

tion integrals of several functions. For the purposes of
implementing evolution, we will continue to work with
Eq. (20) in coordinate space, as is normally done.
When Q = Q0, Eq. (20) exactly reproduces the TMD

parton model form of the factorization,

W (qT, Q0) = H(µQ0 ;C2)

Z
d2bT
(2⇡)2

e�iqT·bT D̃A(zA, bT;µQ0 , Q
2

0
) D̃B(zB , bT;µQ0 , Q

2

0
)

= H(µQ0 ;C2)

Z
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�
zA, zAkAT;µQ0 , Q

2

0

�
DB

�
zB , zBkBT;µQ0 , Q

2

0

�
�(2) (qT � kAT � kBT) .

(21)

So far, Eq. (20) and Eq. (21) still involve no approxi-
mations at all on the W -term. However, approximations
are ultimately necessary, of course, for getting practical
results.

Rather di↵erent kinds of approximations to Eq. (20)
can enter in a number of di↵erent ways, so the language
can become confusing. We will be as precise as possible
with our wording here. There are at least four di↵erent
types of approximation that generally take place simul-
taneously, including

1. The choices of models, assumptions, or approxi-
mations used to describe nonperturbative contri-
butions,

2. The neglect of power suppressed corrections to fac-
torization, like the last term in Eq. (14),

3. Truncation of high powers of ↵s in perturbative
parts of the calculation and,

4. In phenomenological applications involving fits,
whatever assumptions and approximations are used
at the level of fit extractions.

When we discuss an “nth-order” perturbative treatment,
we will mean by this that all parts that are calcula-
ble in fixed order perturbative QCD have been included
through order n, and they are optimized using the renor-
malization group and Collins-Soper evolution (Eq. (17)).
These “perturbative parts” include the right sides of
Eqs. (17)–(19), which in Eq. (20) appear as �K(↵s(µ0)),
�(↵s(µ0); 1) and K̃(bT;µQ0) when bT (or kT) is small

(large) enough that its bT-dependence is perturbative. In
Eq. (20) it also includesH(µQ;C2) and the D̃A, D̃B func-
tions in regions of small bT (or large kT). An “(n)” super-
script on a function means that it has been replaced by
its truncated, fixed order perturbation theory calculation
through order n. When we discuss nonperturbative parts
in later sections, it should be understood to be in the con-
text of phenomenological extractions. We will assume for
the sake of our discussion here that all nonperturbative
parametrizations have been made flexible enough that
the significant errors come only from the limitations of
factorization and truncated perturbation theory, and not
from a poor choice of nonperturbative parametrizations
or artifacts of the fitting procedure. Thus, a function like

D̃(n)
A should be read as “a D̃A parametrization including

nonperturbative parts extracted from measurements and
using an nth-order perturbation theory treatment for its
perturbative ingredients.”

Also, when we use the phrase “nonperturbative part,”
(e.g., the g-functions of the CSS formalism) it should gen-
erally be understood that we are not necessarily referring
to parts of a calculation that cannot ever be improved
with small coupling techniques. It only refers to contri-
butions that we choose to exclude from those factors that
we explicitly identify as perturbative.

Now consider how one might use Eq. (20) to do phe-
nomenology in a Type I scenario and from a bottom-up
perspective. Near the input scale, Q ⇡ Q0, the evolu-
tion factor on the second line is nearly unity and we can,
to a good approximation, just work with Eq. (21). If
Q0 is only of order ⇠ 1 � 2 GeV, then a phenomenolog-
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Recall that µb⇤ is defined in Eq. (102). There is of course an exactly analogous equation for D̃B(z, b⇤;µb⇤ , µ
2

b⇤
).

Substituting the evolved versions of D̃A(z, b⇤;µb⇤ , µ
2

b⇤
) and D̃B(z, b⇤;µb⇤ , µ

2

b⇤
) into the W -term factorization formula

Eq. (15) and setting the final scales equal to µ = µQ and ⇣ = Q2 in Eq. (15) gives

W (qT, Q) = H(µQ;C2)
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Equation (110) is very close to the standard way of ex-
pressing the CSS-evolved W -term.3 As we have writ-
ten it, there are still no approximations; the solutions
to the evolution equations are exact and the steps above
simply reorganize the original factorization formula in
Eq. (15). However, by writing W (qT, Q) as in Eq. (110),
we have isolated on the first two lines those factors that
can be confidently approximated in perturbation theory
using collinear factorization. The value of bT never rises
above bmax and the scale µb⇤ never drops below C1/bmax.
Therefore, one obtains well-behaved perturbative calcu-
lations by replacing H(µQ;C2), �(↵s(µ0); 1), �K(↵s(µ0))
and K̃(b⇤;µb⇤) by their nth-order perturbative calcula-
tions.

For the TMD ↵s themselves on the first line, the choice
of µ =

p
⇣ = µb⇤ implements RG improvement for the

limit of small bT. As long as bmax is small enough,
D̃A,B(zA,B , b⇤;µb⇤ , µ

2

b⇤
) can be expanded in an OPE:

D̃(n,dr)(z, b⇤;µb⇤ , µ
2

b⇤)

=

Z
1

z

dẑ

ẑ3�2✏
dr(ẑ;µb⇤)C̃

(n)
D (z/ẑ, bT;µ

2

b⇤ , µb⇤ ,↵s(µb⇤))

+O (mbT) , (111)

which is a more explicit version of Eq. (25) but in
bT-space. (Here, as usual, m represents any of the

3 There are, however, a large number of minor but not always
obvious variations in the form of the expression in the literature.
There are also many di↵erent systems of notation. See [38] for
some translation.

small intrinsic mass scales, including now 1/bmax.) Sub-
stituting Eq. (111) for both D̃A(zA, b⇤;µb⇤ , µ

2

b⇤
) and

D̃B(zB , b⇤;µb⇤ , µ
2

b⇤
), along with the other perturbative

approximations mentioned above, recovers the standard
CSS expression – compare, for example, with the Drell-
Yan version of TMD factorization in Eq. (22) of [65].
The b⇤ method, as it is explained here, has several de-

sirable properties. There is the elegant feature that, in
dealing with the nonperturbative region of large bT, one
never modifies or approximates the operator definitions
of the TMD ↵s themselves. Rather, on the first line of
Eq. (110) we have simply changed their arguments from
bT to b⇤. Along the same lines, the g-functions on the last
line have explicit definitions in terms of the underlying
QCD operators. The final result for the cross section,
Eq. (110), is exactly independent of the choice of the
b⇤(bT) function in Eq. (100) or of the value of parame-
ters like bmax. Since changing them simply amounts to
reshu✏ing contributions between the perturbative and
non-perturbative factors, the b⇤-independence is a ver-
sion of RG invariance that we can express as

d

dbmax

W (qT, Q) = 0 . (112)

Or, if we consider other more general b⇤(bT) functions
determined by a collection of possibly many parameters
{b-params}, we can express the same relation schemati-
cally as

d

d{b-params}W (qT, Q) = 0 . (113)

These relations are exact for Eq. (110). Therefore, it is le-
gitimate to say that perturbative calculations of the first
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FIG. 11: The example D̃
(1,dMS)(z, bT;µQ0 , Q

2
0) from

Eq. (92), and the corresponding g
(1,dMS)(z, bT) (Eq. (116))

and D̃
(1,dMS)(z, b⇤;µQ0 , Q

2
0) from the b⇤-prescription

(Eq. (101)). The curves are generated using the same
M = 0.2GeV, mD = 0.3GeV, and a = 2GeV as in Fig. 7.
The top panel is the case of bmax = 0.1GeV�1 and the bottom
panel is the case of bmax = 1.0GeV�1. The bmax-dependence

in ln(D̃
(1,dMS)(z, b⇤;µQ0 , Q

2
0)) (violet dot-dashed) cancels

that of �g
(1,dMS)(z, bT) (blue-dashed). The solid black

curves for D̃
(1,dMS)(z, bT;µQ0 , Q

2
0) are identical in the top

and bottom panels.

A. The b⇤ method

Readers who are familiar with standard implementa-
tions of the CSS formalism might find the surface ap-
pearance of our expressions for the evolved W (n)(qT, Q)
in sections Sec. IV-Sec. VII somewhat odd. Normally,
the cross section is written with nonperturbative TMD
e↵ects contained in separate exponential factors usually
notated

e�gA(zA,bT), e�gB(zB ,bT), and e
�gK(bT) ln

Q2

Q2
0 , (99)

where the nonperturbative transverse momentum depen-
dence is encoded in the (coordinate dependence of) the
lower-case g-functions in the exponents. (The gA and gB
functions are placed inside exponents so that they retain
the appearance of Sudakov form factor contributions.)

Then, in the usual presentation, the rest of the factors
in the cross section automatically get expressed in terms
of collinear functions by using the OPE to approximate
the small bT behavior. For a specific example of what we
mean here, consider Eq.(13.81) of [3].
In this subsection, we will review the steps for trans-

forming the low-qT cross section (or rather W (qT, Q)) in
Eq. (20) into the form that involves Eq. (99) g-functions.
Setting up the usual presentation of the cross section

begins with a partition of the coordinate space W̃ (bT, Q)
into regions considered large and small bT. One does
this by defining an arbitrary function of bT, traditionally
called b⇤(bT). The function should smoothly interpolate
between bT at small values of bT and a maximum trans-
verse size bmax as bT grows to bT � bmax. It is otherwise
arbitrary. In other words,

b⇤(bT) =

⇢
bT bT ⌧ bmax

bmax bT � bmax

. (100)

The value of bmax is also arbitrary, but it is usually in-
terpreted roughly as a value somewhere near the bound-
ary between nonperturbatively large and perturbatively
small regions of bT. The purpose of the “b⇤ method” [93]
is to sequester a purely perturbative calculation of trans-
verse coordinate dependence away from a part that in-
volves nonperturbative modeling or fitting. While any
reasonably well-behaved, smooth function of bT that
obeys the right side of Eq. (100) is a valid b⇤(bT), the
most often used choice is

b⇤(bT) =
bTp

1 + b2
T
/b2

max

. (101)

Later on, we will also need to define another hard scale
that approaches the RG improve value of µ = C1/bT
appropriate to the bT ! 0 limit but that levels o↵ at a
fixed scale at large bT. The simplest (and standard) way
to do this is to just use the inverse of b⇤ and define

µb⇤ ⌘ C1/b⇤ . (102)

The behavior of µb⇤ is similar to that of our Q0(bT), but
Q0(bT) approaches Q0 at large bT while µb⇤ approaches
C1/bmax. (Indeed, in our treatment below we could opt
to use Q0(bT) instead of µb⇤ , but we will continue with
µb⇤ to make the comparison with standard expressions
clear.)
Next, one solves Eq. (18) to relate a TMD ↵ (for hadron

A, for example) at an input scale Q0 to the TMD ↵ at
any other scale

p
⇣ by

D̃A(z, bT;µ, ⇣)

= D̃A(z, bT;µ,Q
2

0
) exp

⇢
K̃(bT;µ) ln

✓p
⇣

Q0

◆�
.

(103)

Exactly the same equation applies independently of the

Transition from small to large bT
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FIG. 11: The example D̃
(1,dMS)(z, bT;µQ0 , Q

2
0) from

Eq. (92), and the corresponding g
(1,dMS)(z, bT) (Eq. (116))

and D̃
(1,dMS)(z, b⇤;µQ0 , Q

2
0) from the b⇤-prescription

(Eq. (101)). The curves are generated using the same
M = 0.2GeV, mD = 0.3GeV, and a = 2GeV as in Fig. 7.
The top panel is the case of bmax = 0.1GeV�1 and the bottom
panel is the case of bmax = 1.0GeV�1. The bmax-dependence

in ln(D̃
(1,dMS)(z, b⇤;µQ0 , Q

2
0)) (violet dot-dashed) cancels

that of �g
(1,dMS)(z, bT) (blue-dashed). The solid black

curves for D̃
(1,dMS)(z, bT;µQ0 , Q

2
0) are identical in the top

and bottom panels.

A. The b⇤ method

Readers who are familiar with standard implementa-
tions of the CSS formalism might find the surface ap-
pearance of our expressions for the evolved W (n)(qT, Q)
in sections Sec. IV-Sec. VII somewhat odd. Normally,
the cross section is written with nonperturbative TMD
e↵ects contained in separate exponential factors usually
notated

e�gA(zA,bT), e�gB(zB ,bT), and e
�gK(bT) ln

Q2

Q2
0 , (99)

where the nonperturbative transverse momentum depen-
dence is encoded in the (coordinate dependence of) the
lower-case g-functions in the exponents. (The gA and gB
functions are placed inside exponents so that they retain
the appearance of Sudakov form factor contributions.)

Then, in the usual presentation, the rest of the factors
in the cross section automatically get expressed in terms
of collinear functions by using the OPE to approximate
the small bT behavior. For a specific example of what we
mean here, consider Eq.(13.81) of [3].
In this subsection, we will review the steps for trans-

forming the low-qT cross section (or rather W (qT, Q)) in
Eq. (20) into the form that involves Eq. (99) g-functions.
Setting up the usual presentation of the cross section

begins with a partition of the coordinate space W̃ (bT, Q)
into regions considered large and small bT. One does
this by defining an arbitrary function of bT, traditionally
called b⇤(bT). The function should smoothly interpolate
between bT at small values of bT and a maximum trans-
verse size bmax as bT grows to bT � bmax. It is otherwise
arbitrary. In other words,

b⇤(bT) =

⇢
bT bT ⌧ bmax

bmax bT � bmax

. (100)

The value of bmax is also arbitrary, but it is usually in-
terpreted roughly as a value somewhere near the bound-
ary between nonperturbatively large and perturbatively
small regions of bT. The purpose of the “b⇤ method” [93]
is to sequester a purely perturbative calculation of trans-
verse coordinate dependence away from a part that in-
volves nonperturbative modeling or fitting. While any
reasonably well-behaved, smooth function of bT that
obeys the right side of Eq. (100) is a valid b⇤(bT), the
most often used choice is

b⇤(bT) =
bTp

1 + b2
T
/b2

max

. (101)

Later on, we will also need to define another hard scale
that approaches the RG improve value of µ = C1/bT
appropriate to the bT ! 0 limit but that levels o↵ at a
fixed scale at large bT. The simplest (and standard) way
to do this is to just use the inverse of b⇤ and define

µb⇤ ⌘ C1/b⇤ . (102)

The behavior of µb⇤ is similar to that of our Q0(bT), but
Q0(bT) approaches Q0 at large bT while µb⇤ approaches
C1/bmax. (Indeed, in our treatment below we could opt
to use Q0(bT) instead of µb⇤ , but we will continue with
µb⇤ to make the comparison with standard expressions
clear.)
Next, one solves Eq. (18) to relate a TMD ↵ (for hadron

A, for example) at an input scale Q0 to the TMD ↵ at
any other scale

p
⇣ by

D̃A(z, bT;µ, ⇣)

= D̃A(z, bT;µ,Q
2

0
) exp

⇢
K̃(bT;µ) ln

✓p
⇣

Q0

◆�
.

(103)

Exactly the same equation applies independently of the
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transverse coordinate bT, so we also have
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Then the ratio of Eq. (103) and Eq. (104) is
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where on the second line we have defined

gK(bT) ⌘ K̃(b⇤, µ)� K̃(bT, µ) . (106)

Since the µ-dependence of K̃(bT, µ) is also bT-
independent, gK(bT) is µ-independent. That is, µ-
dependence cancels between the two terms, so gK(bT)
is µ-independent by definition. Also, on the last line
of Eq. (105) we have used that the µ-dependence of
D̃A(z, bT;µ,Q2

0
) is a bT-independent overall factor – re-

call the evolution equation in Eq. (19) – to specialize to
the case of µ = µQ0 .

Next, one defines the logarithm of the ratio on the last
line of Eq. (105) by the symbol �gA(z, bT):

�gA(z, bT) ⌘ ln

 
D̃A(z, bT;µQ0 , Q

2
0
)

D̃A(z, b⇤;µQ0 , Q
2
0
)

!
, (107)

with the A subscript reminding of potential sensitivity
to the identity of the final state hadron. Combining
Eq. (105) and Eq. (107) gives

D̃A(z, bT;µ, ⇣) = D̃A(z, b⇤;µ, ⇣)⇥

⇥ exp

⇢
�gA(z, bT)� gK(bT) ln

✓p
⇣

Q0

◆�
. (108)

The D̃A(z, b⇤;µ, ⇣) on the right-hand side is still the ex-
act operator definition, but it is only ever evaluated at
bT  bmax. The remaining exponential factor is sensitive
the large bT region. As of yet, there are no approxima-
tions. In particular, any sensitivity to bmax or the choice
of the b⇤ parametrization in Eq. (100) cancels exactly be-
tween the factors on the right-hand side of Eq. (108). We
have simply taken the original definition of D̃A(z, b⇤;µ, ⇣)
and partitioned it into two factors.

The logarithm on the right side of the definition in
Eq. (107) is cosmetic; expressing the nonperturbative ra-
tio as the exponential of a function �gA(z, bT) gives it
the appearance of a type of contribution to a Sudakov
exponent.

Despite the apparent arbitrariness of the above steps,
one can aniticipate the motivation for writing the TMD
↵ as in Eq. (108) by looking ahead. We obtain the full
cross section by substituting Eq. (108) into the evolved
W (qT, Q) in Eq. (20) with µ = µQ0 and

p
⇣ = Q0. In

the resulting cross section expression, D̃A(z, b⇤;µQ0 , Q
2
0
)

will be well-approximated by collinear factorization at
bT ⇡ 1/Q0 so long as bmax ⇡ 1/Q0 and Q0 is reasonably
large compared to nonperturbative scales. This would
be su�cient for calculations with Q ⇡ Q0, where the
1/Q0 . bT < 1 region is the only relevant contribution.
However, if we plan to evolve to very large Q, then we
also need an accurate treatment of D̃A(z, b⇤;µQ0 , Q

2
0
) in

the bT ⌧ 1/Q0 limit. But the fixed order calculations
of D̃A(z, b⇤;µQ0 , Q

2
0
) in collinear factorization are poorly

behaved as bTµQ0 ! 0, even though this is the limit
where perturbative QCD should be most reliable.

As usual, therefore, we need to apply the evolu-
tion equations (Eq. (59)) once again in order to evolve
D̃A(z, b⇤;µ, ⇣) from µ, ⇣ to the RG-improved µb⇤ , µ

2

b⇤
.

The evolution equations allow us to rewrite Eq. (108)
as
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transverse coordinate bT, so we also have

D̃A(z, b⇤;µ, ⇣)

= D̃A(z, b⇤;µ,Q
2

0
) exp

⇢
K̃(b⇤;µ) ln

✓p
⇣

Q0

◆�
.

(104)

Then the ratio of Eq. (103) and Eq. (104) is
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where on the second line we have defined

gK(bT) ⌘ K̃(b⇤, µ)� K̃(bT, µ) . (106)

Since the µ-dependence of K̃(bT, µ) is also bT-
independent, gK(bT) is µ-independent. That is, µ-
dependence cancels between the two terms, so gK(bT)
is µ-independent by definition. Also, on the last line
of Eq. (105) we have used that the µ-dependence of
D̃A(z, bT;µ,Q2

0
) is a bT-independent overall factor – re-

call the evolution equation in Eq. (19) – to specialize to
the case of µ = µQ0 .

Next, one defines the logarithm of the ratio on the last
line of Eq. (105) by the symbol �gA(z, bT):

�gA(z, bT) ⌘ ln
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with the A subscript reminding of potential sensitivity
to the identity of the final state hadron. Combining
Eq. (105) and Eq. (107) gives

D̃A(z, bT;µ, ⇣) = D̃A(z, b⇤;µ, ⇣)⇥

⇥ exp

⇢
�gA(z, bT)� gK(bT) ln
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⇣

Q0
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. (108)

The D̃A(z, b⇤;µ, ⇣) on the right-hand side is still the ex-
act operator definition, but it is only ever evaluated at
bT  bmax. The remaining exponential factor is sensitive
the large bT region. As of yet, there are no approxima-
tions. In particular, any sensitivity to bmax or the choice
of the b⇤ parametrization in Eq. (100) cancels exactly be-
tween the factors on the right-hand side of Eq. (108). We
have simply taken the original definition of D̃A(z, b⇤;µ, ⇣)
and partitioned it into two factors.

The logarithm on the right side of the definition in
Eq. (107) is cosmetic; expressing the nonperturbative ra-
tio as the exponential of a function �gA(z, bT) gives it
the appearance of a type of contribution to a Sudakov
exponent.

Despite the apparent arbitrariness of the above steps,
one can aniticipate the motivation for writing the TMD
↵ as in Eq. (108) by looking ahead. We obtain the full
cross section by substituting Eq. (108) into the evolved
W (qT, Q) in Eq. (20) with µ = µQ0 and

p
⇣ = Q0. In

the resulting cross section expression, D̃A(z, b⇤;µQ0 , Q
2
0
)

will be well-approximated by collinear factorization at
bT ⇡ 1/Q0 so long as bmax ⇡ 1/Q0 and Q0 is reasonably
large compared to nonperturbative scales. This would
be su�cient for calculations with Q ⇡ Q0, where the
1/Q0 . bT < 1 region is the only relevant contribution.
However, if we plan to evolve to very large Q, then we
also need an accurate treatment of D̃A(z, b⇤;µQ0 , Q

2
0
) in

the bT ⌧ 1/Q0 limit. But the fixed order calculations
of D̃A(z, b⇤;µQ0 , Q

2
0
) in collinear factorization are poorly

behaved as bTµQ0 ! 0, even though this is the limit
where perturbative QCD should be most reliable.

As usual, therefore, we need to apply the evolu-
tion equations (Eq. (59)) once again in order to evolve
D̃A(z, b⇤;µ, ⇣) from µ, ⇣ to the RG-improved µb⇤ , µ

2

b⇤
.

The evolution equations allow us to rewrite Eq. (108)
as
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transverse coordinate bT, so we also have
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Then the ratio of Eq. (103) and Eq. (104) is
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where on the second line we have defined

gK(bT) ⌘ K̃(b⇤, µ)� K̃(bT, µ) . (106)

Since the µ-dependence of K̃(bT, µ) is also bT-
independent, gK(bT) is µ-independent. That is, µ-
dependence cancels between the two terms, so gK(bT)
is µ-independent by definition. Also, on the last line
of Eq. (105) we have used that the µ-dependence of
D̃A(z, bT;µ,Q2

0
) is a bT-independent overall factor – re-

call the evolution equation in Eq. (19) – to specialize to
the case of µ = µQ0 .

Next, one defines the logarithm of the ratio on the last
line of Eq. (105) by the symbol �gA(z, bT):
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with the A subscript reminding of potential sensitivity
to the identity of the final state hadron. Combining
Eq. (105) and Eq. (107) gives

D̃A(z, bT;µ, ⇣) = D̃A(z, b⇤;µ, ⇣)⇥
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The D̃A(z, b⇤;µ, ⇣) on the right-hand side is still the ex-
act operator definition, but it is only ever evaluated at
bT  bmax. The remaining exponential factor is sensitive
the large bT region. As of yet, there are no approxima-
tions. In particular, any sensitivity to bmax or the choice
of the b⇤ parametrization in Eq. (100) cancels exactly be-
tween the factors on the right-hand side of Eq. (108). We
have simply taken the original definition of D̃A(z, b⇤;µ, ⇣)
and partitioned it into two factors.

The logarithm on the right side of the definition in
Eq. (107) is cosmetic; expressing the nonperturbative ra-
tio as the exponential of a function �gA(z, bT) gives it
the appearance of a type of contribution to a Sudakov
exponent.

Despite the apparent arbitrariness of the above steps,
one can aniticipate the motivation for writing the TMD
↵ as in Eq. (108) by looking ahead. We obtain the full
cross section by substituting Eq. (108) into the evolved
W (qT, Q) in Eq. (20) with µ = µQ0 and

p
⇣ = Q0. In

the resulting cross section expression, D̃A(z, b⇤;µQ0 , Q
2
0
)

will be well-approximated by collinear factorization at
bT ⇡ 1/Q0 so long as bmax ⇡ 1/Q0 and Q0 is reasonably
large compared to nonperturbative scales. This would
be su�cient for calculations with Q ⇡ Q0, where the
1/Q0 . bT < 1 region is the only relevant contribution.
However, if we plan to evolve to very large Q, then we
also need an accurate treatment of D̃A(z, b⇤;µQ0 , Q

2
0
) in

the bT ⌧ 1/Q0 limit. But the fixed order calculations
of D̃A(z, b⇤;µQ0 , Q

2
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) in collinear factorization are poorly

behaved as bTµQ0 ! 0, even though this is the limit
where perturbative QCD should be most reliable.

As usual, therefore, we need to apply the evolu-
tion equations (Eq. (59)) once again in order to evolve
D̃A(z, b⇤;µ, ⇣) from µ, ⇣ to the RG-improved µb⇤ , µ

2
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.

The evolution equations allow us to rewrite Eq. (108)
as
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Then the ratio of Eq. (103) and Eq. (104) is
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where on the second line we have defined

gK(bT) ⌘ K̃(b⇤, µ)� K̃(bT, µ) . (106)

Since the µ-dependence of K̃(bT, µ) is also bT-
independent, gK(bT) is µ-independent. That is, µ-
dependence cancels between the two terms, so gK(bT)
is µ-independent by definition. Also, on the last line
of Eq. (105) we have used that the µ-dependence of
D̃A(z, bT;µ,Q2

0
) is a bT-independent overall factor – re-

call the evolution equation in Eq. (19) – to specialize to
the case of µ = µQ0 .

Next, one defines the logarithm of the ratio on the last
line of Eq. (105) by the symbol �gA(z, bT):
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with the A subscript reminding of potential sensitivity
to the identity of the final state hadron. Combining
Eq. (105) and Eq. (107) gives
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The D̃A(z, b⇤;µ, ⇣) on the right-hand side is still the ex-
act operator definition, but it is only ever evaluated at
bT  bmax. The remaining exponential factor is sensitive
the large bT region. As of yet, there are no approxima-
tions. In particular, any sensitivity to bmax or the choice
of the b⇤ parametrization in Eq. (100) cancels exactly be-
tween the factors on the right-hand side of Eq. (108). We
have simply taken the original definition of D̃A(z, b⇤;µ, ⇣)
and partitioned it into two factors.

The logarithm on the right side of the definition in
Eq. (107) is cosmetic; expressing the nonperturbative ra-
tio as the exponential of a function �gA(z, bT) gives it
the appearance of a type of contribution to a Sudakov
exponent.

Despite the apparent arbitrariness of the above steps,
one can aniticipate the motivation for writing the TMD
↵ as in Eq. (108) by looking ahead. We obtain the full
cross section by substituting Eq. (108) into the evolved
W (qT, Q) in Eq. (20) with µ = µQ0 and

p
⇣ = Q0. In

the resulting cross section expression, D̃A(z, b⇤;µQ0 , Q
2
0
)

will be well-approximated by collinear factorization at
bT ⇡ 1/Q0 so long as bmax ⇡ 1/Q0 and Q0 is reasonably
large compared to nonperturbative scales. This would
be su�cient for calculations with Q ⇡ Q0, where the
1/Q0 . bT < 1 region is the only relevant contribution.
However, if we plan to evolve to very large Q, then we
also need an accurate treatment of D̃A(z, b⇤;µQ0 , Q

2
0
) in

the bT ⌧ 1/Q0 limit. But the fixed order calculations
of D̃A(z, b⇤;µQ0 , Q

2
0
) in collinear factorization are poorly

behaved as bTµQ0 ! 0, even though this is the limit
where perturbative QCD should be most reliable.

As usual, therefore, we need to apply the evolu-
tion equations (Eq. (59)) once again in order to evolve
D̃A(z, b⇤;µ, ⇣) from µ, ⇣ to the RG-improved µb⇤ , µ

2

b⇤
.

The evolution equations allow us to rewrite Eq. (108)
as

When modelling g-functions, should only allow for mild dependence  
on b* and bmax 
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FIG. 1. bT-space integrand for the Drell-Yan process. These plots are from Fig. 4 of [2] and show the results of using
di↵erent values of bmax: (a) for Z production

p
s = 1.96TeV; (b) for

p
s = 38.8GeV and Q = 11GeV. The two fits with

bmax = 1.5GeV�1 correspond to two di↵erent choices for the ratio C3 = µb⇤b⇤, which gives a measure of sensitivity to
truncation of perturbative expansions. The curve labeled “Qiu-Zhang”, with bmax = 0.3GeV�1, uses the Qiu-Zhang [3, 92]
parametrization. The normalization of W̃ di↵ers from that defined in Eq. (2).

quoted, 1.2 fm, is clearly in a region where nonpertur-
bative physics is important. For example it is larger
than the confinement scale found in [53] and a factor
of 4 larger than the chiral scale in the same reference.
Moreover, to obtain a small parton density at this value
of bT, Echevarŕıa et al. use a Gaussian ansatz for the
large-bT behavior:

e�b
2
Thp2

Ti/4, (44)

where the value of hp2Ti = 0.38GeV2 is taken from a fit
in Ref. [87]. The Gaussian factor is evidently describing
nonperturbative e↵ects, which are not in any of the Feyn-
man graphs used, even with resummation. The distance
scale associated with this factor is

2p
hp2Ti

= 3.2GeV�1 = 0.65 fm. (45)

Quite reasonably this is roughly midway between the chi-
ral and confinement scales determined from very di↵erent
theoretical considerations in Ref. [53].

It follows then that Green functions already have sub-
stantial nonperturbative contributions when transverse
distances reach the value in (45). Hence, a perturbative
calculation, even a resummed calculation, cannot be ex-
pected to be accurate at or beyond this scale. Wherever
in bT nonperturbative contributions are important in a
TMD parton density f̃j/H(x, bT), one should also expect

them to be important for the evolution kernel K̃, and one
has not at all evaded the need to use a nonperturbative
contribution to it, either extracted by fitting to data or
by nonperturbative theoretical methods in QCD theory
(or, better, both). In Sec. VC, we will give a further
analysis of the argument given in Ref. [11].

Given the above quantitative estimates of the onset
of nonperturbative physics, the previously used value of

bmax = 1.5GeV�1 = 0.3 fm is reasonable. A substan-
tially smaller value is excessively conservative, while in-
creasing it by more than about a factor of two goes too
far into the nonperturbative region.

We conclude that Echevarŕıa et al. [11] use perturba-
tively based calculations for K̃ (admittedly with resum-
mation) in a region where nonperturbative e↵ects are im-
portant, and that in other parts of their calculation, non-
perturbative e↵ects are important in the same region.

Becher and Neubert [10] also use a related formal-
ism without including nonperturbative e↵ects at large
bT. But they only claim that their formalism is valid
when transverse momentum is much larger than the QCD
scale, i.e., qT � ⇤QCD. In that situation, the Fourier
transform probes variations of the integrand on a scale
1/qT and it is dominated by relatively small distances
of order 1/qT ⌧ 1/⇤QCD, and thus the nonperturbative
contributions can be numerically unimportant.

In contrast, the full TMD factorization method de-
scribed above is valid for transverse momenta down to
zero, and the nonperturbative large-bT region is impor-
tant, if Q is not too large. The fact that the nonperturba-
tive region is important is established by the essentially
universal use of a Gaussian form for TMD parton densi-
ties at large bT in fitting data.

Further work without a nonperturbative function for
evolution is by Sun and Yuan [12, 13]. They use a certain
perturbative approximation to the exponent S of the full
evolution factor, with S being defined as in Eq. (17).
The approximation is essentially the same as one used by
Boer in [32, Eq. (144)] and [33, Eq. (34)]. We will refer
to this as the Boer-Sun-Yuan (BSY) approximation. The
approximation was devised with the aim of expressing the
TMD factorization formula in terms of TMD densities,
f̃j/H

�
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FIG. 1. bT-space integrand for the Drell-Yan process. These plots are from Fig. 4 of [2] and show the results of using
di↵erent values of bmax: (a) for Z production

p
s = 1.96TeV; (b) for

p
s = 38.8GeV and Q = 11GeV. The two fits with

bmax = 1.5GeV�1 correspond to two di↵erent choices for the ratio C3 = µb⇤b⇤, which gives a measure of sensitivity to
truncation of perturbative expansions. The curve labeled “Qiu-Zhang”, with bmax = 0.3GeV�1, uses the Qiu-Zhang [3, 92]
parametrization. The normalization of W̃ di↵ers from that defined in Eq. (2).

quoted, 1.2 fm, is clearly in a region where nonpertur-
bative physics is important. For example it is larger
than the confinement scale found in [53] and a factor
of 4 larger than the chiral scale in the same reference.
Moreover, to obtain a small parton density at this value
of bT, Echevarŕıa et al. use a Gaussian ansatz for the
large-bT behavior:

e�b
2
Thp2

Ti/4, (44)

where the value of hp2Ti = 0.38GeV2 is taken from a fit
in Ref. [87]. The Gaussian factor is evidently describing
nonperturbative e↵ects, which are not in any of the Feyn-
man graphs used, even with resummation. The distance
scale associated with this factor is

2p
hp2Ti

= 3.2GeV�1 = 0.65 fm. (45)

Quite reasonably this is roughly midway between the chi-
ral and confinement scales determined from very di↵erent
theoretical considerations in Ref. [53].

It follows then that Green functions already have sub-
stantial nonperturbative contributions when transverse
distances reach the value in (45). Hence, a perturbative
calculation, even a resummed calculation, cannot be ex-
pected to be accurate at or beyond this scale. Wherever
in bT nonperturbative contributions are important in a
TMD parton density f̃j/H(x, bT), one should also expect

them to be important for the evolution kernel K̃, and one
has not at all evaded the need to use a nonperturbative
contribution to it, either extracted by fitting to data or
by nonperturbative theoretical methods in QCD theory
(or, better, both). In Sec. VC, we will give a further
analysis of the argument given in Ref. [11].

Given the above quantitative estimates of the onset
of nonperturbative physics, the previously used value of

bmax = 1.5GeV�1 = 0.3 fm is reasonable. A substan-
tially smaller value is excessively conservative, while in-
creasing it by more than about a factor of two goes too
far into the nonperturbative region.

We conclude that Echevarŕıa et al. [11] use perturba-
tively based calculations for K̃ (admittedly with resum-
mation) in a region where nonperturbative e↵ects are im-
portant, and that in other parts of their calculation, non-
perturbative e↵ects are important in the same region.

Becher and Neubert [10] also use a related formal-
ism without including nonperturbative e↵ects at large
bT. But they only claim that their formalism is valid
when transverse momentum is much larger than the QCD
scale, i.e., qT � ⇤QCD. In that situation, the Fourier
transform probes variations of the integrand on a scale
1/qT and it is dominated by relatively small distances
of order 1/qT ⌧ 1/⇤QCD, and thus the nonperturbative
contributions can be numerically unimportant.

In contrast, the full TMD factorization method de-
scribed above is valid for transverse momenta down to
zero, and the nonperturbative large-bT region is impor-
tant, if Q is not too large. The fact that the nonperturba-
tive region is important is established by the essentially
universal use of a Gaussian form for TMD parton densi-
ties at large bT in fitting data.

Further work without a nonperturbative function for
evolution is by Sun and Yuan [12, 13]. They use a certain
perturbative approximation to the exponent S of the full
evolution factor, with S being defined as in Eq. (17).
The approximation is essentially the same as one used by
Boer in [32, Eq. (144)] and [33, Eq. (34)]. We will refer
to this as the Boer-Sun-Yuan (BSY) approximation. The
approximation was devised with the aim of expressing the
TMD factorization formula in terms of TMD densities,
f̃j/H
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Note that this dependence is due to a lack of constraints on g-functions

Potential issues in phenomenology 
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Another important consideration

Consider sensitivity of bT at different energy scales

Small bT dominated
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FIG. 1. bT-space integrand for the Drell-Yan process. These plots are from Fig. 4 of [2] and show the results of using
di↵erent values of bmax: (a) for Z production

p
s = 1.96TeV; (b) for

p
s = 38.8GeV and Q = 11GeV. The two fits with

bmax = 1.5GeV�1 correspond to two di↵erent choices for the ratio C3 = µb⇤b⇤, which gives a measure of sensitivity to
truncation of perturbative expansions. The curve labeled “Qiu-Zhang”, with bmax = 0.3GeV�1, uses the Qiu-Zhang [3, 92]
parametrization. The normalization of W̃ di↵ers from that defined in Eq. (2).

quoted, 1.2 fm, is clearly in a region where nonpertur-
bative physics is important. For example it is larger
than the confinement scale found in [53] and a factor
of 4 larger than the chiral scale in the same reference.
Moreover, to obtain a small parton density at this value
of bT, Echevarŕıa et al. use a Gaussian ansatz for the
large-bT behavior:

e�b
2
Thp2

Ti/4, (44)

where the value of hp2Ti = 0.38GeV2 is taken from a fit
in Ref. [87]. The Gaussian factor is evidently describing
nonperturbative e↵ects, which are not in any of the Feyn-
man graphs used, even with resummation. The distance
scale associated with this factor is

2p
hp2Ti

= 3.2GeV�1 = 0.65 fm. (45)

Quite reasonably this is roughly midway between the chi-
ral and confinement scales determined from very di↵erent
theoretical considerations in Ref. [53].

It follows then that Green functions already have sub-
stantial nonperturbative contributions when transverse
distances reach the value in (45). Hence, a perturbative
calculation, even a resummed calculation, cannot be ex-
pected to be accurate at or beyond this scale. Wherever
in bT nonperturbative contributions are important in a
TMD parton density f̃j/H(x, bT), one should also expect

them to be important for the evolution kernel K̃, and one
has not at all evaded the need to use a nonperturbative
contribution to it, either extracted by fitting to data or
by nonperturbative theoretical methods in QCD theory
(or, better, both). In Sec. VC, we will give a further
analysis of the argument given in Ref. [11].

Given the above quantitative estimates of the onset
of nonperturbative physics, the previously used value of

bmax = 1.5GeV�1 = 0.3 fm is reasonable. A substan-
tially smaller value is excessively conservative, while in-
creasing it by more than about a factor of two goes too
far into the nonperturbative region.

We conclude that Echevarŕıa et al. [11] use perturba-
tively based calculations for K̃ (admittedly with resum-
mation) in a region where nonperturbative e↵ects are im-
portant, and that in other parts of their calculation, non-
perturbative e↵ects are important in the same region.

Becher and Neubert [10] also use a related formal-
ism without including nonperturbative e↵ects at large
bT. But they only claim that their formalism is valid
when transverse momentum is much larger than the QCD
scale, i.e., qT � ⇤QCD. In that situation, the Fourier
transform probes variations of the integrand on a scale
1/qT and it is dominated by relatively small distances
of order 1/qT ⌧ 1/⇤QCD, and thus the nonperturbative
contributions can be numerically unimportant.

In contrast, the full TMD factorization method de-
scribed above is valid for transverse momenta down to
zero, and the nonperturbative large-bT region is impor-
tant, if Q is not too large. The fact that the nonperturba-
tive region is important is established by the essentially
universal use of a Gaussian form for TMD parton densi-
ties at large bT in fitting data.

Further work without a nonperturbative function for
evolution is by Sun and Yuan [12, 13]. They use a certain
perturbative approximation to the exponent S of the full
evolution factor, with S being defined as in Eq. (17).
The approximation is essentially the same as one used by
Boer in [32, Eq. (144)] and [33, Eq. (34)]. We will refer
to this as the Boer-Sun-Yuan (BSY) approximation. The
approximation was devised with the aim of expressing the
TMD factorization formula in terms of TMD densities,
f̃j/H
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, with a fixed scale. (More recent

19

0.2 0.4 0.6 0.8 1 1.2 1.4
b !GeV!1"

0

0.1

0.2

0.3

0.4

0.5

0.6

b
W"
#b

,Q
,x

A
,x

B
$!

n
b
%G

e
V
"

p # p
!

$ Z0
# X;

&'''
s%1.96 TeV; Q%MZ; y%0

bmax%1.5 GeV!1, C3%b0

bmax%1.5 GeV!1, C3%2b0

bmax%0.5 GeV!1, C3%b0

0.25 0.5 0.75 1 1.25 1.5 1.75 2
b !GeV!1"

0

10

20

30

40

N
fit
!

1
b

W"
#b

,Q
,x

A
,x

B
$!

fb
%G

e
V
"

p # Cu $ Μ#Μ! # X;
&'''

s&38.8 GeV; Q&11 GeV; y&0

bmax&1.5 GeV!1, C3&b0, Nfit&1.19

bmax&1.5 GeV!1, C3&2b0, Nfit&1.05

bmax&0.5 GeV!1, C3&b0, Nfit&1.09

Qiu!Zhang , bmax&0.3 GeV!1, Nfit&1

(a) (b)

FIG. 1. bT-space integrand for the Drell-Yan process. These plots are from Fig. 4 of [2] and show the results of using
di↵erent values of bmax: (a) for Z production

p
s = 1.96TeV; (b) for

p
s = 38.8GeV and Q = 11GeV. The two fits with

bmax = 1.5GeV�1 correspond to two di↵erent choices for the ratio C3 = µb⇤b⇤, which gives a measure of sensitivity to
truncation of perturbative expansions. The curve labeled “Qiu-Zhang”, with bmax = 0.3GeV�1, uses the Qiu-Zhang [3, 92]
parametrization. The normalization of W̃ di↵ers from that defined in Eq. (2).

quoted, 1.2 fm, is clearly in a region where nonpertur-
bative physics is important. For example it is larger
than the confinement scale found in [53] and a factor
of 4 larger than the chiral scale in the same reference.
Moreover, to obtain a small parton density at this value
of bT, Echevarŕıa et al. use a Gaussian ansatz for the
large-bT behavior:

e�b
2
Thp2

Ti/4, (44)

where the value of hp2Ti = 0.38GeV2 is taken from a fit
in Ref. [87]. The Gaussian factor is evidently describing
nonperturbative e↵ects, which are not in any of the Feyn-
man graphs used, even with resummation. The distance
scale associated with this factor is

2p
hp2Ti

= 3.2GeV�1 = 0.65 fm. (45)

Quite reasonably this is roughly midway between the chi-
ral and confinement scales determined from very di↵erent
theoretical considerations in Ref. [53].

It follows then that Green functions already have sub-
stantial nonperturbative contributions when transverse
distances reach the value in (45). Hence, a perturbative
calculation, even a resummed calculation, cannot be ex-
pected to be accurate at or beyond this scale. Wherever
in bT nonperturbative contributions are important in a
TMD parton density f̃j/H(x, bT), one should also expect

them to be important for the evolution kernel K̃, and one
has not at all evaded the need to use a nonperturbative
contribution to it, either extracted by fitting to data or
by nonperturbative theoretical methods in QCD theory
(or, better, both). In Sec. VC, we will give a further
analysis of the argument given in Ref. [11].

Given the above quantitative estimates of the onset
of nonperturbative physics, the previously used value of

bmax = 1.5GeV�1 = 0.3 fm is reasonable. A substan-
tially smaller value is excessively conservative, while in-
creasing it by more than about a factor of two goes too
far into the nonperturbative region.

We conclude that Echevarŕıa et al. [11] use perturba-
tively based calculations for K̃ (admittedly with resum-
mation) in a region where nonperturbative e↵ects are im-
portant, and that in other parts of their calculation, non-
perturbative e↵ects are important in the same region.

Becher and Neubert [10] also use a related formal-
ism without including nonperturbative e↵ects at large
bT. But they only claim that their formalism is valid
when transverse momentum is much larger than the QCD
scale, i.e., qT � ⇤QCD. In that situation, the Fourier
transform probes variations of the integrand on a scale
1/qT and it is dominated by relatively small distances
of order 1/qT ⌧ 1/⇤QCD, and thus the nonperturbative
contributions can be numerically unimportant.

In contrast, the full TMD factorization method de-
scribed above is valid for transverse momenta down to
zero, and the nonperturbative large-bT region is impor-
tant, if Q is not too large. The fact that the nonperturba-
tive region is important is established by the essentially
universal use of a Gaussian form for TMD parton densi-
ties at large bT in fitting data.

Further work without a nonperturbative function for
evolution is by Sun and Yuan [12, 13]. They use a certain
perturbative approximation to the exponent S of the full
evolution factor, with S being defined as in Eq. (17).
The approximation is essentially the same as one used by
Boer in [32, Eq. (144)] and [33, Eq. (34)]. We will refer
to this as the Boer-Sun-Yuan (BSY) approximation. The
approximation was devised with the aim of expressing the
TMD factorization formula in terms of TMD densities,
f̃j/H
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Recall TMD evolution involves a Fourier transform,  
thus, knowledge of full bT range needed

Small bT dominated
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FIG. 1. bT-space integrand for the Drell-Yan process. These plots are from Fig. 4 of [2] and show the results of using
di↵erent values of bmax: (a) for Z production

p
s = 1.96TeV; (b) for

p
s = 38.8GeV and Q = 11GeV. The two fits with

bmax = 1.5GeV�1 correspond to two di↵erent choices for the ratio C3 = µb⇤b⇤, which gives a measure of sensitivity to
truncation of perturbative expansions. The curve labeled “Qiu-Zhang”, with bmax = 0.3GeV�1, uses the Qiu-Zhang [3, 92]
parametrization. The normalization of W̃ di↵ers from that defined in Eq. (2).

quoted, 1.2 fm, is clearly in a region where nonpertur-
bative physics is important. For example it is larger
than the confinement scale found in [53] and a factor
of 4 larger than the chiral scale in the same reference.
Moreover, to obtain a small parton density at this value
of bT, Echevarŕıa et al. use a Gaussian ansatz for the
large-bT behavior:

e�b
2
Thp2

Ti/4, (44)

where the value of hp2Ti = 0.38GeV2 is taken from a fit
in Ref. [87]. The Gaussian factor is evidently describing
nonperturbative e↵ects, which are not in any of the Feyn-
man graphs used, even with resummation. The distance
scale associated with this factor is

2p
hp2Ti

= 3.2GeV�1 = 0.65 fm. (45)

Quite reasonably this is roughly midway between the chi-
ral and confinement scales determined from very di↵erent
theoretical considerations in Ref. [53].

It follows then that Green functions already have sub-
stantial nonperturbative contributions when transverse
distances reach the value in (45). Hence, a perturbative
calculation, even a resummed calculation, cannot be ex-
pected to be accurate at or beyond this scale. Wherever
in bT nonperturbative contributions are important in a
TMD parton density f̃j/H(x, bT), one should also expect

them to be important for the evolution kernel K̃, and one
has not at all evaded the need to use a nonperturbative
contribution to it, either extracted by fitting to data or
by nonperturbative theoretical methods in QCD theory
(or, better, both). In Sec. VC, we will give a further
analysis of the argument given in Ref. [11].

Given the above quantitative estimates of the onset
of nonperturbative physics, the previously used value of

bmax = 1.5GeV�1 = 0.3 fm is reasonable. A substan-
tially smaller value is excessively conservative, while in-
creasing it by more than about a factor of two goes too
far into the nonperturbative region.

We conclude that Echevarŕıa et al. [11] use perturba-
tively based calculations for K̃ (admittedly with resum-
mation) in a region where nonperturbative e↵ects are im-
portant, and that in other parts of their calculation, non-
perturbative e↵ects are important in the same region.

Becher and Neubert [10] also use a related formal-
ism without including nonperturbative e↵ects at large
bT. But they only claim that their formalism is valid
when transverse momentum is much larger than the QCD
scale, i.e., qT � ⇤QCD. In that situation, the Fourier
transform probes variations of the integrand on a scale
1/qT and it is dominated by relatively small distances
of order 1/qT ⌧ 1/⇤QCD, and thus the nonperturbative
contributions can be numerically unimportant.

In contrast, the full TMD factorization method de-
scribed above is valid for transverse momenta down to
zero, and the nonperturbative large-bT region is impor-
tant, if Q is not too large. The fact that the nonperturba-
tive region is important is established by the essentially
universal use of a Gaussian form for TMD parton densi-
ties at large bT in fitting data.

Further work without a nonperturbative function for
evolution is by Sun and Yuan [12, 13]. They use a certain
perturbative approximation to the exponent S of the full
evolution factor, with S being defined as in Eq. (17).
The approximation is essentially the same as one used by
Boer in [32, Eq. (144)] and [33, Eq. (34)]. We will refer
to this as the Boer-Sun-Yuan (BSY) approximation. The
approximation was devised with the aim of expressing the
TMD factorization formula in terms of TMD densities,
f̃j/H
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FIG. 1. bT-space integrand for the Drell-Yan process. These plots are from Fig. 4 of [2] and show the results of using
di↵erent values of bmax: (a) for Z production

p
s = 1.96TeV; (b) for

p
s = 38.8GeV and Q = 11GeV. The two fits with

bmax = 1.5GeV�1 correspond to two di↵erent choices for the ratio C3 = µb⇤b⇤, which gives a measure of sensitivity to
truncation of perturbative expansions. The curve labeled “Qiu-Zhang”, with bmax = 0.3GeV�1, uses the Qiu-Zhang [3, 92]
parametrization. The normalization of W̃ di↵ers from that defined in Eq. (2).

quoted, 1.2 fm, is clearly in a region where nonpertur-
bative physics is important. For example it is larger
than the confinement scale found in [53] and a factor
of 4 larger than the chiral scale in the same reference.
Moreover, to obtain a small parton density at this value
of bT, Echevarŕıa et al. use a Gaussian ansatz for the
large-bT behavior:

e�b
2
Thp2

Ti/4, (44)

where the value of hp2Ti = 0.38GeV2 is taken from a fit
in Ref. [87]. The Gaussian factor is evidently describing
nonperturbative e↵ects, which are not in any of the Feyn-
man graphs used, even with resummation. The distance
scale associated with this factor is

2p
hp2Ti

= 3.2GeV�1 = 0.65 fm. (45)

Quite reasonably this is roughly midway between the chi-
ral and confinement scales determined from very di↵erent
theoretical considerations in Ref. [53].

It follows then that Green functions already have sub-
stantial nonperturbative contributions when transverse
distances reach the value in (45). Hence, a perturbative
calculation, even a resummed calculation, cannot be ex-
pected to be accurate at or beyond this scale. Wherever
in bT nonperturbative contributions are important in a
TMD parton density f̃j/H(x, bT), one should also expect

them to be important for the evolution kernel K̃, and one
has not at all evaded the need to use a nonperturbative
contribution to it, either extracted by fitting to data or
by nonperturbative theoretical methods in QCD theory
(or, better, both). In Sec. VC, we will give a further
analysis of the argument given in Ref. [11].

Given the above quantitative estimates of the onset
of nonperturbative physics, the previously used value of

bmax = 1.5GeV�1 = 0.3 fm is reasonable. A substan-
tially smaller value is excessively conservative, while in-
creasing it by more than about a factor of two goes too
far into the nonperturbative region.

We conclude that Echevarŕıa et al. [11] use perturba-
tively based calculations for K̃ (admittedly with resum-
mation) in a region where nonperturbative e↵ects are im-
portant, and that in other parts of their calculation, non-
perturbative e↵ects are important in the same region.

Becher and Neubert [10] also use a related formal-
ism without including nonperturbative e↵ects at large
bT. But they only claim that their formalism is valid
when transverse momentum is much larger than the QCD
scale, i.e., qT � ⇤QCD. In that situation, the Fourier
transform probes variations of the integrand on a scale
1/qT and it is dominated by relatively small distances
of order 1/qT ⌧ 1/⇤QCD, and thus the nonperturbative
contributions can be numerically unimportant.

In contrast, the full TMD factorization method de-
scribed above is valid for transverse momenta down to
zero, and the nonperturbative large-bT region is impor-
tant, if Q is not too large. The fact that the nonperturba-
tive region is important is established by the essentially
universal use of a Gaussian form for TMD parton densi-
ties at large bT in fitting data.

Further work without a nonperturbative function for
evolution is by Sun and Yuan [12, 13]. They use a certain
perturbative approximation to the exponent S of the full
evolution factor, with S being defined as in Eq. (17).
The approximation is essentially the same as one used by
Boer in [32, Eq. (144)] and [33, Eq. (34)]. We will refer
to this as the Boer-Sun-Yuan (BSY) approximation. The
approximation was devised with the aim of expressing the
TMD factorization formula in terms of TMD densities,
f̃j/H

�
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A
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�
, with a fixed scale. (More recent
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D̃A(z, bT;µ, ⇣) = D̃A(z, b⇤;µ, ⇣) exp

⇢
�gA(z, bT)� gK(bT) ln

✓p
⇣

Q0

◆�

= D̃A(z, b⇤;µb⇤ , µ
2

b⇤) exp

(Z µ

µb⇤

dµ0

µ0


�(↵s(µ

0); 1)� ln

p
⇣

µ0 �K(↵s(µ
0))

�
+ ln

p
⇣

µb⇤

K̃(b⇤;µb⇤)

)

⇥ exp

⇢
�gA(z, bT)� gK(bT) ln

✓p
⇣

Q0

◆�
. (109)

Recall that µb⇤ is defined in Eq. (102). There is of course an exactly analogous equation for D̃B(z, b⇤;µb⇤ , µ
2

b⇤
).

Substituting the evolved versions of D̃A(z, b⇤;µb⇤ , µ
2

b⇤
) and D̃B(z, b⇤;µb⇤ , µ

2

b⇤
) into the W -term factorization formula

Eq. (15) and setting the final scales equal to µ = µQ and ⇣ = Q2 in Eq. (15) gives

W (qT, Q) = H(µQ;C2)

Z
d2bT
(2⇡)2

e�iqT·bTD̃A(zA, b⇤;µb⇤ , µ
2

b⇤)D̃B(zB , b⇤;µb⇤ , µ
2

b⇤)

⇥ exp

(
2

Z µQ

µb⇤

dµ0

µ0


�(↵s(µ

0); 1)� ln
Q

µ0 �K(↵s(µ
0))

�
+ ln

Q2

µ2

b⇤

K̃(b⇤;µb⇤)

)

⇥ exp

⇢
�gA(zA, bT)� gB(zB , bT)� gK(bT) ln

✓
Q2

Q2
0

◆�
. (110)

Equation (110) is very close to the standard way of ex-
pressing the CSS-evolved W -term.3 As we have writ-
ten it, there are still no approximations; the solutions
to the evolution equations are exact and the steps above
simply reorganize the original factorization formula in
Eq. (15). However, by writing W (qT, Q) as in Eq. (110),
we have isolated on the first two lines those factors that
can be confidently approximated in perturbation theory
using collinear factorization. The value of bT never rises
above bmax and the scale µb⇤ never drops below C1/bmax.
Therefore, one obtains well-behaved perturbative calcu-
lations by replacing H(µQ;C2), �(↵s(µ0); 1), �K(↵s(µ0))
and K̃(b⇤;µb⇤) by their nth-order perturbative calcula-
tions.

For the TMD ↵s themselves on the first line, the choice
of µ =

p
⇣ = µb⇤ implements RG improvement for the

limit of small bT. As long as bmax is small enough,
D̃A,B(zA,B , b⇤;µb⇤ , µ

2

b⇤
) can be expanded in an OPE:

D̃(n,dr)(z, b⇤;µb⇤ , µ
2

b⇤)

=

Z
1

z

dẑ

ẑ3�2✏
dr(ẑ;µb⇤)C̃

(n)
D (z/ẑ, bT;µ

2

b⇤ , µb⇤ ,↵s(µb⇤))

+O (mbT) , (111)

which is a more explicit version of Eq. (25) but in
bT-space. (Here, as usual, m represents any of the

3 There are, however, a large number of minor but not always
obvious variations in the form of the expression in the literature.
There are also many di↵erent systems of notation. See [38] for
some translation.

small intrinsic mass scales, including now 1/bmax.) Sub-
stituting Eq. (111) for both D̃A(zA, b⇤;µb⇤ , µ

2

b⇤
) and

D̃B(zB , b⇤;µb⇤ , µ
2

b⇤
), along with the other perturbative

approximations mentioned above, recovers the standard
CSS expression – compare, for example, with the Drell-
Yan version of TMD factorization in Eq. (22) of [65].
The b⇤ method, as it is explained here, has several de-

sirable properties. There is the elegant feature that, in
dealing with the nonperturbative region of large bT, one
never modifies or approximates the operator definitions
of the TMD ↵s themselves. Rather, on the first line of
Eq. (110) we have simply changed their arguments from
bT to b⇤. Along the same lines, the g-functions on the last
line have explicit definitions in terms of the underlying
QCD operators. The final result for the cross section,
Eq. (110), is exactly independent of the choice of the
b⇤(bT) function in Eq. (100) or of the value of parame-
ters like bmax. Since changing them simply amounts to
reshu✏ing contributions between the perturbative and
non-perturbative factors, the b⇤-independence is a ver-
sion of RG invariance that we can express as

d

dbmax

W (qT, Q) = 0 . (112)

Or, if we consider other more general b⇤(bT) functions
determined by a collection of possibly many parameters
{b-params}, we can express the same relation schemati-
cally as

d

d{b-params}W (qT, Q) = 0 . (113)

These relations are exact for Eq. (110). Therefore, it is le-
gitimate to say that perturbative calculations of the first
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FIG. 11: The example D̃
(1,dMS)(z, bT;µQ0 , Q

2
0) from

Eq. (92), and the corresponding g
(1,dMS)(z, bT) (Eq. (116))

and D̃
(1,dMS)(z, b⇤;µQ0 , Q

2
0) from the b⇤-prescription

(Eq. (101)). The curves are generated using the same
M = 0.2GeV, mD = 0.3GeV, and a = 2GeV as in Fig. 7.
The top panel is the case of bmax = 0.1GeV�1 and the bottom
panel is the case of bmax = 1.0GeV�1. The bmax-dependence

in ln(D̃
(1,dMS)(z, b⇤;µQ0 , Q

2
0)) (violet dot-dashed) cancels

that of �g
(1,dMS)(z, bT) (blue-dashed). The solid black

curves for D̃
(1,dMS)(z, bT;µQ0 , Q

2
0) are identical in the top

and bottom panels.

A. The b⇤ method

Readers who are familiar with standard implementa-
tions of the CSS formalism might find the surface ap-
pearance of our expressions for the evolved W (n)(qT, Q)
in sections Sec. IV-Sec. VII somewhat odd. Normally,
the cross section is written with nonperturbative TMD
e↵ects contained in separate exponential factors usually
notated

e�gA(zA,bT), e�gB(zB ,bT), and e
�gK(bT) ln

Q2

Q2
0 , (99)

where the nonperturbative transverse momentum depen-
dence is encoded in the (coordinate dependence of) the
lower-case g-functions in the exponents. (The gA and gB
functions are placed inside exponents so that they retain
the appearance of Sudakov form factor contributions.)

Then, in the usual presentation, the rest of the factors
in the cross section automatically get expressed in terms
of collinear functions by using the OPE to approximate
the small bT behavior. For a specific example of what we
mean here, consider Eq.(13.81) of [3].
In this subsection, we will review the steps for trans-

forming the low-qT cross section (or rather W (qT, Q)) in
Eq. (20) into the form that involves Eq. (99) g-functions.
Setting up the usual presentation of the cross section

begins with a partition of the coordinate space W̃ (bT, Q)
into regions considered large and small bT. One does
this by defining an arbitrary function of bT, traditionally
called b⇤(bT). The function should smoothly interpolate
between bT at small values of bT and a maximum trans-
verse size bmax as bT grows to bT � bmax. It is otherwise
arbitrary. In other words,

b⇤(bT) =

⇢
bT bT ⌧ bmax

bmax bT � bmax

. (100)

The value of bmax is also arbitrary, but it is usually in-
terpreted roughly as a value somewhere near the bound-
ary between nonperturbatively large and perturbatively
small regions of bT. The purpose of the “b⇤ method” [93]
is to sequester a purely perturbative calculation of trans-
verse coordinate dependence away from a part that in-
volves nonperturbative modeling or fitting. While any
reasonably well-behaved, smooth function of bT that
obeys the right side of Eq. (100) is a valid b⇤(bT), the
most often used choice is

b⇤(bT) =
bTp

1 + b2
T
/b2

max

. (101)

Later on, we will also need to define another hard scale
that approaches the RG improve value of µ = C1/bT
appropriate to the bT ! 0 limit but that levels o↵ at a
fixed scale at large bT. The simplest (and standard) way
to do this is to just use the inverse of b⇤ and define

µb⇤ ⌘ C1/b⇤ . (102)

The behavior of µb⇤ is similar to that of our Q0(bT), but
Q0(bT) approaches Q0 at large bT while µb⇤ approaches
C1/bmax. (Indeed, in our treatment below we could opt
to use Q0(bT) instead of µb⇤ , but we will continue with
µb⇤ to make the comparison with standard expressions
clear.)
Next, one solves Eq. (18) to relate a TMD ↵ (for hadron

A, for example) at an input scale Q0 to the TMD ↵ at
any other scale

p
⇣ by

D̃A(z, bT;µ, ⇣)

= D̃A(z, bT;µ,Q
2

0
) exp

⇢
K̃(bT;µ) ln

✓p
⇣

Q0

◆�
.

(103)

Exactly the same equation applies independently of the

Transition from small to large bT
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(Eq. (101)). The curves are generated using the same
M = 0.2GeV, mD = 0.3GeV, and a = 2GeV as in Fig. 7.
The top panel is the case of bmax = 0.1GeV�1 and the bottom
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in ln(D̃
(1,dMS)(z, b⇤;µQ0 , Q

2
0)) (violet dot-dashed) cancels

that of �g
(1,dMS)(z, bT) (blue-dashed). The solid black

curves for D̃
(1,dMS)(z, bT;µQ0 , Q

2
0) are identical in the top

and bottom panels.

A. The b⇤ method

Readers who are familiar with standard implementa-
tions of the CSS formalism might find the surface ap-
pearance of our expressions for the evolved W (n)(qT, Q)
in sections Sec. IV-Sec. VII somewhat odd. Normally,
the cross section is written with nonperturbative TMD
e↵ects contained in separate exponential factors usually
notated

e�gA(zA,bT), e�gB(zB ,bT), and e
�gK(bT) ln

Q2

Q2
0 , (99)

where the nonperturbative transverse momentum depen-
dence is encoded in the (coordinate dependence of) the
lower-case g-functions in the exponents. (The gA and gB
functions are placed inside exponents so that they retain
the appearance of Sudakov form factor contributions.)

Then, in the usual presentation, the rest of the factors
in the cross section automatically get expressed in terms
of collinear functions by using the OPE to approximate
the small bT behavior. For a specific example of what we
mean here, consider Eq.(13.81) of [3].
In this subsection, we will review the steps for trans-

forming the low-qT cross section (or rather W (qT, Q)) in
Eq. (20) into the form that involves Eq. (99) g-functions.
Setting up the usual presentation of the cross section

begins with a partition of the coordinate space W̃ (bT, Q)
into regions considered large and small bT. One does
this by defining an arbitrary function of bT, traditionally
called b⇤(bT). The function should smoothly interpolate
between bT at small values of bT and a maximum trans-
verse size bmax as bT grows to bT � bmax. It is otherwise
arbitrary. In other words,

b⇤(bT) =

⇢
bT bT ⌧ bmax

bmax bT � bmax

. (100)

The value of bmax is also arbitrary, but it is usually in-
terpreted roughly as a value somewhere near the bound-
ary between nonperturbatively large and perturbatively
small regions of bT. The purpose of the “b⇤ method” [93]
is to sequester a purely perturbative calculation of trans-
verse coordinate dependence away from a part that in-
volves nonperturbative modeling or fitting. While any
reasonably well-behaved, smooth function of bT that
obeys the right side of Eq. (100) is a valid b⇤(bT), the
most often used choice is

b⇤(bT) =
bTp

1 + b2
T
/b2

max

. (101)

Later on, we will also need to define another hard scale
that approaches the RG improve value of µ = C1/bT
appropriate to the bT ! 0 limit but that levels o↵ at a
fixed scale at large bT. The simplest (and standard) way
to do this is to just use the inverse of b⇤ and define

µb⇤ ⌘ C1/b⇤ . (102)

The behavior of µb⇤ is similar to that of our Q0(bT), but
Q0(bT) approaches Q0 at large bT while µb⇤ approaches
C1/bmax. (Indeed, in our treatment below we could opt
to use Q0(bT) instead of µb⇤ , but we will continue with
µb⇤ to make the comparison with standard expressions
clear.)
Next, one solves Eq. (18) to relate a TMD ↵ (for hadron

A, for example) at an input scale Q0 to the TMD ↵ at
any other scale

p
⇣ by

D̃A(z, bT;µ, ⇣)

= D̃A(z, bT;µ,Q
2

0
) exp

⇢
K̃(bT;µ) ln

✓p
⇣

Q0

◆�
.

(103)

Exactly the same equation applies independently of the
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(more information on long distance behaviour)
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D̃A(z, bT;µ, ⇣) = D̃A(z, b⇤;µ, ⇣) exp
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�gA(z, bT)� gK(bT) ln
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⇣

Q0

◆�
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. (109)

Recall that µb⇤ is defined in Eq. (102). There is of course an exactly analogous equation for D̃B(z, b⇤;µb⇤ , µ
2

b⇤
).

Substituting the evolved versions of D̃A(z, b⇤;µb⇤ , µ
2

b⇤
) and D̃B(z, b⇤;µb⇤ , µ

2

b⇤
) into the W -term factorization formula

Eq. (15) and setting the final scales equal to µ = µQ and ⇣ = Q2 in Eq. (15) gives

W (qT, Q) = H(µQ;C2)

Z
d2bT
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2
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+ ln
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0
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. (110)

Equation (110) is very close to the standard way of ex-
pressing the CSS-evolved W -term.3 As we have writ-
ten it, there are still no approximations; the solutions
to the evolution equations are exact and the steps above
simply reorganize the original factorization formula in
Eq. (15). However, by writing W (qT, Q) as in Eq. (110),
we have isolated on the first two lines those factors that
can be confidently approximated in perturbation theory
using collinear factorization. The value of bT never rises
above bmax and the scale µb⇤ never drops below C1/bmax.
Therefore, one obtains well-behaved perturbative calcu-
lations by replacing H(µQ;C2), �(↵s(µ0); 1), �K(↵s(µ0))
and K̃(b⇤;µb⇤) by their nth-order perturbative calcula-
tions.

For the TMD ↵s themselves on the first line, the choice
of µ =

p
⇣ = µb⇤ implements RG improvement for the

limit of small bT. As long as bmax is small enough,
D̃A,B(zA,B , b⇤;µb⇤ , µ

2

b⇤
) can be expanded in an OPE:

D̃(n,dr)(z, b⇤;µb⇤ , µ
2

b⇤)

=

Z
1

z

dẑ

ẑ3�2✏
dr(ẑ;µb⇤)C̃

(n)
D (z/ẑ, bT;µ

2

b⇤ , µb⇤ ,↵s(µb⇤))

+O (mbT) , (111)

which is a more explicit version of Eq. (25) but in
bT-space. (Here, as usual, m represents any of the

3 There are, however, a large number of minor but not always
obvious variations in the form of the expression in the literature.
There are also many di↵erent systems of notation. See [38] for
some translation.

small intrinsic mass scales, including now 1/bmax.) Sub-
stituting Eq. (111) for both D̃A(zA, b⇤;µb⇤ , µ

2

b⇤
) and

D̃B(zB , b⇤;µb⇤ , µ
2

b⇤
), along with the other perturbative

approximations mentioned above, recovers the standard
CSS expression – compare, for example, with the Drell-
Yan version of TMD factorization in Eq. (22) of [65].
The b⇤ method, as it is explained here, has several de-

sirable properties. There is the elegant feature that, in
dealing with the nonperturbative region of large bT, one
never modifies or approximates the operator definitions
of the TMD ↵s themselves. Rather, on the first line of
Eq. (110) we have simply changed their arguments from
bT to b⇤. Along the same lines, the g-functions on the last
line have explicit definitions in terms of the underlying
QCD operators. The final result for the cross section,
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d

dbmax

W (qT, Q) = 0 . (112)

Or, if we consider other more general b⇤(bT) functions
determined by a collection of possibly many parameters
{b-params}, we can express the same relation schemati-
cally as

d

d{b-params}W (qT, Q) = 0 . (113)

These relations are exact for Eq. (110). Therefore, it is le-
gitimate to say that perturbative calculations of the first

Scale setting in the OPE

29

-6.0

-4.0

-2.0

0.0

2.0

4.0
bmax = 0.1GeV�1

-6.0

-4.0

-2.0

0.0

2.0

4.0

10�1 100 101

Q0 = 2GeV z = 0.3

bmax = 1.0GeV�1

ln
⇣
D̃

(1,dMS)(z, bT;µQ0 , Q
2
0)
⌘

ln
⇣
D̃

(1,dMS)(z, b⇤ ;µQ0 , Q
2
0)
⌘

�g
(1,dMS)(z, bT; bmax)

bT(GeV�1)

FIG. 11: The example D̃
(1,dMS)(z, bT;µQ0 , Q

2
0) from

Eq. (92), and the corresponding g
(1,dMS)(z, bT) (Eq. (116))

and D̃
(1,dMS)(z, b⇤;µQ0 , Q

2
0) from the b⇤-prescription

(Eq. (101)). The curves are generated using the same
M = 0.2GeV, mD = 0.3GeV, and a = 2GeV as in Fig. 7.
The top panel is the case of bmax = 0.1GeV�1 and the bottom
panel is the case of bmax = 1.0GeV�1. The bmax-dependence

in ln(D̃
(1,dMS)(z, b⇤;µQ0 , Q

2
0)) (violet dot-dashed) cancels

that of �g
(1,dMS)(z, bT) (blue-dashed). The solid black

curves for D̃
(1,dMS)(z, bT;µQ0 , Q

2
0) are identical in the top

and bottom panels.

A. The b⇤ method

Readers who are familiar with standard implementa-
tions of the CSS formalism might find the surface ap-
pearance of our expressions for the evolved W (n)(qT, Q)
in sections Sec. IV-Sec. VII somewhat odd. Normally,
the cross section is written with nonperturbative TMD
e↵ects contained in separate exponential factors usually
notated

e�gA(zA,bT), e�gB(zB ,bT), and e
�gK(bT) ln

Q2

Q2
0 , (99)

where the nonperturbative transverse momentum depen-
dence is encoded in the (coordinate dependence of) the
lower-case g-functions in the exponents. (The gA and gB
functions are placed inside exponents so that they retain
the appearance of Sudakov form factor contributions.)

Then, in the usual presentation, the rest of the factors
in the cross section automatically get expressed in terms
of collinear functions by using the OPE to approximate
the small bT behavior. For a specific example of what we
mean here, consider Eq.(13.81) of [3].
In this subsection, we will review the steps for trans-

forming the low-qT cross section (or rather W (qT, Q)) in
Eq. (20) into the form that involves Eq. (99) g-functions.
Setting up the usual presentation of the cross section

begins with a partition of the coordinate space W̃ (bT, Q)
into regions considered large and small bT. One does
this by defining an arbitrary function of bT, traditionally
called b⇤(bT). The function should smoothly interpolate
between bT at small values of bT and a maximum trans-
verse size bmax as bT grows to bT � bmax. It is otherwise
arbitrary. In other words,

b⇤(bT) =

⇢
bT bT ⌧ bmax

bmax bT � bmax

. (100)

The value of bmax is also arbitrary, but it is usually in-
terpreted roughly as a value somewhere near the bound-
ary between nonperturbatively large and perturbatively
small regions of bT. The purpose of the “b⇤ method” [93]
is to sequester a purely perturbative calculation of trans-
verse coordinate dependence away from a part that in-
volves nonperturbative modeling or fitting. While any
reasonably well-behaved, smooth function of bT that
obeys the right side of Eq. (100) is a valid b⇤(bT), the
most often used choice is

b⇤(bT) =
bTp

1 + b2
T
/b2

max

. (101)

Later on, we will also need to define another hard scale
that approaches the RG improve value of µ = C1/bT
appropriate to the bT ! 0 limit but that levels o↵ at a
fixed scale at large bT. The simplest (and standard) way
to do this is to just use the inverse of b⇤ and define

µb⇤ ⌘ C1/b⇤ . (102)

The behavior of µb⇤ is similar to that of our Q0(bT), but
Q0(bT) approaches Q0 at large bT while µb⇤ approaches
C1/bmax. (Indeed, in our treatment below we could opt
to use Q0(bT) instead of µb⇤ , but we will continue with
µb⇤ to make the comparison with standard expressions
clear.)
Next, one solves Eq. (18) to relate a TMD ↵ (for hadron

A, for example) at an input scale Q0 to the TMD ↵ at
any other scale

p
⇣ by

D̃A(z, bT;µ, ⇣)

= D̃A(z, bT;µ,Q
2

0
) exp

⇢
K̃(bT;µ) ln

✓p
⇣

Q0

◆�
.

(103)

Exactly the same equation applies independently of the
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A. The b⇤ method

Readers who are familiar with standard implementa-
tions of the CSS formalism might find the surface ap-
pearance of our expressions for the evolved W (n)(qT, Q)
in sections Sec. IV-Sec. VII somewhat odd. Normally,
the cross section is written with nonperturbative TMD
e↵ects contained in separate exponential factors usually
notated

e�gA(zA,bT), e�gB(zB ,bT), and e
�gK(bT) ln

Q2

Q2
0 , (99)

where the nonperturbative transverse momentum depen-
dence is encoded in the (coordinate dependence of) the
lower-case g-functions in the exponents. (The gA and gB
functions are placed inside exponents so that they retain
the appearance of Sudakov form factor contributions.)

Then, in the usual presentation, the rest of the factors
in the cross section automatically get expressed in terms
of collinear functions by using the OPE to approximate
the small bT behavior. For a specific example of what we
mean here, consider Eq.(13.81) of [3].
In this subsection, we will review the steps for trans-

forming the low-qT cross section (or rather W (qT, Q)) in
Eq. (20) into the form that involves Eq. (99) g-functions.
Setting up the usual presentation of the cross section

begins with a partition of the coordinate space W̃ (bT, Q)
into regions considered large and small bT. One does
this by defining an arbitrary function of bT, traditionally
called b⇤(bT). The function should smoothly interpolate
between bT at small values of bT and a maximum trans-
verse size bmax as bT grows to bT � bmax. It is otherwise
arbitrary. In other words,

b⇤(bT) =

⇢
bT bT ⌧ bmax

bmax bT � bmax

. (100)

The value of bmax is also arbitrary, but it is usually in-
terpreted roughly as a value somewhere near the bound-
ary between nonperturbatively large and perturbatively
small regions of bT. The purpose of the “b⇤ method” [93]
is to sequester a purely perturbative calculation of trans-
verse coordinate dependence away from a part that in-
volves nonperturbative modeling or fitting. While any
reasonably well-behaved, smooth function of bT that
obeys the right side of Eq. (100) is a valid b⇤(bT), the
most often used choice is

b⇤(bT) =
bTp

1 + b2
T
/b2

max

. (101)

Later on, we will also need to define another hard scale
that approaches the RG improve value of µ = C1/bT
appropriate to the bT ! 0 limit but that levels o↵ at a
fixed scale at large bT. The simplest (and standard) way
to do this is to just use the inverse of b⇤ and define

µb⇤ ⌘ C1/b⇤ . (102)

The behavior of µb⇤ is similar to that of our Q0(bT), but
Q0(bT) approaches Q0 at large bT while µb⇤ approaches
C1/bmax. (Indeed, in our treatment below we could opt
to use Q0(bT) instead of µb⇤ , but we will continue with
µb⇤ to make the comparison with standard expressions
clear.)
Next, one solves Eq. (18) to relate a TMD ↵ (for hadron

A, for example) at an input scale Q0 to the TMD ↵ at
any other scale

p
⇣ by

D̃A(z, bT;µ, ⇣)
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Exactly the same equation applies independently of the
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momentum approximation. Thus,

D
�
z, zkT ⇡ Q;µQ, Q

2
�
⌘

D(n,dr)
�
z, zkT;µQ, Q

2
�
+O

✓
m

kT
,↵s(kT)

n+1

◆
. (23)

As usual, “n” is the order of collinear perturbation the-
ory. Thus, D(n,dr)

�
z, zkT;µQ, Q2

�
is calculated through

order ↵n
s , with powers of ↵n+1

s and ⇠ m/kT errors ne-
glected. However, now we have also included a “dr” in
the superscript. This is to indicate that the collinear
factorization calculation uses a renormalized collinear ↵
dr(z;µQ). The subscript “r” on “dr” in turn labels the
UV renormalization or regularization scheme (such as,
for example, r = MS renormalization). We also define

D(n,dr)
�
z, zkT;µQ, Q

2
�
⌘ 0 8 n < 1 . (24)

The m/kT in the error term of Eq. (23) symbolizes con-
tributions that are power suppressed when kT ⇡ Q.
Throughout this paper, an “m” will always represent any
generic mass scale that is of order a small hadronic size
like ⇤QCD or an intrinsic transverse momentum. Also, to
simplify notation, any power-suppressed contributions of
the form (m/Q)� or (m/kT)� , with � > 0 will always
simply be written as O (m/Q) or O (m/kT), regardless
of the power �.

To summarize, the symbol D(n,dr)
�
z, zkT;µQ, Q2

�
is

the approximation to an individual TMD ↵ wherein it
is calculated in fixed order collinear perturbation the-
ory, optimized to the region kT ⇡ Q and Q ! 1, and
using dr collinear fragmentation functions. The fixed or-
der perturbative expression for D(n,dr)

�
z, zkT;µQ, Q2

�

in collinear factorization has the form

D(n,dr)
�
z, zkT;µQ, Q

2
�
=

h
C(n)
D (zkT)⌦ dr

i
(z;µQ) .

(25)
The “⌦” here symbolizes the usual collinear convolution
integral,

(f ⌦ g)(z;µ) ⌘
Z

1

z

d⇠

⇠
f(z/⇠)g(⇠;µ) . (26)

In Eq. (25), C(n)
D (zkT) is a hard coe�cient. We have writ-

ten its zkT argument explicitly as a reminder that this
particular hard factor has kT-dependence. Approxima-
tions to D

�
z, zkT;µQ, Q2

�
appropriate to regions other

than kT ⇡ Q will be left unaddressed for now. They will
be discussed in Sec. V.

The TMD ↵ is related to a collinear ↵ by an integral
over transverse momentum,

2⇡z2
Z µQ

0

dkT kTD(z, zkT;µQ, Q
2) = dr(z;µQ)

+�(n,dr)(↵s(µQ)) +O

✓
m

Q
,↵s(µQ)

n+1

◆
, (27)

with the details of the notation to be explained below.
In a literal probability density interpretation, µQ would

be set equal to infinity and the second two terms on
the right-hand side would be zero. In a renormaliz-
able theory like QCD, the integral needs to be regulated,
and corrections are necessary to relate the cuto↵ inte-
gral to collinear ↵s defined in standard schemes. The
�(n,dr)(↵s(µQ)) term on the right-hand side of Eq. (27)
is our notation for the perturbative correction through
nth-order that relates the cuto↵ integral to the collinear ↵
dr(z;µQ) in scheme r. There are also, in general, power-
suppressed corrections, as indicated by the error term in
Eq. (27). The correction term �(n,dr)(↵s(µQ)) is related
to collinear ↵s via another factorization theorem,

�(n,dr)(↵s(µQ)) =
h
C(n)
�

⌦ dr
i
(z;µQ) . (28)

and C(n)
�

is an order-↵s(µQ)n hard coe�cient, with a
� subscript included here to distinguish it from the kT-
dependent hard coe�cient in Eq. (25). The “(n, dr)” su-
perscript in �(n,dr)(↵s(µQ)) is to symbolize that Eq. (28)
is to be calculated through order ↵s(µQ)n, and that the
collinear ↵ is defined in the r renormalization and/or reg-
ularization scheme. Note that �(n,dr)(↵s(µQ)) is also a
function of z and Q, but we have dropped explicit de-
pendence on those variables to maintain as compact a
notation as possible. We also define

�(n,dr)(↵s(µQ)) ⌘ 0 8 n < 1 . (29)

To make the above more explicit, let us define a new
collinear ↵ that is the transverse momentum integral of
a TMD ↵ regulated with a cuto↵ on all kT > µQ:

dc(z;µQ) ⌘ 2⇡z2
Z µQ

0

dkT kTD(z, zkT;µQ, Q
2) . (30)

The r = c subscript on the left indicates that this is an
↵ defined in the “cuto↵” scheme.2 Equation (30) is just
the left side of Eq. (27). Dropping the power-suppressed
and order-↵n+1

s (µQ) terms on the right side of Eq. (27)
gives an equation that is satisfied only approximately. To
give this a notation, we also define

d(n,dr)
c (z;µQ) ⌘ dr(z;µQ) +�(n,dr)(↵s(µQ)) . (31)

Then, Eq. (27) is

d(n,dr)
c (z;µQ)� dc(z;µQ) = O

✓
m

Q
,↵s(µQ)

n+1

◆
, (32)

If the scheme for dealing with UV transverse momen-
tum divergences is the cuto↵ scheme itself, r = c, then

�(n,dc)(↵s(µQ)) = 0 (33)

2 For the renormalization of the TMD ↵ in the integrand of
Eq. (30), it is to be understood that the scheme is a standard
one like MS.
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The r = c subscript on the left indicates that this is an
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gives an equation that is satisfied only approximately. To
give this a notation, we also define

d(n,dr)
c (z;µQ) ⌘ dr(z;µQ) +�(n,dr)(↵s(µQ)) . (31)

Then, Eq. (27) is

d(n,dr)
c (z;µQ)� dc(z;µQ) = O

✓
m

Q
,↵s(µQ)

n+1

◆
, (32)

If the scheme for dealing with UV transverse momen-
tum divergences is the cuto↵ scheme itself, r = c, then
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2 For the renormalization of the TMD ↵ in the integrand of
Eq. (30), it is to be understood that the scheme is a standard
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Integral relation very important:
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momentum approximation. Thus,

D
�
z, zkT ⇡ Q;µQ, Q

2
�
⌘

D(n,dr)
�
z, zkT;µQ, Q

2
�
+O

✓
m

kT
,↵s(kT)

n+1

◆
. (23)

As usual, “n” is the order of collinear perturbation the-
ory. Thus, D(n,dr)

�
z, zkT;µQ, Q2

�
is calculated through

order ↵n
s , with powers of ↵n+1

s and ⇠ m/kT errors ne-
glected. However, now we have also included a “dr” in
the superscript. This is to indicate that the collinear
factorization calculation uses a renormalized collinear ↵
dr(z;µQ). The subscript “r” on “dr” in turn labels the
UV renormalization or regularization scheme (such as,
for example, r = MS renormalization). We also define

D(n,dr)
�
z, zkT;µQ, Q

2
�
⌘ 0 8 n < 1 . (24)

The m/kT in the error term of Eq. (23) symbolizes con-
tributions that are power suppressed when kT ⇡ Q.
Throughout this paper, an “m” will always represent any
generic mass scale that is of order a small hadronic size
like ⇤QCD or an intrinsic transverse momentum. Also, to
simplify notation, any power-suppressed contributions of
the form (m/Q)� or (m/kT)� , with � > 0 will always
simply be written as O (m/Q) or O (m/kT), regardless
of the power �.

To summarize, the symbol D(n,dr)
�
z, zkT;µQ, Q2

�
is

the approximation to an individual TMD ↵ wherein it
is calculated in fixed order collinear perturbation the-
ory, optimized to the region kT ⇡ Q and Q ! 1, and
using dr collinear fragmentation functions. The fixed or-
der perturbative expression for D(n,dr)

�
z, zkT;µQ, Q2

�

in collinear factorization has the form

D(n,dr)
�
z, zkT;µQ, Q

2
�
=

h
C(n)
D (zkT)⌦ dr

i
(z;µQ) .

(25)
The “⌦” here symbolizes the usual collinear convolution
integral,

(f ⌦ g)(z;µ) ⌘
Z

1

z

d⇠

⇠
f(z/⇠)g(⇠;µ) . (26)

In Eq. (25), C(n)
D (zkT) is a hard coe�cient. We have writ-

ten its zkT argument explicitly as a reminder that this
particular hard factor has kT-dependence. Approxima-
tions to D

�
z, zkT;µQ, Q2

�
appropriate to regions other

than kT ⇡ Q will be left unaddressed for now. They will
be discussed in Sec. V.

The TMD ↵ is related to a collinear ↵ by an integral
over transverse momentum,

2⇡z2
Z µQ

0

dkT kTD(z, zkT;µQ, Q
2) = dr(z;µQ)

+�(n,dr)(↵s(µQ)) +O

✓
m

Q
,↵s(µQ)

n+1

◆
, (27)

with the details of the notation to be explained below.
In a literal probability density interpretation, µQ would

be set equal to infinity and the second two terms on
the right-hand side would be zero. In a renormaliz-
able theory like QCD, the integral needs to be regulated,
and corrections are necessary to relate the cuto↵ inte-
gral to collinear ↵s defined in standard schemes. The
�(n,dr)(↵s(µQ)) term on the right-hand side of Eq. (27)
is our notation for the perturbative correction through
nth-order that relates the cuto↵ integral to the collinear ↵
dr(z;µQ) in scheme r. There are also, in general, power-
suppressed corrections, as indicated by the error term in
Eq. (27). The correction term �(n,dr)(↵s(µQ)) is related
to collinear ↵s via another factorization theorem,

�(n,dr)(↵s(µQ)) =
h
C(n)
�

⌦ dr
i
(z;µQ) . (28)

and C(n)
�

is an order-↵s(µQ)n hard coe�cient, with a
� subscript included here to distinguish it from the kT-
dependent hard coe�cient in Eq. (25). The “(n, dr)” su-
perscript in �(n,dr)(↵s(µQ)) is to symbolize that Eq. (28)
is to be calculated through order ↵s(µQ)n, and that the
collinear ↵ is defined in the r renormalization and/or reg-
ularization scheme. Note that �(n,dr)(↵s(µQ)) is also a
function of z and Q, but we have dropped explicit de-
pendence on those variables to maintain as compact a
notation as possible. We also define

�(n,dr)(↵s(µQ)) ⌘ 0 8 n < 1 . (29)

To make the above more explicit, let us define a new
collinear ↵ that is the transverse momentum integral of
a TMD ↵ regulated with a cuto↵ on all kT > µQ:

dc(z;µQ) ⌘ 2⇡z2
Z µQ

0

dkT kTD(z, zkT;µQ, Q
2) . (30)

The r = c subscript on the left indicates that this is an
↵ defined in the “cuto↵” scheme.2 Equation (30) is just
the left side of Eq. (27). Dropping the power-suppressed
and order-↵n+1

s (µQ) terms on the right side of Eq. (27)
gives an equation that is satisfied only approximately. To
give this a notation, we also define

d(n,dr)
c (z;µQ) ⌘ dr(z;µQ) +�(n,dr)(↵s(µQ)) . (31)

Then, Eq. (27) is

d(n,dr)
c (z;µQ)� dc(z;µQ) = O

✓
m

Q
,↵s(µQ)

n+1

◆
, (32)

If the scheme for dealing with UV transverse momen-
tum divergences is the cuto↵ scheme itself, r = c, then

�(n,dc)(↵s(µQ)) = 0 (33)

2 For the renormalization of the TMD ↵ in the integrand of
Eq. (30), it is to be understood that the scheme is a standard
one like MS.
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momentum approximation. Thus,

D
�
z, zkT ⇡ Q;µQ, Q

2
�
⌘

D(n,dr)
�
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2
�
+O

✓
m
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n+1

◆
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As usual, “n” is the order of collinear perturbation the-
ory. Thus, D(n,dr)

�
z, zkT;µQ, Q2

�
is calculated through

order ↵n
s , with powers of ↵n+1

s and ⇠ m/kT errors ne-
glected. However, now we have also included a “dr” in
the superscript. This is to indicate that the collinear
factorization calculation uses a renormalized collinear ↵
dr(z;µQ). The subscript “r” on “dr” in turn labels the
UV renormalization or regularization scheme (such as,
for example, r = MS renormalization). We also define

D(n,dr)
�
z, zkT;µQ, Q

2
�
⌘ 0 8 n < 1 . (24)

The m/kT in the error term of Eq. (23) symbolizes con-
tributions that are power suppressed when kT ⇡ Q.
Throughout this paper, an “m” will always represent any
generic mass scale that is of order a small hadronic size
like ⇤QCD or an intrinsic transverse momentum. Also, to
simplify notation, any power-suppressed contributions of
the form (m/Q)� or (m/kT)� , with � > 0 will always
simply be written as O (m/Q) or O (m/kT), regardless
of the power �.

To summarize, the symbol D(n,dr)
�
z, zkT;µQ, Q2

�
is

the approximation to an individual TMD ↵ wherein it
is calculated in fixed order collinear perturbation the-
ory, optimized to the region kT ⇡ Q and Q ! 1, and
using dr collinear fragmentation functions. The fixed or-
der perturbative expression for D(n,dr)

�
z, zkT;µQ, Q2

�

in collinear factorization has the form

D(n,dr)
�
z, zkT;µQ, Q

2
�
=

h
C(n)
D (zkT)⌦ dr

i
(z;µQ) .

(25)
The “⌦” here symbolizes the usual collinear convolution
integral,

(f ⌦ g)(z;µ) ⌘
Z

1

z

d⇠

⇠
f(z/⇠)g(⇠;µ) . (26)

In Eq. (25), C(n)
D (zkT) is a hard coe�cient. We have writ-

ten its zkT argument explicitly as a reminder that this
particular hard factor has kT-dependence. Approxima-
tions to D

�
z, zkT;µQ, Q2

�
appropriate to regions other

than kT ⇡ Q will be left unaddressed for now. They will
be discussed in Sec. V.

The TMD ↵ is related to a collinear ↵ by an integral
over transverse momentum,

2⇡z2
Z µQ

0

dkT kTD(z, zkT;µQ, Q
2) = dr(z;µQ)

+�(n,dr)(↵s(µQ)) +O

✓
m

Q
,↵s(µQ)

n+1

◆
, (27)

with the details of the notation to be explained below.
In a literal probability density interpretation, µQ would

be set equal to infinity and the second two terms on
the right-hand side would be zero. In a renormaliz-
able theory like QCD, the integral needs to be regulated,
and corrections are necessary to relate the cuto↵ inte-
gral to collinear ↵s defined in standard schemes. The
�(n,dr)(↵s(µQ)) term on the right-hand side of Eq. (27)
is our notation for the perturbative correction through
nth-order that relates the cuto↵ integral to the collinear ↵
dr(z;µQ) in scheme r. There are also, in general, power-
suppressed corrections, as indicated by the error term in
Eq. (27). The correction term �(n,dr)(↵s(µQ)) is related
to collinear ↵s via another factorization theorem,

�(n,dr)(↵s(µQ)) =
h
C(n)
�

⌦ dr
i
(z;µQ) . (28)

and C(n)
�

is an order-↵s(µQ)n hard coe�cient, with a
� subscript included here to distinguish it from the kT-
dependent hard coe�cient in Eq. (25). The “(n, dr)” su-
perscript in �(n,dr)(↵s(µQ)) is to symbolize that Eq. (28)
is to be calculated through order ↵s(µQ)n, and that the
collinear ↵ is defined in the r renormalization and/or reg-
ularization scheme. Note that �(n,dr)(↵s(µQ)) is also a
function of z and Q, but we have dropped explicit de-
pendence on those variables to maintain as compact a
notation as possible. We also define

�(n,dr)(↵s(µQ)) ⌘ 0 8 n < 1 . (29)

To make the above more explicit, let us define a new
collinear ↵ that is the transverse momentum integral of
a TMD ↵ regulated with a cuto↵ on all kT > µQ:

dc(z;µQ) ⌘ 2⇡z2
Z µQ

0

dkT kTD(z, zkT;µQ, Q
2) . (30)

The r = c subscript on the left indicates that this is an
↵ defined in the “cuto↵” scheme.2 Equation (30) is just
the left side of Eq. (27). Dropping the power-suppressed
and order-↵n+1

s (µQ) terms on the right side of Eq. (27)
gives an equation that is satisfied only approximately. To
give this a notation, we also define

d(n,dr)
c (z;µQ) ⌘ dr(z;µQ) +�(n,dr)(↵s(µQ)) . (31)

Then, Eq. (27) is

d(n,dr)
c (z;µQ)� dc(z;µQ) = O

✓
m

Q
,↵s(µQ)

n+1

◆
, (32)

If the scheme for dealing with UV transverse momen-
tum divergences is the cuto↵ scheme itself, r = c, then

�(n,dc)(↵s(µQ)) = 0 (33)

2 For the renormalization of the TMD ↵ in the integrand of
Eq. (30), it is to be understood that the scheme is a standard
one like MS.These corrections may be important  

at moderate energy scales 
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W (qT, Q) = H(↵s(µQ);C2)

Z
d2bT
(2⇡)2

e�iqT·bT D̃A(zA, bT;µQ0 , Q
2

0
) D̃B(zB , bT;µQ0 , Q

2

0
)

⇥ exp

(
K̃(bT;µQ0) ln

✓
Q2

Q2
0

◆
+

Z µQ

µQ0

dµ0

µ0


2�(↵s(µ

0); 1)� ln
Q2

µ02 �K(↵s(µ
0))

�)
. (20)

We could express the same evolved W with TMD ↵s
in transverse momentum space, and in some cases that
might help with intuition since it more closely matches
the TMD parton model. But then the Fourier transforms
of simple factors become transverse momentum convolu-

tion integrals of several functions. For the purposes of
implementing evolution, we will continue to work with
Eq. (20) in coordinate space, as is normally done.
When Q = Q0, Eq. (20) exactly reproduces the TMD

parton model form of the factorization,

W (qT, Q0) = H(µQ0 ;C2)

Z
d2bT
(2⇡)2

e�iqT·bT D̃A(zA, bT;µQ0 , Q
2

0
) D̃B(zB , bT;µQ0 , Q

2

0
)

= H(µQ0 ;C2)

Z
d2kAT d2kBT DA

�
zA, zAkAT;µQ0 , Q

2

0

�
DB

�
zB , zBkBT;µQ0 , Q

2

0

�
�(2) (qT � kAT � kBT) .

(21)

So far, Eq. (20) and Eq. (21) still involve no approxi-
mations at all on the W -term. However, approximations
are ultimately necessary, of course, for getting practical
results.

Rather di↵erent kinds of approximations to Eq. (20)
can enter in a number of di↵erent ways, so the language
can become confusing. We will be as precise as possible
with our wording here. There are at least four di↵erent
types of approximation that generally take place simul-
taneously, including

1. The choices of models, assumptions, or approxi-
mations used to describe nonperturbative contri-
butions,

2. The neglect of power suppressed corrections to fac-
torization, like the last term in Eq. (14),

3. Truncation of high powers of ↵s in perturbative
parts of the calculation and,

4. In phenomenological applications involving fits,
whatever assumptions and approximations are used
at the level of fit extractions.

When we discuss an “nth-order” perturbative treatment,
we will mean by this that all parts that are calcula-
ble in fixed order perturbative QCD have been included
through order n, and they are optimized using the renor-
malization group and Collins-Soper evolution (Eq. (17)).
These “perturbative parts” include the right sides of
Eqs. (17)–(19), which in Eq. (20) appear as �K(↵s(µ0)),
�(↵s(µ0); 1) and K̃(bT;µQ0) when bT (or kT) is small

(large) enough that its bT-dependence is perturbative. In
Eq. (20) it also includesH(µQ;C2) and the D̃A, D̃B func-
tions in regions of small bT (or large kT). An “(n)” super-
script on a function means that it has been replaced by
its truncated, fixed order perturbation theory calculation
through order n. When we discuss nonperturbative parts
in later sections, it should be understood to be in the con-
text of phenomenological extractions. We will assume for
the sake of our discussion here that all nonperturbative
parametrizations have been made flexible enough that
the significant errors come only from the limitations of
factorization and truncated perturbation theory, and not
from a poor choice of nonperturbative parametrizations
or artifacts of the fitting procedure. Thus, a function like

D̃(n)
A should be read as “a D̃A parametrization including

nonperturbative parts extracted from measurements and
using an nth-order perturbation theory treatment for its
perturbative ingredients.”

Also, when we use the phrase “nonperturbative part,”
(e.g., the g-functions of the CSS formalism) it should gen-
erally be understood that we are not necessarily referring
to parts of a calculation that cannot ever be improved
with small coupling techniques. It only refers to contri-
butions that we choose to exclude from those factors that
we explicitly identify as perturbative.

Now consider how one might use Eq. (20) to do phe-
nomenology in a Type I scenario and from a bottom-up
perspective. Near the input scale, Q ⇡ Q0, the evolu-
tion factor on the second line is nearly unity and we can,
to a good approximation, just work with Eq. (21). If
Q0 is only of order ⇠ 1 � 2 GeV, then a phenomenolog-

Work with this form of CSS

But work in momentum space when possible 



model building 

• Choose models for smallest scale Q0 at which factorization is trusted  & 
constrain models using pQCD at kT~Q, Integral relation, etc. 
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D̃
(1,dMS)(z, bT;µQ0 , Q

2

0
)

= D̃
(1,dMS)

input
(z, bT;µQ0

, Q
2

0
) exp

(Z µQ0

µQ0

dµ0

µ0


�(1)(↵s(µ

0); 1)� ln
Q0

µ0 �
(1)

K (↵s(µ
0))

�
+ ln

Q0

Q0

K̃(1)

input
(bT;µQ0

)

)
. (92)
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FIG. 5: The n = 1 input TMD ↵ from Eq. (83). The
function is shown for M = 0.2GeV and mD = 0.3GeV at a
fixed value of z = 0.3 (blue dot-dashed). For comparison, we
have also overlaid a Gaussian (black dashed) curve. Up to
kT ⇡ 1.0GeV, both lines exhibit similar profiles. The change
in sign at larger kT is due to matching to the perturbative
collinear factorizaton expression using MS collinear ↵s.

This is simply Eq. (61) again but now we mean it to
be implied that it is being used with the specific models
from Eq. (72) and Eq. (83). From Eq. (89),

z2D̃
(1,dMS)

input
(z, bT;µQ0

, Q
2

0
) =

A(dMS)(z;µQ0
)K0(bTmD)

+B(dMS)(z;µQ0
)K0(bTmD) ln

✓
bT

2mD
Q

2

0
e�E

◆

+ C(dMS) exp

✓
�b2

T
M2

4z2

◆
, (93)

and K̃
(1)

(bT;µQ0
) is the same n = 1 result already writ-

ten in Eq. (78). C(dMS) is given by Eq. (87).
For illustration, Fig. 6 is a plot of our trial

D̃
(1,dMS)(z, bT;µQ0 , Q

2
0
) from Eq. (92), plotted in coordi-

nate space, where as before we have used an input scale
Q0 = 2GeV and z = 0.3. We have chosen typical sizes
for the nonperturbative mass parameters: M = 0.2GeV,
mD = 0.3GeV and mK = 0.1GeV. As in the case of

K̃
(1)

(bT;µQ0), we are able to test scale sensitivity in the
intermediate bT region by varying the transition function
Q0(bT). In Fig. 6, we do this by again switching between
the two Q0(bT) functions from the upper panel of Fig. 2;
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FIG. 6: A plot of the example D̃
(1,dMS)(z, bT;µQ0 , Q

2
0) from

Eq. (92), with typical nonperturbative mass parameters cho-
sen for illustration purposes; mD and M have the same val-
ues as in Fig. 5 while mK has the same value as in the lower
panel of Fig. 2. As in all previous plots, we have also fixed
Q0 = 2GeV. The di↵erence between the two curves cor-
responds to switching between the two transition functions
Q0(bT) in the upper panel of Fig. 2, as indicated by the two
values of a. This figure is the culmination of steps A1, A2
and A3 from Sec. VI.

the solid black and dashed red curves are for a = 2 GeV
and a = 4 GeV respectively. The weakness of the ob-
served variation confirms that the setup is behaving as

intended (recall Eq. (64)). As with K̃
(1)

(bT;µQ0), sensi-
tivity to parameters like a can in principle be reduced still
further by including higher orders and fitting at larger Q.
This requires matching to a higher order treatment of the
large qT tail – see, for example, Refs. [84, 90, 91].

C. Cross section examples

With Eq. (92) now completely set up, all that is
needed to get the cross section is to substitute it, along
with Eq. (78), into Eq. (65) to obtain a calculation of
W (1)(qT, Q) for any Q � Q0. To illustrate how the fea-

tures of the D̃
(1,dMS)(z, bT;µQ0 , Q

2
0
) and K̃

(1)

(bT;µQ0)
parametrizations from the previous subsections influence
W (1)(qT, Q), and to finish reviewing the steps of Sec. VI,
we will end this section below by examining several ex-
ample plots of W (1)(qT, Q).
First, Fig. 7 shows qTW (1)(qT, Q) (divided by an un-

Behaviour needed 
Also for “matching” i.e. 

Y term
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e↵ect on the bT . 1/Q0 region of K̃
(1)

(bT;µQ0) so long
as mK is kept small relative to Q0. To illustrate this,

we have plotted K̃
(1)

(bT;µQ0) once again in Fig. 4 for
several values of mK , now on a linear horizontal axis to
magnify the e↵ect on the large bT region. The plot con-
firms that the region of bT . 0.5 GeV�1 is essentially
una↵ected by the values of the mK parameter between
⇡ 0.1 GeV and ⇡ 0.5 GeV, so long as those values are
kept reasonably small relative to Q0. A vertical line indi-
cates the bT = 0.3 GeV�1 position where we previously
found the greatest scale sensitivity in the perturbative
part of the calculation – the peak of the bump in Fig. 3.
In contrast to the small scale sensitivity in the bottom
panel of Fig. 2, sensitivity to changes in the value of mK

is large and clearly visible, but only in the region of large
bT. The step of fitting the purely nonperturbative pa-
rameter has been sequestered from the treatment of the
transition into the perturbative regime.

In phenomenological applications, one converges on an
unambiguous K̃ as one repeats the steps above but with
higher orders for the large kT region. That amounts

to constructing parametrizations for K̃
(2)

(bT;µQ0),

K̃
(3)

(bT;µQ0), etc. Going to larger n reduces sensi-
tivity to arbitrary choices like the functional form for
Q̄0(bT). Quantities like a and mK are also increasingly
constrained as more data from larger Q are included in
fitting.

Extending the above construction of K̃
(1)

(bT;µQ0) to

the case of K̃
(2)

(bT;µQ0) is straightforward and instruc-
tive, but we leave it to future work.

B. TMD ↵ example

Next we need to repeat steps A1-A3 from Sec. VI for
the TMD ↵s themselves. To keep the discussion here
simple, we will assume that the TMD ↵s are the same for
hadrons A and B, and we will continue to focus only on
the n = 1 case. Fortunately, the steps are very analogous
to the CS kernel, so much of the below will be repetition.

A typical parametrization, common in TMD parton-
model descriptions of Type I processes, is a Gaussian,

D(0,dr)

input
(z, zkT;µQ0 , Q

2

0
) =

C

⇡M2
e�z2k2

T/M2

. (82)

This fails to satisfy Eq. (52) when we try to extend it
directly to n = 1 because it does not have the right func-
tional form to match to D(n,dr)

�
z, zkT;µQ0 , Q

2
0

�
when

kT ⇡ Q0. In order to construct a TMD ↵ for n = 1,
we need to describe the transition from a nonperturba-
tive peak like Eq. (82) to a perturbative large kT power-
law tail. The simplest way to do this is to just append
D(n,dr)

�
z, zkT;µQ0 , Q

2
0

�
to Eq. (82) as an additive term.

Inside D(n,dr)
�
z, zkT;µQ0 , Q

2
0

�
, we can then make the

replacement k2
T
! k2

T
+m2

D, where mD is a nonpertur-
bative parameter, to smooth the kT ! 0 behavior into
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FIG. 3: Top panel: A blown-up version of the curves in the
lower panel of Fig. 2. The axes have been adjusted so that

the deviation between the two K̃
(1)

(bT;µQ0) calculations for
di↵erent Q0(bT) are visible, and we can see that the most sig-
nificant variation is in a narrow band around bT ⇡ 0.3 GeV�1.
Bottom panel: The e↵ect of the choice of the transformation
function on the ratio in Eq. (81). All curves are obtained
from our trial n = 1 parametrization for Q = 4 GeV and
Q = 100 GeV. At Q = 100 GeV, the ratio r(a1, a2) deviates
from unity by a maximum of about 6% in a transition region
around bT ⇡ 0.3 GeV�1.

a nonperturbative peak, analogous to what we did in
Eq. (72). Thus, our trial input parametrization is

D(1,dr)

input
(z, zkT;µQ0 , Q

2

0
)

=
1

2⇡z2
1

k2
T
+m2

D

h
A(dr)(z;µQ0)

+B(dr)(z;µQ0) ln
Q2

0

k2
T
+m2

D

�
+

C(dr)

⇡M2
e�z2k2

T/M2

, (83)

where we have utilized the following abbreviations,

A(dr)(z;µ) ⌘ ↵s(µ)

⇡

⇢
[(Pqq ⌦ dr)(z;µ)]

�3CF

2
dr(z;µ)

�
, (84)

B(dr)(z;µ) ⌘ ↵s(µ)CF

⇡
dr(z;µ) . (85)
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(For a textbook derivation of Eq. (71), see section 13.10.2
of [3]. Also see Ref. [81] for earlier calculations. For
higher order K̃ expressions, see also [82–85], and see
Ref. [38] for translating between di↵erent notations. See
also [86] for more discussion of the operator definition.)

As kT decreases below Q0, Eq. (70) needs to transi-
tion into a nonperturbative eparametrization in a way
that is still phenemonologically successful at describing
Q ⇡ Q0 behavior. Existing evidence, both theoretical
and phenomenological [67, 68, 87] and from lattice cal-
culations [88], points toward a shape for TMD pdfs and
↵s that varies only very weakly with scale in the Q ⇡ Q0

region. Our trial parametrization will reproduce this be-
havior if it is fairly sharply peaked around kT ⌧ Q0

and then falls o↵ rapidly for larger kT. Equation (68)
with K(1)(kT;µQ0) captures that general behavior if we
make the replacement k2

T
! k2

T
+m2

K and keep the non-
perturbative parameter mK small relative to Q0. Thus,

we obtain a reasonable candidate for a K(1)

input
(kT;µQ0)

parametrization that satisfies Eq. (39) if we combine the
k2
T
! k2

T
+m2

K modification of Eq. (71) with Eq. (69):

K(1)

input
(kT;µQ0) =

↵s(µQ0)CF

⇡2

1

k2
T
+m2

K

+ CK�(2)(kT) . (72)

The transformation into coordinate space is

K̃(1)

input
(bT;µQ0) =

2↵s(µQ0)CF

⇡
K0(bTmK) + CK . (73)

Satisfying both Eq. (41) and Eq. (47) with the MS ex-

pression for �(1)

K requires

CK =
2↵s(µQ0)CF

⇡
ln

✓
mK

µQ0

◆
(74)

So the input CS kernel is just the single parameter func-
tion

K̃(1)

input
(bT;µQ0) =

2↵s(µQ0)CF

⇡


K0(bTmK) + ln

✓
mK

µQ0

◆�
. (75)

Note that the same mass mK appears in Eq. (74) and
the first term of Eq. (75) reproduces the known lowest
order coordinate space K̃(1)(bT;µQ0) in MS at small bT:

lim
bT!0

K̃(1)

input
(bT;µQ0) =

� 2↵s(µQ0)CF

⇡


ln

✓
bTµQ0e

�E

2

◆
+ ln

✓
mK

µQ0

◆�
+ CK

= �2↵s(µQ0)CF

⇡
ln

✓
bTµQ0e

�E

2

◆
. (76)

At large bT, we get the expected (see [65, Sec. VII-A])
constant negative behavior,

lim
bT!1

K̃(1)

input
(bT;µQ0) =

2↵s(µQ0)CF

⇡
ln

✓
mK

µQ0

◆
. (77)
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FIG. 2: The example parametrization for K̃
(1)

(bT;µQ0) from
Eq. (78), obtained after performing the steps A1, A2 and A3
of Sec. VI. The top panel shows two scale transformation func-
tions Q0(bT) that satisfy Eq. (42). The choice of functional
form is Eq. (C2) from Appendix C, shown for two choices
of a (solid black and dashed red curves). For comparison,
lines for the scales µQ0 = 2 GeV (dash-dotted violet) and
C1/bT (dashed violet) are also shown. The central panel is
the percent di↵erence between the Q0(bT) obtained from the
two values a = 2 GeV and a = 4 GeV, calculated as the dif-
ference divided by the average. The bottom panel is a plot

of the actual K̃
(1)

(bT;µQ0) parametrization in Eq. (78). The
results are shown for both a = 2 GeV and a = 4 GeV (black
solid and red dashed curves), but the di↵erence between the
curves is not visible on the graph. The violet dashed curve
in the lower plot is a bT ! 0 purely perturbative calculation,
Eq. (80), shown for comparison. See text for details.

This completes steps A1 and A2 insofar as they pertain
to the CS kernel.

To get a K̃
(1)

(bT;µQ0) that can be extended to cal-
culations of K̃(bT;µQ0) at bT ⌧ 1/Q0, we need to pro-
ceed with step A3 and choose a form for the scale tran-
sition function Q0(bT). For now we will use the form in
Eq. (C1) from Appendix C for any numerical calculations
and plots. Later, we will demonstrate that the details of
this choice do not significantly a↵ect calculations.

Finally, we get K̃
(1)

(bT;µQ0) by substituting the trial
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e↵ect on the bT . 1/Q0 region of K̃
(1)

(bT;µQ0) so long
as mK is kept small relative to Q0. To illustrate this,

we have plotted K̃
(1)

(bT;µQ0) once again in Fig. 4 for
several values of mK , now on a linear horizontal axis to
magnify the e↵ect on the large bT region. The plot con-
firms that the region of bT . 0.5 GeV�1 is essentially
una↵ected by the values of the mK parameter between
⇡ 0.1 GeV and ⇡ 0.5 GeV, so long as those values are
kept reasonably small relative to Q0. A vertical line indi-
cates the bT = 0.3 GeV�1 position where we previously
found the greatest scale sensitivity in the perturbative
part of the calculation – the peak of the bump in Fig. 3.
In contrast to the small scale sensitivity in the bottom
panel of Fig. 2, sensitivity to changes in the value of mK

is large and clearly visible, but only in the region of large
bT. The step of fitting the purely nonperturbative pa-
rameter has been sequestered from the treatment of the
transition into the perturbative regime.

In phenomenological applications, one converges on an
unambiguous K̃ as one repeats the steps above but with
higher orders for the large kT region. That amounts

to constructing parametrizations for K̃
(2)

(bT;µQ0),

K̃
(3)

(bT;µQ0), etc. Going to larger n reduces sensi-
tivity to arbitrary choices like the functional form for
Q̄0(bT). Quantities like a and mK are also increasingly
constrained as more data from larger Q are included in
fitting.

Extending the above construction of K̃
(1)

(bT;µQ0) to

the case of K̃
(2)

(bT;µQ0) is straightforward and instruc-
tive, but we leave it to future work.

B. TMD ↵ example

Next we need to repeat steps A1-A3 from Sec. VI for
the TMD ↵s themselves. To keep the discussion here
simple, we will assume that the TMD ↵s are the same for
hadrons A and B, and we will continue to focus only on
the n = 1 case. Fortunately, the steps are very analogous
to the CS kernel, so much of the below will be repetition.

A typical parametrization, common in TMD parton-
model descriptions of Type I processes, is a Gaussian,

D(0,dr)

input
(z, zkT;µQ0 , Q

2

0
) =

C

⇡M2
e�z2k2

T/M2

. (82)

This fails to satisfy Eq. (52) when we try to extend it
directly to n = 1 because it does not have the right func-
tional form to match to D(n,dr)

�
z, zkT;µQ0 , Q

2
0

�
when

kT ⇡ Q0. In order to construct a TMD ↵ for n = 1,
we need to describe the transition from a nonperturba-
tive peak like Eq. (82) to a perturbative large kT power-
law tail. The simplest way to do this is to just append
D(n,dr)

�
z, zkT;µQ0 , Q

2
0

�
to Eq. (82) as an additive term.

Inside D(n,dr)
�
z, zkT;µQ0 , Q

2
0

�
, we can then make the

replacement k2
T
! k2

T
+m2

D, where mD is a nonpertur-
bative parameter, to smooth the kT ! 0 behavior into
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FIG. 3: Top panel: A blown-up version of the curves in the
lower panel of Fig. 2. The axes have been adjusted so that

the deviation between the two K̃
(1)

(bT;µQ0) calculations for
di↵erent Q0(bT) are visible, and we can see that the most sig-
nificant variation is in a narrow band around bT ⇡ 0.3 GeV�1.
Bottom panel: The e↵ect of the choice of the transformation
function on the ratio in Eq. (81). All curves are obtained
from our trial n = 1 parametrization for Q = 4 GeV and
Q = 100 GeV. At Q = 100 GeV, the ratio r(a1, a2) deviates
from unity by a maximum of about 6% in a transition region
around bT ⇡ 0.3 GeV�1.

a nonperturbative peak, analogous to what we did in
Eq. (72). Thus, our trial input parametrization is

D(1,dr)

input
(z, zkT;µQ0 , Q

2

0
)

=
1

2⇡z2
1

k2
T
+m2

D

h
A(dr)(z;µQ0)

+B(dr)(z;µQ0) ln
Q2

0

k2
T
+m2

D

�
+

C(dr)

⇡M2
e�z2k2

T/M2

, (83)

where we have utilized the following abbreviations,

A(dr)(z;µ) ⌘ ↵s(µ)

⇡

⇢
[(Pqq ⌦ dr)(z;µ)]

�3CF

2
dr(z;µ)

�
, (84)

B(dr)(z;µ) ⌘ ↵s(µ)CF

⇡
dr(z;µ) . (85)
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(For a textbook derivation of Eq. (71), see section 13.10.2
of [3]. Also see Ref. [81] for earlier calculations. For
higher order K̃ expressions, see also [82–85], and see
Ref. [38] for translating between di↵erent notations. See
also [86] for more discussion of the operator definition.)

As kT decreases below Q0, Eq. (70) needs to transi-
tion into a nonperturbative eparametrization in a way
that is still phenemonologically successful at describing
Q ⇡ Q0 behavior. Existing evidence, both theoretical
and phenomenological [67, 68, 87] and from lattice cal-
culations [88], points toward a shape for TMD pdfs and
↵s that varies only very weakly with scale in the Q ⇡ Q0

region. Our trial parametrization will reproduce this be-
havior if it is fairly sharply peaked around kT ⌧ Q0

and then falls o↵ rapidly for larger kT. Equation (68)
with K(1)(kT;µQ0) captures that general behavior if we
make the replacement k2

T
! k2

T
+m2

K and keep the non-
perturbative parameter mK small relative to Q0. Thus,

we obtain a reasonable candidate for a K(1)

input
(kT;µQ0)

parametrization that satisfies Eq. (39) if we combine the
k2
T
! k2

T
+m2

K modification of Eq. (71) with Eq. (69):

K(1)

input
(kT;µQ0) =

↵s(µQ0)CF

⇡2

1

k2
T
+m2

K

+ CK�(2)(kT) . (72)

The transformation into coordinate space is

K̃(1)

input
(bT;µQ0) =

2↵s(µQ0)CF

⇡
K0(bTmK) + CK . (73)

Satisfying both Eq. (41) and Eq. (47) with the MS ex-

pression for �(1)

K requires

CK =
2↵s(µQ0)CF

⇡
ln

✓
mK

µQ0

◆
(74)

So the input CS kernel is just the single parameter func-
tion

K̃(1)

input
(bT;µQ0) =

2↵s(µQ0)CF

⇡


K0(bTmK) + ln

✓
mK

µQ0

◆�
. (75)

Note that the same mass mK appears in Eq. (74) and
the first term of Eq. (75) reproduces the known lowest
order coordinate space K̃(1)(bT;µQ0) in MS at small bT:

lim
bT!0

K̃(1)

input
(bT;µQ0) =

� 2↵s(µQ0)CF

⇡


ln

✓
bTµQ0e

�E

2

◆
+ ln

✓
mK

µQ0

◆�
+ CK

= �2↵s(µQ0)CF

⇡
ln

✓
bTµQ0e

�E

2

◆
. (76)

At large bT, we get the expected (see [65, Sec. VII-A])
constant negative behavior,

lim
bT!1

K̃(1)

input
(bT;µQ0) =

2↵s(µQ0)CF

⇡
ln

✓
mK

µQ0

◆
. (77)
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FIG. 2: The example parametrization for K̃
(1)

(bT;µQ0) from
Eq. (78), obtained after performing the steps A1, A2 and A3
of Sec. VI. The top panel shows two scale transformation func-
tions Q0(bT) that satisfy Eq. (42). The choice of functional
form is Eq. (C2) from Appendix C, shown for two choices
of a (solid black and dashed red curves). For comparison,
lines for the scales µQ0 = 2 GeV (dash-dotted violet) and
C1/bT (dashed violet) are also shown. The central panel is
the percent di↵erence between the Q0(bT) obtained from the
two values a = 2 GeV and a = 4 GeV, calculated as the dif-
ference divided by the average. The bottom panel is a plot

of the actual K̃
(1)

(bT;µQ0) parametrization in Eq. (78). The
results are shown for both a = 2 GeV and a = 4 GeV (black
solid and red dashed curves), but the di↵erence between the
curves is not visible on the graph. The violet dashed curve
in the lower plot is a bT ! 0 purely perturbative calculation,
Eq. (80), shown for comparison. See text for details.

This completes steps A1 and A2 insofar as they pertain
to the CS kernel.

To get a K̃
(1)

(bT;µQ0) that can be extended to cal-
culations of K̃(bT;µQ0) at bT ⌧ 1/Q0, we need to pro-
ceed with step A3 and choose a form for the scale tran-
sition function Q0(bT). For now we will use the form in
Eq. (C1) from Appendix C for any numerical calculations
and plots. Later, we will demonstrate that the details of
this choice do not significantly a↵ect calculations.

Finally, we get K̃
(1)

(bT;µQ0) by substituting the trial
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(For a textbook derivation of Eq. (71), see section 13.10.2
of [3]. Also see Ref. [81] for earlier calculations. For
higher order K̃ expressions, see also [82–85], and see
Ref. [38] for translating between di↵erent notations. See
also [86] for more discussion of the operator definition.)

As kT decreases below Q0, Eq. (70) needs to transi-
tion into a nonperturbative eparametrization in a way
that is still phenemonologically successful at describing
Q ⇡ Q0 behavior. Existing evidence, both theoretical
and phenomenological [67, 68, 87] and from lattice cal-
culations [88], points toward a shape for TMD pdfs and
↵s that varies only very weakly with scale in the Q ⇡ Q0

region. Our trial parametrization will reproduce this be-
havior if it is fairly sharply peaked around kT ⌧ Q0

and then falls o↵ rapidly for larger kT. Equation (68)
with K(1)(kT;µQ0) captures that general behavior if we
make the replacement k2

T
! k2

T
+m2

K and keep the non-
perturbative parameter mK small relative to Q0. Thus,

we obtain a reasonable candidate for a K(1)

input
(kT;µQ0)

parametrization that satisfies Eq. (39) if we combine the
k2
T
! k2

T
+m2

K modification of Eq. (71) with Eq. (69):

K(1)

input
(kT;µQ0) =

↵s(µQ0)CF

⇡2

1

k2
T
+m2

K

+ CK�(2)(kT) . (72)

The transformation into coordinate space is

K̃(1)

input
(bT;µQ0) =

2↵s(µQ0)CF

⇡
K0(bTmK) + CK . (73)

Satisfying both Eq. (41) and Eq. (47) with the MS ex-

pression for �(1)

K requires

CK =
2↵s(µQ0)CF

⇡
ln

✓
mK

µQ0

◆
(74)

So the input CS kernel is just the single parameter func-
tion

K̃(1)

input
(bT;µQ0) =

2↵s(µQ0)CF

⇡


K0(bTmK) + ln

✓
mK

µQ0

◆�
. (75)

Note that the same mass mK appears in Eq. (74) and
the first term of Eq. (75) reproduces the known lowest
order coordinate space K̃(1)(bT;µQ0) in MS at small bT:

lim
bT!0

K̃(1)

input
(bT;µQ0) =

� 2↵s(µQ0)CF

⇡


ln

✓
bTµQ0e

�E

2

◆
+ ln

✓
mK

µQ0

◆�
+ CK

= �2↵s(µQ0)CF

⇡
ln

✓
bTµQ0e

�E

2

◆
. (76)

At large bT, we get the expected (see [65, Sec. VII-A])
constant negative behavior,

lim
bT!1

K̃(1)

input
(bT;µQ0) =

2↵s(µQ0)CF

⇡
ln

✓
mK

µQ0

◆
. (77)
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FIG. 2: The example parametrization for K̃
(1)

(bT;µQ0) from
Eq. (78), obtained after performing the steps A1, A2 and A3
of Sec. VI. The top panel shows two scale transformation func-
tions Q0(bT) that satisfy Eq. (42). The choice of functional
form is Eq. (C2) from Appendix C, shown for two choices
of a (solid black and dashed red curves). For comparison,
lines for the scales µQ0 = 2 GeV (dash-dotted violet) and
C1/bT (dashed violet) are also shown. The central panel is
the percent di↵erence between the Q0(bT) obtained from the
two values a = 2 GeV and a = 4 GeV, calculated as the dif-
ference divided by the average. The bottom panel is a plot

of the actual K̃
(1)

(bT;µQ0) parametrization in Eq. (78). The
results are shown for both a = 2 GeV and a = 4 GeV (black
solid and red dashed curves), but the di↵erence between the
curves is not visible on the graph. The violet dashed curve
in the lower plot is a bT ! 0 purely perturbative calculation,
Eq. (80), shown for comparison. See text for details.

This completes steps A1 and A2 insofar as they pertain
to the CS kernel.

To get a K̃
(1)

(bT;µQ0) that can be extended to cal-
culations of K̃(bT;µQ0) at bT ⌧ 1/Q0, we need to pro-
ceed with step A3 and choose a form for the scale tran-
sition function Q0(bT). For now we will use the form in
Eq. (C1) from Appendix C for any numerical calculations
and plots. Later, we will demonstrate that the details of
this choice do not significantly a↵ect calculations.

Finally, we get K̃
(1)

(bT;µQ0) by substituting the trial

• Choose models for smallest scale Q0 at which factorization is trusted  & 
constrain models using pQCD at kT~Q, Integral relation, etc. 



22

e↵ect on the bT . 1/Q0 region of K̃
(1)

(bT;µQ0) so long
as mK is kept small relative to Q0. To illustrate this,

we have plotted K̃
(1)

(bT;µQ0) once again in Fig. 4 for
several values of mK , now on a linear horizontal axis to
magnify the e↵ect on the large bT region. The plot con-
firms that the region of bT . 0.5 GeV�1 is essentially
una↵ected by the values of the mK parameter between
⇡ 0.1 GeV and ⇡ 0.5 GeV, so long as those values are
kept reasonably small relative to Q0. A vertical line indi-
cates the bT = 0.3 GeV�1 position where we previously
found the greatest scale sensitivity in the perturbative
part of the calculation – the peak of the bump in Fig. 3.
In contrast to the small scale sensitivity in the bottom
panel of Fig. 2, sensitivity to changes in the value of mK

is large and clearly visible, but only in the region of large
bT. The step of fitting the purely nonperturbative pa-
rameter has been sequestered from the treatment of the
transition into the perturbative regime.

In phenomenological applications, one converges on an
unambiguous K̃ as one repeats the steps above but with
higher orders for the large kT region. That amounts

to constructing parametrizations for K̃
(2)

(bT;µQ0),

K̃
(3)

(bT;µQ0), etc. Going to larger n reduces sensi-
tivity to arbitrary choices like the functional form for
Q̄0(bT). Quantities like a and mK are also increasingly
constrained as more data from larger Q are included in
fitting.

Extending the above construction of K̃
(1)

(bT;µQ0) to

the case of K̃
(2)

(bT;µQ0) is straightforward and instruc-
tive, but we leave it to future work.

B. TMD ↵ example

Next we need to repeat steps A1-A3 from Sec. VI for
the TMD ↵s themselves. To keep the discussion here
simple, we will assume that the TMD ↵s are the same for
hadrons A and B, and we will continue to focus only on
the n = 1 case. Fortunately, the steps are very analogous
to the CS kernel, so much of the below will be repetition.

A typical parametrization, common in TMD parton-
model descriptions of Type I processes, is a Gaussian,

D(0,dr)

input
(z, zkT;µQ0 , Q

2

0
) =

C

⇡M2
e�z2k2

T/M2

. (82)

This fails to satisfy Eq. (52) when we try to extend it
directly to n = 1 because it does not have the right func-
tional form to match to D(n,dr)

�
z, zkT;µQ0 , Q

2
0

�
when

kT ⇡ Q0. In order to construct a TMD ↵ for n = 1,
we need to describe the transition from a nonperturba-
tive peak like Eq. (82) to a perturbative large kT power-
law tail. The simplest way to do this is to just append
D(n,dr)

�
z, zkT;µQ0 , Q

2
0

�
to Eq. (82) as an additive term.

Inside D(n,dr)
�
z, zkT;µQ0 , Q

2
0

�
, we can then make the

replacement k2
T
! k2

T
+m2

D, where mD is a nonpertur-
bative parameter, to smooth the kT ! 0 behavior into
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FIG. 3: Top panel: A blown-up version of the curves in the
lower panel of Fig. 2. The axes have been adjusted so that

the deviation between the two K̃
(1)

(bT;µQ0) calculations for
di↵erent Q0(bT) are visible, and we can see that the most sig-
nificant variation is in a narrow band around bT ⇡ 0.3 GeV�1.
Bottom panel: The e↵ect of the choice of the transformation
function on the ratio in Eq. (81). All curves are obtained
from our trial n = 1 parametrization for Q = 4 GeV and
Q = 100 GeV. At Q = 100 GeV, the ratio r(a1, a2) deviates
from unity by a maximum of about 6% in a transition region
around bT ⇡ 0.3 GeV�1.

a nonperturbative peak, analogous to what we did in
Eq. (72). Thus, our trial input parametrization is
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where we have utilized the following abbreviations,
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e↵ect on the bT . 1/Q0 region of K̃
(1)

(bT;µQ0) so long
as mK is kept small relative to Q0. To illustrate this,

we have plotted K̃
(1)

(bT;µQ0) once again in Fig. 4 for
several values of mK , now on a linear horizontal axis to
magnify the e↵ect on the large bT region. The plot con-
firms that the region of bT . 0.5 GeV�1 is essentially
una↵ected by the values of the mK parameter between
⇡ 0.1 GeV and ⇡ 0.5 GeV, so long as those values are
kept reasonably small relative to Q0. A vertical line indi-
cates the bT = 0.3 GeV�1 position where we previously
found the greatest scale sensitivity in the perturbative
part of the calculation – the peak of the bump in Fig. 3.
In contrast to the small scale sensitivity in the bottom
panel of Fig. 2, sensitivity to changes in the value of mK

is large and clearly visible, but only in the region of large
bT. The step of fitting the purely nonperturbative pa-
rameter has been sequestered from the treatment of the
transition into the perturbative regime.

In phenomenological applications, one converges on an
unambiguous K̃ as one repeats the steps above but with
higher orders for the large kT region. That amounts

to constructing parametrizations for K̃
(2)

(bT;µQ0),

K̃
(3)

(bT;µQ0), etc. Going to larger n reduces sensi-
tivity to arbitrary choices like the functional form for
Q̄0(bT). Quantities like a and mK are also increasingly
constrained as more data from larger Q are included in
fitting.

Extending the above construction of K̃
(1)

(bT;µQ0) to

the case of K̃
(2)

(bT;µQ0) is straightforward and instruc-
tive, but we leave it to future work.

B. TMD ↵ example

Next we need to repeat steps A1-A3 from Sec. VI for
the TMD ↵s themselves. To keep the discussion here
simple, we will assume that the TMD ↵s are the same for
hadrons A and B, and we will continue to focus only on
the n = 1 case. Fortunately, the steps are very analogous
to the CS kernel, so much of the below will be repetition.

A typical parametrization, common in TMD parton-
model descriptions of Type I processes, is a Gaussian,

D(0,dr)
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) =
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. (82)

This fails to satisfy Eq. (52) when we try to extend it
directly to n = 1 because it does not have the right func-
tional form to match to D(n,dr)
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when

kT ⇡ Q0. In order to construct a TMD ↵ for n = 1,
we need to describe the transition from a nonperturba-
tive peak like Eq. (82) to a perturbative large kT power-
law tail. The simplest way to do this is to just append
D(n,dr)
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to Eq. (82) as an additive term.
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FIG. 3: Top panel: A blown-up version of the curves in the
lower panel of Fig. 2. The axes have been adjusted so that

the deviation between the two K̃
(1)

(bT;µQ0) calculations for
di↵erent Q0(bT) are visible, and we can see that the most sig-
nificant variation is in a narrow band around bT ⇡ 0.3 GeV�1.
Bottom panel: The e↵ect of the choice of the transformation
function on the ratio in Eq. (81). All curves are obtained
from our trial n = 1 parametrization for Q = 4 GeV and
Q = 100 GeV. At Q = 100 GeV, the ratio r(a1, a2) deviates
from unity by a maximum of about 6% in a transition region
around bT ⇡ 0.3 GeV�1.

a nonperturbative peak, analogous to what we did in
Eq. (72). Thus, our trial input parametrization is
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where we have utilized the following abbreviations,
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e↵ect on the bT . 1/Q0 region of K̃
(1)

(bT;µQ0) so long
as mK is kept small relative to Q0. To illustrate this,

we have plotted K̃
(1)

(bT;µQ0) once again in Fig. 4 for
several values of mK , now on a linear horizontal axis to
magnify the e↵ect on the large bT region. The plot con-
firms that the region of bT . 0.5 GeV�1 is essentially
una↵ected by the values of the mK parameter between
⇡ 0.1 GeV and ⇡ 0.5 GeV, so long as those values are
kept reasonably small relative to Q0. A vertical line indi-
cates the bT = 0.3 GeV�1 position where we previously
found the greatest scale sensitivity in the perturbative
part of the calculation – the peak of the bump in Fig. 3.
In contrast to the small scale sensitivity in the bottom
panel of Fig. 2, sensitivity to changes in the value of mK

is large and clearly visible, but only in the region of large
bT. The step of fitting the purely nonperturbative pa-
rameter has been sequestered from the treatment of the
transition into the perturbative regime.

In phenomenological applications, one converges on an
unambiguous K̃ as one repeats the steps above but with
higher orders for the large kT region. That amounts

to constructing parametrizations for K̃
(2)

(bT;µQ0),

K̃
(3)

(bT;µQ0), etc. Going to larger n reduces sensi-
tivity to arbitrary choices like the functional form for
Q̄0(bT). Quantities like a and mK are also increasingly
constrained as more data from larger Q are included in
fitting.

Extending the above construction of K̃
(1)

(bT;µQ0) to

the case of K̃
(2)

(bT;µQ0) is straightforward and instruc-
tive, but we leave it to future work.

B. TMD ↵ example

Next we need to repeat steps A1-A3 from Sec. VI for
the TMD ↵s themselves. To keep the discussion here
simple, we will assume that the TMD ↵s are the same for
hadrons A and B, and we will continue to focus only on
the n = 1 case. Fortunately, the steps are very analogous
to the CS kernel, so much of the below will be repetition.

A typical parametrization, common in TMD parton-
model descriptions of Type I processes, is a Gaussian,
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This fails to satisfy Eq. (52) when we try to extend it
directly to n = 1 because it does not have the right func-
tional form to match to D(n,dr)
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when

kT ⇡ Q0. In order to construct a TMD ↵ for n = 1,
we need to describe the transition from a nonperturba-
tive peak like Eq. (82) to a perturbative large kT power-
law tail. The simplest way to do this is to just append
D(n,dr)
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z, zkT;µQ0 , Q
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to Eq. (82) as an additive term.

Inside D(n,dr)
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2
0

�
, we can then make the
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T
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T
+m2

D, where mD is a nonpertur-
bative parameter, to smooth the kT ! 0 behavior into
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FIG. 3: Top panel: A blown-up version of the curves in the
lower panel of Fig. 2. The axes have been adjusted so that

the deviation between the two K̃
(1)

(bT;µQ0) calculations for
di↵erent Q0(bT) are visible, and we can see that the most sig-
nificant variation is in a narrow band around bT ⇡ 0.3 GeV�1.
Bottom panel: The e↵ect of the choice of the transformation
function on the ratio in Eq. (81). All curves are obtained
from our trial n = 1 parametrization for Q = 4 GeV and
Q = 100 GeV. At Q = 100 GeV, the ratio r(a1, a2) deviates
from unity by a maximum of about 6% in a transition region
around bT ⇡ 0.3 GeV�1.

a nonperturbative peak, analogous to what we did in
Eq. (72). Thus, our trial input parametrization is
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where we have utilized the following abbreviations,

A(dr)(z;µ) ⌘ ↵s(µ)

⇡

⇢
[(Pqq ⌦ dr)(z;µ)]

�3CF

2
dr(z;µ)

�
, (84)

B(dr)(z;µ) ⌘ ↵s(µ)CF

⇡
dr(z;µ) . (85)

Related to OPE in  
usual presentation 

Of CSS formula



22

e↵ect on the bT . 1/Q0 region of K̃
(1)

(bT;µQ0) so long
as mK is kept small relative to Q0. To illustrate this,

we have plotted K̃
(1)

(bT;µQ0) once again in Fig. 4 for
several values of mK , now on a linear horizontal axis to
magnify the e↵ect on the large bT region. The plot con-
firms that the region of bT . 0.5 GeV�1 is essentially
una↵ected by the values of the mK parameter between
⇡ 0.1 GeV and ⇡ 0.5 GeV, so long as those values are
kept reasonably small relative to Q0. A vertical line indi-
cates the bT = 0.3 GeV�1 position where we previously
found the greatest scale sensitivity in the perturbative
part of the calculation – the peak of the bump in Fig. 3.
In contrast to the small scale sensitivity in the bottom
panel of Fig. 2, sensitivity to changes in the value of mK

is large and clearly visible, but only in the region of large
bT. The step of fitting the purely nonperturbative pa-
rameter has been sequestered from the treatment of the
transition into the perturbative regime.

In phenomenological applications, one converges on an
unambiguous K̃ as one repeats the steps above but with
higher orders for the large kT region. That amounts

to constructing parametrizations for K̃
(2)

(bT;µQ0),

K̃
(3)

(bT;µQ0), etc. Going to larger n reduces sensi-
tivity to arbitrary choices like the functional form for
Q̄0(bT). Quantities like a and mK are also increasingly
constrained as more data from larger Q are included in
fitting.

Extending the above construction of K̃
(1)

(bT;µQ0) to

the case of K̃
(2)

(bT;µQ0) is straightforward and instruc-
tive, but we leave it to future work.

B. TMD ↵ example

Next we need to repeat steps A1-A3 from Sec. VI for
the TMD ↵s themselves. To keep the discussion here
simple, we will assume that the TMD ↵s are the same for
hadrons A and B, and we will continue to focus only on
the n = 1 case. Fortunately, the steps are very analogous
to the CS kernel, so much of the below will be repetition.

A typical parametrization, common in TMD parton-
model descriptions of Type I processes, is a Gaussian,
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This fails to satisfy Eq. (52) when we try to extend it
directly to n = 1 because it does not have the right func-
tional form to match to D(n,dr)
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z, zkT;µQ0 , Q
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0
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when

kT ⇡ Q0. In order to construct a TMD ↵ for n = 1,
we need to describe the transition from a nonperturba-
tive peak like Eq. (82) to a perturbative large kT power-
law tail. The simplest way to do this is to just append
D(n,dr)
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z, zkT;µQ0 , Q
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to Eq. (82) as an additive term.

Inside D(n,dr)
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, we can then make the
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T
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D, where mD is a nonpertur-
bative parameter, to smooth the kT ! 0 behavior into
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FIG. 3: Top panel: A blown-up version of the curves in the
lower panel of Fig. 2. The axes have been adjusted so that

the deviation between the two K̃
(1)

(bT;µQ0) calculations for
di↵erent Q0(bT) are visible, and we can see that the most sig-
nificant variation is in a narrow band around bT ⇡ 0.3 GeV�1.
Bottom panel: The e↵ect of the choice of the transformation
function on the ratio in Eq. (81). All curves are obtained
from our trial n = 1 parametrization for Q = 4 GeV and
Q = 100 GeV. At Q = 100 GeV, the ratio r(a1, a2) deviates
from unity by a maximum of about 6% in a transition region
around bT ⇡ 0.3 GeV�1.

a nonperturbative peak, analogous to what we did in
Eq. (72). Thus, our trial input parametrization is
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where we have utilized the following abbreviations,

A(dr)(z;µ) ⌘ ↵s(µ)

⇡

⇢
[(Pqq ⌦ dr)(z;µ)]
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FIG. 4: The trial K̃
(1)

(bT;µQ0) from Eq. (78) calculated for
three di↵erent values of the nonperturbative parameter mK .
The transformation function that was used is Eq. (C2) for
a = 2GeV as before. The black solid curve is identical to
the black solid curve in the lower panel of Fig. 2, but now we
show two additional values ofmK , and with a linear horizontal
axis. The sensitivity to mK is only visible for bT & C1/Q0 ⇡
0.5GeV�1, as expected. The vertical line at bT = 0.3 GeV
marks the point where we previously found significant scale
sensitivity, as seen in Fig. 3.

For a textbook derivation of the large kT perturbative
behavior see, for example, Eq.(13.101) and Eq.(13.66)
of Ref. [3]. At the order-↵s we are working in, the ex-
pressions are independent of the exact renormzalization
scheme r used for the collinear ↵s, so we have left it gen-
eral in Eq. (83) for now. We will specialize to r = MS
later.

The TMD ↵ should at least approximately match its
collinear perturbative expansion for kT ⇡ Q0, so mD and
M should be kept small relative to Q0 in any fits.

One of our requirements from step A2 is that
parametrizations of the TMD ↵s must satisfy the inte-
gral relation in Eq. (56) with Eq. (57) satisfied. We will
use this constraint to fix C(dr), which so far is just an-
other nonperturbative parameter. Evaluating the trans-
verse momentum integral of Eq. (83), expanding in small
m/µQ0 , and solving for C(dr) in terms of d(1,dr)

c (z;µQ0)
gives

C(dr) = d(1,dr)

c (z;µQ0)�A(dr)(z;µQ0) ln

✓
µQ0

mD

◆

�B(dr)(z;µQ0) ln

✓
µQ0

mD

◆
ln

✓
Q2

0

µQ0mD

◆

+O

✓
m

µQ0

◆
. (86)

We still need to choose a form for d(1,dc)

c (z;µQ0), but our
requirement is that it must satisfy Eq. (57), where we
allow the m/µQ0 -suppressed contributions to be chosen
to give an optimal parametrization. Thus, let us define
the power-suppressed terms in Eq. (57) (again, for n = 1)

to exactly equal those in Eq. (86). Then,

C(dr) = d(1,dr)
c (z;µQ0)�A(dr)(z;µQ0) ln

✓
µQ0

mD

◆

�B(dr)(z;µQ0) ln

✓
µQ0

mD

◆
ln

✓
Q2

0

µQ0mD

◆

= dr(z;µQ0)�A(dr)(z;µQ0) ln

✓
µQ0

mD

◆

�B(dr)(z;µQ0) ln

✓
µQ0

mD

◆
ln

✓
Q2

0

µQ0mD

◆

+�(n,dr)(↵s(µQ)) , (87)

where in the last line we have used Eq. (31). These last
few steps are necessary if we wish to relate C(dr) to known
collinear ↵s in standard schemes.
Equation (83), with Eq. (87) now for C(dr), is the

parametrization of the TMD ↵ that is to be substituted
into Eq. (22) and, in accordance with step B1, used
phenomenologically for describing Type I processes with
standard TMD parton model techniques near the input
scale Q ⇡ Q0.
To get a general sense of what the Eq. (83)

parametrization of the TMD ↵ looks like at Q = Q0, we
have plotted it in Fig. 5 using MS collinear ↵s and rea-
sonable values of the mass parameters mD, and M . (The
nonperturbative mass parameters are kept small relative
to Q0 = 2.0 GeV.) For this case, �(n,dMS)(↵s(µQ)) is
given by Eq. (34). The plot is for a sample value of
z = 0.3, but other values of z produce qualitatively simi-
lar curves, as can be easily checked. Since there is a gen-
eral expectation from existing Type I TMD phenomenol-
ogy that the small transverse momentum region in mod-
erate Q processes is well-described by Gaussian TMDs,
we have overlaid a Gaussian curve on top of Eq. (83),
confirming that the kT ⌧ Q0 region retains a generally
Gaussian shape.
As per step B1, the small kT region is to be described

by fitting the mD and M parameters to measurements.
So long as these mass parameters are reasonably small
compared to Q0, the parametrization at least approxi-
mately recovers the lowest order perturbative description
in collinear factorization around kT ⇡ Q0. In principle
M and mD can both have z-dependence:

M ! M(z) , mD ! mD(z) , (88)

but we will not include this in any of our example plots.
While we intend for the above parametrization to

be only a toy example to illustrate broader procedural
points, it is worth noting that at least some phenomeno-
logical support for an additive two-component model
(like Eq. (83)) exists in the observation from [39] that
a sum of two peaked nonperturbative functions provides
a good fit to data in the moderate Q region. In that case,
the two peaked functions were both Gaussians, but the
trend is nevertheless suggestive of a two component form
more generally. Reference [89] has also confirmed that
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We will illustrate the steps above more concretely with
specific examples in Sec. VIIA.

V. PARAMETRIZATION OF THE TMD FFS AT
Q = Q0

Now we turn to the parametrizations of the input TMD
↵s themselves. Following the strategy outlined in the in-
troduction, we will categorize regions as perturbative or
nonperturbative for the input scale TMD ↵ in transverse

momentum space. The steps will be very analogous to
those just described in the previous section for K̃(bT;µ).
As in that case, we will use an “input” subscript to label
the TMD ↵ parametrization that applies phenomenolog-
ically at the input scale Q = Q0, and which is to be used
in Eq. (22). For kT < Q0, the input parametrization will
be defined to have a mainly nonperturbative transverse
momentum dependence while for kT ⇡ Q0 or larger it will
transition into its nth-order perturbative description, the
first term in Eq. (23). Specifically, we define

D(n,dr)

input

�
z, zkT;µQ0 , Q

2

0

�
⌘

8
><

>:

D(n,dr)
�
z, zkT;µQ0 , Q

2
0

�
if kT & Q0

nonperturbative parametrization otherwise

. (52)

The only condition on the intermediate region between
kT ⌧ Q0 and kT ⇡ Q0 is that it should be reasonably
smooth. The input parametrization in Eq. (52) has the
coordinate space representation,

D̃(n,dr)

input
(z, bT;µQ0 , Q

2

0
)

⌘
Z

d2kT eikT·bTD(n,dr)

input

�
z, zkT;µQ0 , Q

2

0

�
. (53)

We will require that the input coordinate space
parametrizations satisfy the evolution equations through
nth-order in the evolution kernels, at least for the bT ⇡
1/Q0 region:

@ ln D̃(n,dr)

input
(z, bT;µ,Q2)

@ lnQ

= K̃(n)
input

(bT;µ) +O
�
↵s(µ)

n+1
�
+O (bTm) , (54)

d ln D̃(n,dr)

input
(z, bT;µ,Q2)

d lnµ

= �(n)(↵s(µ);Q
2/µ2) +O

�
↵s(µ)

n+1
�
+O (bTm) .

(55)

Usually, these will be satisfied automatically if the
parametrization follows Eq. (52). Note the analogy be-
tween Eqs. (52)–(55) above and Eqs. (39)–(41) for the
CS kernel.

Finally, for the integrated TMD ↵ to be consistent with
the definition in Eq. (30) we must impose it directly on
the parametrization,

2⇡z2
Z µQ0

0

dkT kTD
(n,dr)

input
(z, zkT;µQ0 , Q

2

0
)

⌘ d(n,dr)

c (z;µQ0) . (56)

Here we have introduced new notation and another def-
inition. The underline on d(n,dr)

c (z;µQ0) is meant to in-

dicate that this is a specific parametrization (one deter-

mined by the D(n,dr)

input
(z, zkT;µQ0 , Q

2
0
) parametrization)

of the dc(z;µQ0) defined in Eq. (30). In accordance with
Eq. (32), it is to have, by its definition, the property that

d(n,dr)

c (z;µQ0) = d(n,dr)
c (z;µQ0) +O

✓
m

µQ0

◆
. (57)

The parametrization d(n,dr)

c (z;µQ0) is a description of the
definition dc(z;µQ0), with an nth-order collinear treat-
ment of the high transverse momentum region. It is sim-

ply the d(n,dr)
c (z;µQ0) from Eq. (31), but with account

taken of the power-suppressed behavior in Eq. (27) that
vanishes as m/µQ0 ! 0.
It is worth pausing to review the di↵erent types of cut-

o↵ collinear ↵s that we have introduced so far, given that
there are now at least three. First, the version in Eq. (30)
with no underlines or superscripts is the exact dc(z;µQ0)
that follows from the abstract operator definitions. Sec-
ond, the d(n,dr)

c (z;µQ0) above is a specific parametriza-
tion of that definition, with the only requirement being
that in the limit of large µQ0 it reduces to nth-order
collinear perturbation theory in terms of renormalized

↵s with scheme r. Finally, there is the d(n,dr)
c (z;µQ0) de-

fined in Eq. (31), which is just the limit of d(n,dr)

c (z;µQ0)
where power-suppressed terms are dropped. An equally
valid definition is

d(n,dr)
c (z;µQ0) ⌘ lim

m
µQ0

!0

d(n,dr)

c (z;µQ0) . (58)

Because Eq. (56) is just a definition, it contains no con-
straint by itself. The constraint is in Eq. (57).
So far, the steps for constructing the TMD ↵

parametrizations are very analogous to those of Sec. IV
for K(kT;µQ0), but there are some di↵erences. The
most significant is that the “perturbative” large kT part

Note C coefficient  
not independent from A,B. 
 Integral relation reduces  
Number of parameters.
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We will illustrate the steps above more concretely with
specific examples in Sec. VIIA.

V. PARAMETRIZATION OF THE TMD FFS AT
Q = Q0

Now we turn to the parametrizations of the input TMD
↵s themselves. Following the strategy outlined in the in-
troduction, we will categorize regions as perturbative or
nonperturbative for the input scale TMD ↵ in transverse

momentum space. The steps will be very analogous to
those just described in the previous section for K̃(bT;µ).
As in that case, we will use an “input” subscript to label
the TMD ↵ parametrization that applies phenomenolog-
ically at the input scale Q = Q0, and which is to be used
in Eq. (22). For kT < Q0, the input parametrization will
be defined to have a mainly nonperturbative transverse
momentum dependence while for kT ⇡ Q0 or larger it will
transition into its nth-order perturbative description, the
first term in Eq. (23). Specifically, we define

D(n,dr)

input

�
z, zkT;µQ0 , Q

2

0

�
⌘

8
><

>:

D(n,dr)
�
z, zkT;µQ0 , Q

2
0

�
if kT & Q0

nonperturbative parametrization otherwise

. (52)

The only condition on the intermediate region between
kT ⌧ Q0 and kT ⇡ Q0 is that it should be reasonably
smooth. The input parametrization in Eq. (52) has the
coordinate space representation,

D̃(n,dr)

input
(z, bT;µQ0 , Q

2

0
)

⌘
Z

d2kT eikT·bTD(n,dr)

input

�
z, zkT;µQ0 , Q

2

0

�
. (53)

We will require that the input coordinate space
parametrizations satisfy the evolution equations through
nth-order in the evolution kernels, at least for the bT ⇡
1/Q0 region:

@ ln D̃(n,dr)

input
(z, bT;µ,Q2)

@ lnQ

= K̃(n)
input

(bT;µ) +O
�
↵s(µ)

n+1
�
+O (bTm) , (54)

d ln D̃(n,dr)

input
(z, bT;µ,Q2)

d lnµ

= �(n)(↵s(µ);Q
2/µ2) +O

�
↵s(µ)

n+1
�
+O (bTm) .

(55)

Usually, these will be satisfied automatically if the
parametrization follows Eq. (52). Note the analogy be-
tween Eqs. (52)–(55) above and Eqs. (39)–(41) for the
CS kernel.

Finally, for the integrated TMD ↵ to be consistent with
the definition in Eq. (30) we must impose it directly on
the parametrization,

2⇡z2
Z µQ0

0

dkT kTD
(n,dr)

input
(z, zkT;µQ0 , Q

2

0
)

⌘ d(n,dr)

c (z;µQ0) . (56)

Here we have introduced new notation and another def-
inition. The underline on d(n,dr)

c (z;µQ0) is meant to in-

dicate that this is a specific parametrization (one deter-

mined by the D(n,dr)

input
(z, zkT;µQ0 , Q

2
0
) parametrization)

of the dc(z;µQ0) defined in Eq. (30). In accordance with
Eq. (32), it is to have, by its definition, the property that

d(n,dr)

c (z;µQ0) = d(n,dr)
c (z;µQ0) +O

✓
m

µQ0

◆
. (57)

The parametrization d(n,dr)

c (z;µQ0) is a description of the
definition dc(z;µQ0), with an nth-order collinear treat-
ment of the high transverse momentum region. It is sim-

ply the d(n,dr)
c (z;µQ0) from Eq. (31), but with account

taken of the power-suppressed behavior in Eq. (27) that
vanishes as m/µQ0 ! 0.
It is worth pausing to review the di↵erent types of cut-

o↵ collinear ↵s that we have introduced so far, given that
there are now at least three. First, the version in Eq. (30)
with no underlines or superscripts is the exact dc(z;µQ0)
that follows from the abstract operator definitions. Sec-
ond, the d(n,dr)

c (z;µQ0) above is a specific parametriza-
tion of that definition, with the only requirement being
that in the limit of large µQ0 it reduces to nth-order
collinear perturbation theory in terms of renormalized

↵s with scheme r. Finally, there is the d(n,dr)
c (z;µQ0) de-

fined in Eq. (31), which is just the limit of d(n,dr)

c (z;µQ0)
where power-suppressed terms are dropped. An equally
valid definition is

d(n,dr)
c (z;µQ0) ⌘ lim

m
µQ0

!0

d(n,dr)

c (z;µQ0) . (58)

Because Eq. (56) is just a definition, it contains no con-
straint by itself. The constraint is in Eq. (57).
So far, the steps for constructing the TMD ↵

parametrizations are very analogous to those of Sec. IV
for K(kT;µQ0), but there are some di↵erences. The
most significant is that the “perturbative” large kT part+ kT~Q0 constraints guarantee:

11

momentum approximation. Thus,

D
�
z, zkT ⇡ Q;µQ, Q

2
�
⌘

D(n,dr)
�
z, zkT;µQ, Q

2
�
+O

✓
m

kT
,↵s(kT)

n+1

◆
. (23)

As usual, “n” is the order of collinear perturbation the-
ory. Thus, D(n,dr)

�
z, zkT;µQ, Q2

�
is calculated through

order ↵n
s , with powers of ↵n+1

s and ⇠ m/kT errors ne-
glected. However, now we have also included a “dr” in
the superscript. This is to indicate that the collinear
factorization calculation uses a renormalized collinear ↵
dr(z;µQ). The subscript “r” on “dr” in turn labels the
UV renormalization or regularization scheme (such as,
for example, r = MS renormalization). We also define

D(n,dr)
�
z, zkT;µQ, Q

2
�
⌘ 0 8 n < 1 . (24)

The m/kT in the error term of Eq. (23) symbolizes con-
tributions that are power suppressed when kT ⇡ Q.
Throughout this paper, an “m” will always represent any
generic mass scale that is of order a small hadronic size
like ⇤QCD or an intrinsic transverse momentum. Also, to
simplify notation, any power-suppressed contributions of
the form (m/Q)� or (m/kT)� , with � > 0 will always
simply be written as O (m/Q) or O (m/kT), regardless
of the power �.

To summarize, the symbol D(n,dr)
�
z, zkT;µQ, Q2

�
is

the approximation to an individual TMD ↵ wherein it
is calculated in fixed order collinear perturbation the-
ory, optimized to the region kT ⇡ Q and Q ! 1, and
using dr collinear fragmentation functions. The fixed or-
der perturbative expression for D(n,dr)

�
z, zkT;µQ, Q2

�

in collinear factorization has the form

D(n,dr)
�
z, zkT;µQ, Q

2
�
=

h
C(n)
D (zkT)⌦ dr

i
(z;µQ) .

(25)
The “⌦” here symbolizes the usual collinear convolution
integral,

(f ⌦ g)(z;µ) ⌘
Z

1

z

d⇠

⇠
f(z/⇠)g(⇠;µ) . (26)

In Eq. (25), C(n)
D (zkT) is a hard coe�cient. We have writ-

ten its zkT argument explicitly as a reminder that this
particular hard factor has kT-dependence. Approxima-
tions to D

�
z, zkT;µQ, Q2

�
appropriate to regions other

than kT ⇡ Q will be left unaddressed for now. They will
be discussed in Sec. V.

The TMD ↵ is related to a collinear ↵ by an integral
over transverse momentum,

2⇡z2
Z µQ

0

dkT kTD(z, zkT;µQ, Q
2) = dr(z;µQ)

+�(n,dr)(↵s(µQ)) +O

✓
m

Q
,↵s(µQ)

n+1

◆
, (27)

with the details of the notation to be explained below.
In a literal probability density interpretation, µQ would

be set equal to infinity and the second two terms on
the right-hand side would be zero. In a renormaliz-
able theory like QCD, the integral needs to be regulated,
and corrections are necessary to relate the cuto↵ inte-
gral to collinear ↵s defined in standard schemes. The
�(n,dr)(↵s(µQ)) term on the right-hand side of Eq. (27)
is our notation for the perturbative correction through
nth-order that relates the cuto↵ integral to the collinear ↵
dr(z;µQ) in scheme r. There are also, in general, power-
suppressed corrections, as indicated by the error term in
Eq. (27). The correction term �(n,dr)(↵s(µQ)) is related
to collinear ↵s via another factorization theorem,

�(n,dr)(↵s(µQ)) =
h
C(n)
�

⌦ dr
i
(z;µQ) . (28)

and C(n)
�

is an order-↵s(µQ)n hard coe�cient, with a
� subscript included here to distinguish it from the kT-
dependent hard coe�cient in Eq. (25). The “(n, dr)” su-
perscript in �(n,dr)(↵s(µQ)) is to symbolize that Eq. (28)
is to be calculated through order ↵s(µQ)n, and that the
collinear ↵ is defined in the r renormalization and/or reg-
ularization scheme. Note that �(n,dr)(↵s(µQ)) is also a
function of z and Q, but we have dropped explicit de-
pendence on those variables to maintain as compact a
notation as possible. We also define

�(n,dr)(↵s(µQ)) ⌘ 0 8 n < 1 . (29)

To make the above more explicit, let us define a new
collinear ↵ that is the transverse momentum integral of
a TMD ↵ regulated with a cuto↵ on all kT > µQ:

dc(z;µQ) ⌘ 2⇡z2
Z µQ

0

dkT kTD(z, zkT;µQ, Q
2) . (30)

The r = c subscript on the left indicates that this is an
↵ defined in the “cuto↵” scheme.2 Equation (30) is just
the left side of Eq. (27). Dropping the power-suppressed
and order-↵n+1

s (µQ) terms on the right side of Eq. (27)
gives an equation that is satisfied only approximately. To
give this a notation, we also define

d(n,dr)
c (z;µQ) ⌘ dr(z;µQ) +�(n,dr)(↵s(µQ)) . (31)

Then, Eq. (27) is

d(n,dr)
c (z;µQ)� dc(z;µQ) = O

✓
m

Q
,↵s(µQ)

n+1

◆
, (32)

If the scheme for dealing with UV transverse momen-
tum divergences is the cuto↵ scheme itself, r = c, then

�(n,dc)(↵s(µQ)) = 0 (33)

2 For the renormalization of the TMD ↵ in the integrand of
Eq. (30), it is to be understood that the scheme is a standard
one like MS.

Not the other way around 

cannot be neglected. 

used in usual treatment, 
Not enough to guarantee 

Integral relation 
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We will illustrate the steps above more concretely with
specific examples in Sec. VIIA.

V. PARAMETRIZATION OF THE TMD FFS AT
Q = Q0

Now we turn to the parametrizations of the input TMD
↵s themselves. Following the strategy outlined in the in-
troduction, we will categorize regions as perturbative or
nonperturbative for the input scale TMD ↵ in transverse

momentum space. The steps will be very analogous to
those just described in the previous section for K̃(bT;µ).
As in that case, we will use an “input” subscript to label
the TMD ↵ parametrization that applies phenomenolog-
ically at the input scale Q = Q0, and which is to be used
in Eq. (22). For kT < Q0, the input parametrization will
be defined to have a mainly nonperturbative transverse
momentum dependence while for kT ⇡ Q0 or larger it will
transition into its nth-order perturbative description, the
first term in Eq. (23). Specifically, we define

D(n,dr)

input

�
z, zkT;µQ0 , Q

2

0

�
⌘

8
><

>:

D(n,dr)
�
z, zkT;µQ0 , Q

2
0

�
if kT & Q0

nonperturbative parametrization otherwise

. (52)

The only condition on the intermediate region between
kT ⌧ Q0 and kT ⇡ Q0 is that it should be reasonably
smooth. The input parametrization in Eq. (52) has the
coordinate space representation,

D̃(n,dr)

input
(z, bT;µQ0 , Q

2

0
)

⌘
Z

d2kT eikT·bTD(n,dr)

input

�
z, zkT;µQ0 , Q

2

0

�
. (53)

We will require that the input coordinate space
parametrizations satisfy the evolution equations through
nth-order in the evolution kernels, at least for the bT ⇡
1/Q0 region:

@ ln D̃(n,dr)

input
(z, bT;µ,Q2)

@ lnQ

= K̃(n)
input

(bT;µ) +O
�
↵s(µ)

n+1
�
+O (bTm) , (54)

d ln D̃(n,dr)

input
(z, bT;µ,Q2)

d lnµ

= �(n)(↵s(µ);Q
2/µ2) +O

�
↵s(µ)

n+1
�
+O (bTm) .

(55)

Usually, these will be satisfied automatically if the
parametrization follows Eq. (52). Note the analogy be-
tween Eqs. (52)–(55) above and Eqs. (39)–(41) for the
CS kernel.

Finally, for the integrated TMD ↵ to be consistent with
the definition in Eq. (30) we must impose it directly on
the parametrization,

2⇡z2
Z µQ0

0

dkT kTD
(n,dr)

input
(z, zkT;µQ0 , Q

2

0
)

⌘ d(n,dr)

c (z;µQ0) . (56)

Here we have introduced new notation and another def-
inition. The underline on d(n,dr)

c (z;µQ0) is meant to in-

dicate that this is a specific parametrization (one deter-

mined by the D(n,dr)

input
(z, zkT;µQ0 , Q

2
0
) parametrization)

of the dc(z;µQ0) defined in Eq. (30). In accordance with
Eq. (32), it is to have, by its definition, the property that

d(n,dr)

c (z;µQ0) = d(n,dr)
c (z;µQ0) +O

✓
m

µQ0

◆
. (57)

The parametrization d(n,dr)

c (z;µQ0) is a description of the
definition dc(z;µQ0), with an nth-order collinear treat-
ment of the high transverse momentum region. It is sim-

ply the d(n,dr)
c (z;µQ0) from Eq. (31), but with account

taken of the power-suppressed behavior in Eq. (27) that
vanishes as m/µQ0 ! 0.
It is worth pausing to review the di↵erent types of cut-

o↵ collinear ↵s that we have introduced so far, given that
there are now at least three. First, the version in Eq. (30)
with no underlines or superscripts is the exact dc(z;µQ0)
that follows from the abstract operator definitions. Sec-
ond, the d(n,dr)

c (z;µQ0) above is a specific parametriza-
tion of that definition, with the only requirement being
that in the limit of large µQ0 it reduces to nth-order
collinear perturbation theory in terms of renormalized

↵s with scheme r. Finally, there is the d(n,dr)
c (z;µQ0) de-

fined in Eq. (31), which is just the limit of d(n,dr)

c (z;µQ0)
where power-suppressed terms are dropped. An equally
valid definition is

d(n,dr)
c (z;µQ0) ⌘ lim

m
µQ0

!0

d(n,dr)

c (z;µQ0) . (58)

Because Eq. (56) is just a definition, it contains no con-
straint by itself. The constraint is in Eq. (57).
So far, the steps for constructing the TMD ↵

parametrizations are very analogous to those of Sec. IV
for K(kT;µQ0), but there are some di↵erences. The
most significant is that the “perturbative” large kT part

This (and other) constraints 
Implied in usual CSS formula 

31

D̃A(z, bT;µ, ⇣) = D̃A(z, b⇤;µ, ⇣) exp

⇢
�gA(z, bT)� gK(bT) ln

✓p
⇣

Q0

◆�

= D̃A(z, b⇤;µb⇤ , µ
2

b⇤) exp

(Z µ

µb⇤

dµ0

µ0


�(↵s(µ

0); 1)� ln

p
⇣

µ0 �K(↵s(µ
0))

�
+ ln

p
⇣

µb⇤

K̃(b⇤;µb⇤)

)

⇥ exp

⇢
�gA(z, bT)� gK(bT) ln

✓p
⇣

Q0

◆�
. (109)

Recall that µb⇤ is defined in Eq. (102). There is of course an exactly analogous equation for D̃B(z, b⇤;µb⇤ , µ
2

b⇤
).

Substituting the evolved versions of D̃A(z, b⇤;µb⇤ , µ
2

b⇤
) and D̃B(z, b⇤;µb⇤ , µ

2

b⇤
) into the W -term factorization formula

Eq. (15) and setting the final scales equal to µ = µQ and ⇣ = Q2 in Eq. (15) gives

W (qT, Q) = H(µQ;C2)

Z
d2bT
(2⇡)2

e�iqT·bTD̃A(zA, b⇤;µb⇤ , µ
2

b⇤)D̃B(zB , b⇤;µb⇤ , µ
2

b⇤)

⇥ exp

(
2

Z µQ

µb⇤

dµ0

µ0


�(↵s(µ

0); 1)� ln
Q

µ0 �K(↵s(µ
0))

�
+ ln

Q2

µ2

b⇤

K̃(b⇤;µb⇤)

)

⇥ exp

⇢
�gA(zA, bT)� gB(zB , bT)� gK(bT) ln

✓
Q2

Q2
0

◆�
. (110)

Equation (110) is very close to the standard way of ex-
pressing the CSS-evolved W -term.3 As we have writ-
ten it, there are still no approximations; the solutions
to the evolution equations are exact and the steps above
simply reorganize the original factorization formula in
Eq. (15). However, by writing W (qT, Q) as in Eq. (110),
we have isolated on the first two lines those factors that
can be confidently approximated in perturbation theory
using collinear factorization. The value of bT never rises
above bmax and the scale µb⇤ never drops below C1/bmax.
Therefore, one obtains well-behaved perturbative calcu-
lations by replacing H(µQ;C2), �(↵s(µ0); 1), �K(↵s(µ0))
and K̃(b⇤;µb⇤) by their nth-order perturbative calcula-
tions.

For the TMD ↵s themselves on the first line, the choice
of µ =

p
⇣ = µb⇤ implements RG improvement for the

limit of small bT. As long as bmax is small enough,
D̃A,B(zA,B , b⇤;µb⇤ , µ

2

b⇤
) can be expanded in an OPE:

D̃(n,dr)(z, b⇤;µb⇤ , µ
2

b⇤)

=

Z
1

z

dẑ

ẑ3�2✏
dr(ẑ;µb⇤)C̃

(n)
D (z/ẑ, bT;µ

2

b⇤ , µb⇤ ,↵s(µb⇤))

+O (mbT) , (111)

which is a more explicit version of Eq. (25) but in
bT-space. (Here, as usual, m represents any of the

3 There are, however, a large number of minor but not always
obvious variations in the form of the expression in the literature.
There are also many di↵erent systems of notation. See [38] for
some translation.

small intrinsic mass scales, including now 1/bmax.) Sub-
stituting Eq. (111) for both D̃A(zA, b⇤;µb⇤ , µ

2

b⇤
) and

D̃B(zB , b⇤;µb⇤ , µ
2

b⇤
), along with the other perturbative

approximations mentioned above, recovers the standard
CSS expression – compare, for example, with the Drell-
Yan version of TMD factorization in Eq. (22) of [65].
The b⇤ method, as it is explained here, has several de-

sirable properties. There is the elegant feature that, in
dealing with the nonperturbative region of large bT, one
never modifies or approximates the operator definitions
of the TMD ↵s themselves. Rather, on the first line of
Eq. (110) we have simply changed their arguments from
bT to b⇤. Along the same lines, the g-functions on the last
line have explicit definitions in terms of the underlying
QCD operators. The final result for the cross section,
Eq. (110), is exactly independent of the choice of the
b⇤(bT) function in Eq. (100) or of the value of parame-
ters like bmax. Since changing them simply amounts to
reshu✏ing contributions between the perturbative and
non-perturbative factors, the b⇤-independence is a ver-
sion of RG invariance that we can express as

d

dbmax

W (qT, Q) = 0 . (112)

Or, if we consider other more general b⇤(bT) functions
determined by a collection of possibly many parameters
{b-params}, we can express the same relation schemati-
cally as

d

d{b-params}W (qT, Q) = 0 . (113)

These relations are exact for Eq. (110). Therefore, it is le-
gitimate to say that perturbative calculations of the first

Must not forget to include constraints explicitly. 
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K(n)
input

(kT;µQ0) ⌘

8
><

>:

K(n) (kT;µQ0) if kT & µQ0 ,

nonperturbative parametrization otherwise

. (39)

Now the “(n)” superscript on the left side of this equation
refers to the perturbative order of the large kT tail in this
input nonperturbative parametrization. When we work
with Eq. (20), we will need its coordinate space version
of the CS kernel,

K̃(n)
input

(bT;µQ0) ⌘
Z

d2kT eikTbTK(n)
input

(kT;µQ0) . (40)

The scale-dependence of the exact K̃ is exactly bT-
independent by the RG equation Eq. (18), so we will
enforce the condition that an nth-order parametrization
satisfies Eq. (18) to order ↵s(µ)n, with only O

�
↵s(µ)n+1

�

errors,

dK̃(n)
input

(bT;µ)

d lnµ
= ��(n)

K (↵s(µ)) +O
�
↵s(µ)

n+1
�
. (41)

In Sec. VIIA we will provide an example of a spe-
cific trial functional form for Eq. (39). In general, how-
ever, any phenomenologically successful parametrization
that satisfies Eq. (39) and Eq. (41) is allowed. The
parametrizations in Eq. (39) and Eq. (40) are appropri-
ate specifically when Q ⇡ Q0 such that only the region
of 0 < kT . Q0 is important.

However, it is a poor approximation to the true
K̃(bT;µQ0) in the kT � Q0 region, and this matters
if we evolve to large enough Q for contributions from
kT � Q0 to become significant. In Eq. (40), the large
errors manifest themselves as higher order terms logarith-
mic in bTµQ0 , which diverge in the bT ! 0 limit. There
needs to be a change in renormalization scale. Thus, in
coordinate space the more common choice for the RG
scale is µ = C1/bT, with C1 being an order unity propor-
tionality constant. The truncated RG improved pertur-
bation theory then increases in accuracy as bT ! 0.

To obtain a K (kT;µQ0) parametrization that works
well for all Q, we need steps that combine the stabil-
ity of fixed scale calculations in the Q ⇡ Q0, kT ⇡ Q0

region with the RG-improved calculations that optimize
for the bT ! 0 limit. Specifically, we need to perform
a scale transformation on the above parametrization us-
ing the RG equation at a bT somewhat below 1/Q0. If
we implement this scale transformation at small enough
bT, it will have a negligible e↵ect on phenomenology that
uses the above parametrization near Q ⇡ Q0 where the
bT ⌧ 1/Q0 is strongly suppressed. Therefore, fits that
use Eq. (39) will be largely una↵ected. And, if the trans-
formation takes place in a range of bT at least comparable
to . 1/Q0, then its overall e↵ect will only appear at or-
der n + 1 or higher, so the e↵ect of the transformation

will always be one order higher in perturbation theory
than the working order. So, the transformation will en-
sure an accurate treatment of evolution to large Q in any
subsequent steps. We will show how this works in detail
below.
The first step in implementing the scale transformation

is to define a bT-dependent mass scale, which we will
call Q0(bT), that smoothly transitions between Q0 and
a 1/bT-dependence in the region just below bT ⇡ 1/Q0.
Specifically,

Q0(bT) =

⇢
C1/bT bT ⌧ C1/Q0 ,

Q0 otherwise ,
(42)

where C1 is an order unity numerical constant, typically
taken to be C1 = 2e��E . When bT is comparable to
C1/Q0, the scales Q0 and C1/bT are numerically similar,
so any sensitivity to the di↵erence between the two scale
is a higher order e↵ect that can be reduced by includ-
ing higher orders in perturbation theory. Therefore, the
exact form of Q0(bT) is arbitrary so long as it provides
a reasonably smooth interpolation between the Q0 and
C1/bT behavior at large and small bT. Some example
suggestions for Q0(bT), which we will call the transfor-
mation function, are shown in Appendix C.
Next, we need to combine this with the RG equation

Eq. (18), whose exact solution is

K̃(bT;µ) = K̃(bT;µi)�
Z µ

µi

dµ0

µ0 �K(↵s(µ
0)) . (43)

Here, µi is an arbitrary initial scale. To make it useful
in applications of Eq. (20), let us evolve from an initial
scale µi = µQ0

(where µQ0
= C2Q0) so that the right

side contains K̃(bT;µQ0
):

K̃(bT;µ) = K̃(bT;µQ0
)�

Z µ

µQ0

dµ0

µ0 �K(↵s(µ
0)) . (44)

For any µ ⇡ Q0, the second term in Eq. (44) is calculable
in perturbation theory with the nth-order anomalous di-

mension, �K(↵s(µ0)) ! �(n)
K (↵s(µ0)), and it vanishes for

bT ⇡ C1/Q0 or larger.
The original parametrization in Eq. (40) was de-

signed to provide an accurate perturbative description of
K̃(bT;µQ0) in the region of bT ⇡ 1/Q0 and larger. Now if
we replace the first term on the right side of Eq. (44) with

K̃(n)
input

(bT;µQ0
), it continues to describe the bT & 1/Q0

region, by our construction of Q0(bT). However, now the

Use scale transformation that satisfies

Input scale

• use RG improvements in result for kT>Q0 region.
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The above suggests that it is best to categorize the
kT-dependence not into just two regions of small kT and
large kT, but into three regions: small kT (kT ⌧ Q0),
large kT (kT ⇡ Q0), and very large kT (kT � Q0). The
large kT region is where kT is just barely large enough
for small coupling descriptions of transverse momentum
dependence to be reasonable.

In the discussion above we have worked in transverse
momentum space because that better matches the intu-
ition of models and phenomenology. However, the anal-
ogous observations apply straightforwardly to transverse
coordinate space. In that case, there is a region of very
large bT � 1/Q0 that is entirely nonperturbative, a re-
gion of very small bT ⌧ 1/Q0 that is purely perturbative
as long as an RG improved µ ⇠ 1/bT is used, and an in-
termediate region of bT ⇠ 1/Q0 where fixed order, fixed
scale calculations are ideal.

One of our tasks in the main body of the paper is to
interpolate between these three regions in our param-
eterizations. For the intermediate region of transverse
momentum, transitioning between between scales only
introduces higher order errors.

Notice that our discussion of large logarithms above is
a mirror image of how large logarithms are often intro-
duced in explanations of top down approaches. There,
one starts with Eq. (B1) but using µQ and Q2 instead of
the input µQ0 and Q2

0
and assuming Q � Q0:

D(z, zkT;µQ, Q
2)

kT�m
=

1

k2
T

"
�

 
↵s(µQ),

kT
µQ

,
Q2

µ2

Q

!
+O

✓
m

µQ
,
m

kT

◆#
(B5)

Then the task is to determine how to resum large loga-
rithms of ln(kT/µQ) as kT gets small relative to Q, rather
than as kT gets large relative to Q0.

Appendix C: Scale transformation function

For the scale transition function in Eq. (42), we must
arrange for the transition from ⇠ 1/bT to Q0 to occur at
bT somewhat smaller than 1/Q0 to avoid modifying the
treatment of Eq. (20) in the Q ⇡ Q0 region. One choice
that satisfies this for a Q0 = 2 GeV is

Q0(bT)

= 2.0 GeV


1�

✓
1� C1

(2.0 GeV)bT

◆
e�(4 GeV

2
)b2T

�
.

(C1)

If we wish to adjust the exact shape in the ⇡ 1/Q0 tran-
sition region by adding a parameter as in Eq. (49), we
may modify Eq. (C1) by introducing a parameter a,

Q0(bT, a)

= 2.0 GeV


1�

✓
1� C1

(2.0 GeV)bT

◆
e�b2Ta2

�
. (C2)

Here the transition between the two RG scales takes place
around bT ⇠ 1/a. We can use the Eq. (C2) form to check
approximate scale independence in the transition region
by varying a slightly. C1 is the usual numerical constant,
C1 = 2e��E ⇡ 1.123.
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FIG. 11: The example D̃
(1,dMS)(z, bT;µQ0 , Q

2
0) from

Eq. (92), and the corresponding g
(1,dMS)(z, bT) (Eq. (116))

and D̃
(1,dMS)(z, b⇤;µQ0 , Q

2
0) from the b⇤-prescription

(Eq. (101)). The curves are generated using the same
M = 0.2GeV, mD = 0.3GeV, and a = 2GeV as in Fig. 7.
The top panel is the case of bmax = 0.1GeV�1 and the bottom
panel is the case of bmax = 1.0GeV�1. The bmax-dependence

in ln(D̃
(1,dMS)(z, b⇤;µQ0 , Q

2
0)) (violet dot-dashed) cancels

that of �g
(1,dMS)(z, bT) (blue-dashed). The solid black

curves for D̃
(1,dMS)(z, bT;µQ0 , Q

2
0) are identical in the top

and bottom panels.

A. The b⇤ method

Readers who are familiar with standard implementa-
tions of the CSS formalism might find the surface ap-
pearance of our expressions for the evolved W (n)(qT, Q)
in sections Sec. IV-Sec. VII somewhat odd. Normally,
the cross section is written with nonperturbative TMD
e↵ects contained in separate exponential factors usually
notated

e�gA(zA,bT), e�gB(zB ,bT), and e
�gK(bT) ln

Q2

Q2
0 , (99)

where the nonperturbative transverse momentum depen-
dence is encoded in the (coordinate dependence of) the
lower-case g-functions in the exponents. (The gA and gB
functions are placed inside exponents so that they retain
the appearance of Sudakov form factor contributions.)

Then, in the usual presentation, the rest of the factors
in the cross section automatically get expressed in terms
of collinear functions by using the OPE to approximate
the small bT behavior. For a specific example of what we
mean here, consider Eq.(13.81) of [3].
In this subsection, we will review the steps for trans-

forming the low-qT cross section (or rather W (qT, Q)) in
Eq. (20) into the form that involves Eq. (99) g-functions.
Setting up the usual presentation of the cross section

begins with a partition of the coordinate space W̃ (bT, Q)
into regions considered large and small bT. One does
this by defining an arbitrary function of bT, traditionally
called b⇤(bT). The function should smoothly interpolate
between bT at small values of bT and a maximum trans-
verse size bmax as bT grows to bT � bmax. It is otherwise
arbitrary. In other words,

b⇤(bT) =

⇢
bT bT ⌧ bmax

bmax bT � bmax

. (100)

The value of bmax is also arbitrary, but it is usually in-
terpreted roughly as a value somewhere near the bound-
ary between nonperturbatively large and perturbatively
small regions of bT. The purpose of the “b⇤ method” [93]
is to sequester a purely perturbative calculation of trans-
verse coordinate dependence away from a part that in-
volves nonperturbative modeling or fitting. While any
reasonably well-behaved, smooth function of bT that
obeys the right side of Eq. (100) is a valid b⇤(bT), the
most often used choice is

b⇤(bT) =
bTp

1 + b2
T
/b2

max

. (101)

Later on, we will also need to define another hard scale
that approaches the RG improve value of µ = C1/bT
appropriate to the bT ! 0 limit but that levels o↵ at a
fixed scale at large bT. The simplest (and standard) way
to do this is to just use the inverse of b⇤ and define

µb⇤ ⌘ C1/b⇤ . (102)

The behavior of µb⇤ is similar to that of our Q0(bT), but
Q0(bT) approaches Q0 at large bT while µb⇤ approaches
C1/bmax. (Indeed, in our treatment below we could opt
to use Q0(bT) instead of µb⇤ , but we will continue with
µb⇤ to make the comparison with standard expressions
clear.)
Next, one solves Eq. (18) to relate a TMD ↵ (for hadron

A, for example) at an input scale Q0 to the TMD ↵ at
any other scale

p
⇣ by

D̃A(z, bT;µ, ⇣)

= D̃A(z, bT;µ,Q
2

0
) exp

⇢
K̃(bT;µ) ln

✓p
⇣

Q0

◆�
.

(103)

Exactly the same equation applies independently of the
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A. The b⇤ method

Readers who are familiar with standard implementa-
tions of the CSS formalism might find the surface ap-
pearance of our expressions for the evolved W (n)(qT, Q)
in sections Sec. IV-Sec. VII somewhat odd. Normally,
the cross section is written with nonperturbative TMD
e↵ects contained in separate exponential factors usually
notated

e�gA(zA,bT), e�gB(zB ,bT), and e
�gK(bT) ln

Q2

Q2
0 , (99)

where the nonperturbative transverse momentum depen-
dence is encoded in the (coordinate dependence of) the
lower-case g-functions in the exponents. (The gA and gB
functions are placed inside exponents so that they retain
the appearance of Sudakov form factor contributions.)

Then, in the usual presentation, the rest of the factors
in the cross section automatically get expressed in terms
of collinear functions by using the OPE to approximate
the small bT behavior. For a specific example of what we
mean here, consider Eq.(13.81) of [3].
In this subsection, we will review the steps for trans-

forming the low-qT cross section (or rather W (qT, Q)) in
Eq. (20) into the form that involves Eq. (99) g-functions.
Setting up the usual presentation of the cross section

begins with a partition of the coordinate space W̃ (bT, Q)
into regions considered large and small bT. One does
this by defining an arbitrary function of bT, traditionally
called b⇤(bT). The function should smoothly interpolate
between bT at small values of bT and a maximum trans-
verse size bmax as bT grows to bT � bmax. It is otherwise
arbitrary. In other words,

b⇤(bT) =

⇢
bT bT ⌧ bmax

bmax bT � bmax

. (100)

The value of bmax is also arbitrary, but it is usually in-
terpreted roughly as a value somewhere near the bound-
ary between nonperturbatively large and perturbatively
small regions of bT. The purpose of the “b⇤ method” [93]
is to sequester a purely perturbative calculation of trans-
verse coordinate dependence away from a part that in-
volves nonperturbative modeling or fitting. While any
reasonably well-behaved, smooth function of bT that
obeys the right side of Eq. (100) is a valid b⇤(bT), the
most often used choice is

b⇤(bT) =
bTp

1 + b2
T
/b2

max

. (101)

Later on, we will also need to define another hard scale
that approaches the RG improve value of µ = C1/bT
appropriate to the bT ! 0 limit but that levels o↵ at a
fixed scale at large bT. The simplest (and standard) way
to do this is to just use the inverse of b⇤ and define

µb⇤ ⌘ C1/b⇤ . (102)

The behavior of µb⇤ is similar to that of our Q0(bT), but
Q0(bT) approaches Q0 at large bT while µb⇤ approaches
C1/bmax. (Indeed, in our treatment below we could opt
to use Q0(bT) instead of µb⇤ , but we will continue with
µb⇤ to make the comparison with standard expressions
clear.)
Next, one solves Eq. (18) to relate a TMD ↵ (for hadron

A, for example) at an input scale Q0 to the TMD ↵ at
any other scale

p
⇣ by

D̃A(z, bT;µ, ⇣)

= D̃A(z, bT;µ,Q
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0
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⇢
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⇣
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Exactly the same equation applies independently of the
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The above suggests that it is best to categorize the
kT-dependence not into just two regions of small kT and
large kT, but into three regions: small kT (kT ⌧ Q0),
large kT (kT ⇡ Q0), and very large kT (kT � Q0). The
large kT region is where kT is just barely large enough
for small coupling descriptions of transverse momentum
dependence to be reasonable.

In the discussion above we have worked in transverse
momentum space because that better matches the intu-
ition of models and phenomenology. However, the anal-
ogous observations apply straightforwardly to transverse
coordinate space. In that case, there is a region of very
large bT � 1/Q0 that is entirely nonperturbative, a re-
gion of very small bT ⌧ 1/Q0 that is purely perturbative
as long as an RG improved µ ⇠ 1/bT is used, and an in-
termediate region of bT ⇠ 1/Q0 where fixed order, fixed
scale calculations are ideal.

One of our tasks in the main body of the paper is to
interpolate between these three regions in our param-
eterizations. For the intermediate region of transverse
momentum, transitioning between between scales only
introduces higher order errors.

Notice that our discussion of large logarithms above is
a mirror image of how large logarithms are often intro-
duced in explanations of top down approaches. There,
one starts with Eq. (B1) but using µQ and Q2 instead of
the input µQ0 and Q2

0
and assuming Q � Q0:

D(z, zkT;µQ, Q
2)

kT�m
=

1

k2
T

"
�

 
↵s(µQ),

kT
µQ

,
Q2

µ2

Q

!
+O

✓
m

µQ
,
m

kT

◆#
(B5)

Then the task is to determine how to resum large loga-
rithms of ln(kT/µQ) as kT gets small relative to Q, rather
than as kT gets large relative to Q0.

Appendix C: Scale transformation function

For the scale transition function in Eq. (42), we must
arrange for the transition from ⇠ 1/bT to Q0 to occur at
bT somewhat smaller than 1/Q0 to avoid modifying the
treatment of Eq. (20) in the Q ⇡ Q0 region. One choice
that satisfies this for a Q0 = 2 GeV is

Q0(bT)

= 2.0 GeV


1�

✓
1� C1

(2.0 GeV)bT

◆
e�(4 GeV

2
)b2T

�
.

(C1)

If we wish to adjust the exact shape in the ⇡ 1/Q0 tran-
sition region by adding a parameter as in Eq. (49), we
may modify Eq. (C1) by introducing a parameter a,

Q0(bT, a)

= 2.0 GeV


1�

✓
1� C1

(2.0 GeV)bT

◆
e�b2Ta2

�
. (C2)

Here the transition between the two RG scales takes place
around bT ⇠ 1/a. We can use the Eq. (C2) form to check
approximate scale independence in the transition region
by varying a slightly. C1 is the usual numerical constant,
C1 = 2e��E ⇡ 1.123.

[1] J. C. Collins and D. E. Soper, Nucl. Phys. B193, 381
(1981), erratum: B213, 545 (1983).

[2] J. C. Collins, D. E. Soper, and G. Sterman, Nucl. Phys.
B250, 199 (1985).

[3] J. C. Collins, Foundations of Perturbative QCD (Cam-
bridge University Press, Cambridge, 2011).

[4] T. Becher, M. Neubert, and B. D. Pecjak, JHEP 01,
076 (2007), hep-ph/0607228.

[5] T. Becher and M. Neubert, Eur. Phys. J. C71, 1665
(2011), 1007.4005.
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A. The b⇤ method

Readers who are familiar with standard implementa-
tions of the CSS formalism might find the surface ap-
pearance of our expressions for the evolved W (n)(qT, Q)
in sections Sec. IV-Sec. VII somewhat odd. Normally,
the cross section is written with nonperturbative TMD
e↵ects contained in separate exponential factors usually
notated

e�gA(zA,bT), e�gB(zB ,bT), and e
�gK(bT) ln

Q2

Q2
0 , (99)

where the nonperturbative transverse momentum depen-
dence is encoded in the (coordinate dependence of) the
lower-case g-functions in the exponents. (The gA and gB
functions are placed inside exponents so that they retain
the appearance of Sudakov form factor contributions.)

Then, in the usual presentation, the rest of the factors
in the cross section automatically get expressed in terms
of collinear functions by using the OPE to approximate
the small bT behavior. For a specific example of what we
mean here, consider Eq.(13.81) of [3].
In this subsection, we will review the steps for trans-

forming the low-qT cross section (or rather W (qT, Q)) in
Eq. (20) into the form that involves Eq. (99) g-functions.
Setting up the usual presentation of the cross section

begins with a partition of the coordinate space W̃ (bT, Q)
into regions considered large and small bT. One does
this by defining an arbitrary function of bT, traditionally
called b⇤(bT). The function should smoothly interpolate
between bT at small values of bT and a maximum trans-
verse size bmax as bT grows to bT � bmax. It is otherwise
arbitrary. In other words,

b⇤(bT) =

⇢
bT bT ⌧ bmax

bmax bT � bmax

. (100)

The value of bmax is also arbitrary, but it is usually in-
terpreted roughly as a value somewhere near the bound-
ary between nonperturbatively large and perturbatively
small regions of bT. The purpose of the “b⇤ method” [93]
is to sequester a purely perturbative calculation of trans-
verse coordinate dependence away from a part that in-
volves nonperturbative modeling or fitting. While any
reasonably well-behaved, smooth function of bT that
obeys the right side of Eq. (100) is a valid b⇤(bT), the
most often used choice is

b⇤(bT) =
bTp

1 + b2
T
/b2

max

. (101)

Later on, we will also need to define another hard scale
that approaches the RG improve value of µ = C1/bT
appropriate to the bT ! 0 limit but that levels o↵ at a
fixed scale at large bT. The simplest (and standard) way
to do this is to just use the inverse of b⇤ and define

µb⇤ ⌘ C1/b⇤ . (102)

The behavior of µb⇤ is similar to that of our Q0(bT), but
Q0(bT) approaches Q0 at large bT while µb⇤ approaches
C1/bmax. (Indeed, in our treatment below we could opt
to use Q0(bT) instead of µb⇤ , but we will continue with
µb⇤ to make the comparison with standard expressions
clear.)
Next, one solves Eq. (18) to relate a TMD ↵ (for hadron

A, for example) at an input scale Q0 to the TMD ↵ at
any other scale

p
⇣ by

D̃A(z, bT;µ, ⇣)

= D̃A(z, bT;µ,Q
2

0
) exp

⇢
K̃(bT;µ) ln

✓p
⇣

Q0

◆�
.

(103)

Exactly the same equation applies independently of the
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dence is encoded in the (coordinate dependence of) the
lower-case g-functions in the exponents. (The gA and gB
functions are placed inside exponents so that they retain
the appearance of Sudakov form factor contributions.)

Then, in the usual presentation, the rest of the factors
in the cross section automatically get expressed in terms
of collinear functions by using the OPE to approximate
the small bT behavior. For a specific example of what we
mean here, consider Eq.(13.81) of [3].
In this subsection, we will review the steps for trans-

forming the low-qT cross section (or rather W (qT, Q)) in
Eq. (20) into the form that involves Eq. (99) g-functions.
Setting up the usual presentation of the cross section

begins with a partition of the coordinate space W̃ (bT, Q)
into regions considered large and small bT. One does
this by defining an arbitrary function of bT, traditionally
called b⇤(bT). The function should smoothly interpolate
between bT at small values of bT and a maximum trans-
verse size bmax as bT grows to bT � bmax. It is otherwise
arbitrary. In other words,

b⇤(bT) =
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bT bT ⌧ bmax

bmax bT � bmax

. (100)

The value of bmax is also arbitrary, but it is usually in-
terpreted roughly as a value somewhere near the bound-
ary between nonperturbatively large and perturbatively
small regions of bT. The purpose of the “b⇤ method” [93]
is to sequester a purely perturbative calculation of trans-
verse coordinate dependence away from a part that in-
volves nonperturbative modeling or fitting. While any
reasonably well-behaved, smooth function of bT that
obeys the right side of Eq. (100) is a valid b⇤(bT), the
most often used choice is

b⇤(bT) =
bTp

1 + b2
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. (101)

Later on, we will also need to define another hard scale
that approaches the RG improve value of µ = C1/bT
appropriate to the bT ! 0 limit but that levels o↵ at a
fixed scale at large bT. The simplest (and standard) way
to do this is to just use the inverse of b⇤ and define

µb⇤ ⌘ C1/b⇤ . (102)

The behavior of µb⇤ is similar to that of our Q0(bT), but
Q0(bT) approaches Q0 at large bT while µb⇤ approaches
C1/bmax. (Indeed, in our treatment below we could opt
to use Q0(bT) instead of µb⇤ , but we will continue with
µb⇤ to make the comparison with standard expressions
clear.)
Next, one solves Eq. (18) to relate a TMD ↵ (for hadron

A, for example) at an input scale Q0 to the TMD ↵ at
any other scale
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⇣ by

D̃A(z, bT;µ, ⇣)

= D̃A(z, bT;µ,Q
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0
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✓p
⇣

Q0

◆�
.
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RG improvement and interpolation  
Between large and small bT 

not disentangled   



16

of Eq. (52) is not entirely perturbative because it in-
volves non-perturbative collinear ↵s as input in Eq. (25).
The perturbative contribution to large transverse mo-
mentum dependence only enters in the coe�cient func-

tion C(n)
D (zkT). By contrast, the only input to the per-

turbative calculation in Eq. (37) is the strong coupling
↵s.

The conditions in Eqs. (52)–(56) are all that we need
for constructing phenomenologically useful parametriza-
tions in the Q ⇡ Q0 region. Any model or parametriza-
tion that satisfies them is acceptable, but we will give
some explicit examples in later sections.

However, the perturbative part of the parametrization
in Eq. (52) does not provide an accurate description in
the region of kT � Q0, where ratios of kT andQ0 diverge.
In coordinate space, the same issue arises at bT ⌧ 1/Q0

in the form of large logarithms of µbT. That does not

create a problem for phenomenological applications near
Q ⇡ Q0 where the kT � Q0 contributions are suppressed
in the integral of Eq. (21). However, it becomes impor-
tant as one evolves to Q � Q0 and the kT � Q0 region
starts to contribute more significantly.
Therefore, there needs to be a scale transformation

from µ = µQ0 to µ = C1/bT in the coordinate space
TMD ↵ in the region of bT just below bT ⇡ 1/Q0. This
of course is exactly the same issue that we faced in the

case of K̃(n)
input

(bT;µQ0) in the previous section. For the
TMD ↵, it also implies that we have to evolve the CS
scale

p
⇣ from Q0 to C1/bT. For the scale change we

can reuse the same scale transformation function from
Eq. (42).
The exact solution to the TMD evolution equations for

an individual TMD ↵ evolving from scales µi, Qi to µQ0 ,
Q0 is

D̃(z, bT;µQ0 , Q
2

0
) = D̃(z, bT;µi, Q

2

i ) exp

⇢Z µQ0

µi

dµ0

µ0


�(↵s(µ

0); 1)� ln
Q0

µ0 �K(↵s(µ
0))

�
+ ln

Q0

Qi
K̃(bT;µi)

�
. (59)

Or, if we use µi = µQ0
, Qi = Q0 for the input scale,

D̃(z, bT;µQ0 , Q
2

0
) = D̃(z, bT;µQ0

, Q
2

0
) exp

(Z µQ0

µQ0

dµ0

µ0


�(↵s(µ

0); 1)� ln
Q0

µ0 �K(↵s(µ
0))

�
+ ln

Q0

Q0

K̃(bT;µQ0
)

)
. (60)

As of yet, there are still no approximations on
D̃(z, bT;µQ0 , Q

2
0
). The left side has no dependence on

Q0; any Q0-dependence in D̃(z, bT;µQ0
, Q

2

0
) is exactly

canceled by an opposite Q0-dependence in the exponen-
tial factor.

Now we can substitute approximations into the right
side of Eq. (60) in a way that is again very analogous to
the way we handled K̃(bT;µ) in the previous section by
making substitutions on the right side of Eq. (44). We ap-

proximate D̃(z, bT;µQ0
, Q

2

0
) on the right side of Eq. (60)

by replacing it with the D(n,dr)

input

⇣
z, zkT;µQ0

, µ2

Q0

⌘
from

Eq. (52). Because of the scale transformation, the re-

sult is a parametrization of D̃(z, bT;µQ0
, Q

2

0
) that is an

accurate description not only for bT ⇡ 1/Q0 and larger
but also for all bT ⌧ 1/Q0. For the K̃(bT;µQ0

) in the

exponent on the right side of Eq. (60), we already have
the analogous result from Eq. (46) in Sec. IV, and we
can reuse it here. All that remains then is to substi-
tute �(↵s(µ0); 1) and �K(↵s(µ0)) by their truncated nth-
order perturbation theory approximations. Thus, our fi-
nal parametrization of the input TMD ↵ is

D̃
(n,dr)

(z, bT;µQ0 , Q
2

0
)

= D̃(n,dr)

input
(z, bT;µQ0

, Q
2

0
) exp

(Z µQ0

µQ0

dµ0

µ0


�(n)(↵s(µ

0); 1)� ln
Q0

µ0 �
(n)
K (↵s(µ

0))

�
+ ln

Q0

Q0

K̃(n)
input

(bT;µQ0
)

)
. (61)

The underline on D̃
(n,dr)

(z, bT;µQ0 , Q
2
0
) is our notation

for the final parametrization of the TMD ↵ at the input
scale µ = µQ0 , ⇣ = Q2

0
.

To summarize, D̃(z, bT;µQ0 , Q
2
0
) has the following

properties:
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RG-improved perturbative contribution to K̃(bT;µQ0
)

also remains accurate into the bT ⌧ 1/Q0 region. The
second term in Eq. (44) is calculable to nth order from

the known perturbative expression for �(n)
K (↵s(µ)).

Therefore, we obtain an optimal parametrization by
replacing the exact K̃(bT;µQ0

) on the right side of

Eq. (44) by the approximate K̃(n)
input

(bT;µQ0
) and the ex-

act �K(↵s(µ0)) by �(n)
K (↵s(µ0)). We define this this as

K̃
(n)

(bT;µ)

⌘ K̃(n)
input

(bT;µQ0
)�

Z µ

µQ0

dµ0

µ0 �
(n)
K (↵s(µ

0)) . (45)

The underline on K̃
(n)

(bT;µ) is our notation for the final
parametrization to be used with evolution. The above
applies to the cases where µ ⇡ Q0, so as a final step we
set µ = µQ0 and write the underlined parametrization as

K̃
(n)

(bT;µQ0)

⌘ K̃(n)
input

(bT;µQ0
)�

Z µQ0

µQ0

dµ0

µ0 �
(n)
K (↵s(µ

0)) . (46)

This is the form of the parametrization for the CS kernel
that we will ultimately use in Eq. (20). The errors in

K̃
(n)

(bT;µQ0), as an approximation to K̃(bT;µQ0), are
suppressed by at least ↵s(µQ0)

n+1 point-by-point for all
bT.

A final constraint on parametrizations of

K(n)
input

(kT;µQ0) is obtained by recalling that soft
gluon e↵ects cancel in collinear factorization when we
integrate over all transverse momentum. Thus, after an

integration of K(n)
input

(kT;µQ0) over kT up to a cuto↵
kmax of order µQ0 , sensitivity to any nonperturbative
mass parameters must vanish as m/µQ0 ! 0. We may
express this by demanding that

⇡

Z k2
max

0

dk2
T
K(n)

input
(kT;µQ0)

= �(n)(kmax/µQ0 ,↵s(µQ0)) +O

✓
m

µQ0

,
m

kmax

◆
,

(47)

where �(n)(kmax/µ,↵s(µ)) is either zero or a perturba-
tively calculable function, independent of any nonper-

turbative mass parameters in K(n)
input

(kT;µQ0).
Before continuing, let us summarize the basic proper-

ties of the parametrization, K̃
(n)

(bT;µQ0):

• For bT ⇡ 1/Q0 or larger, it di↵ers negligibly from

K̃(n)
input

(bT;µQ0), by construction. Therefore, both

K̃
(n)

(bT;µQ0) and K̃(n)
input

(bT;µQ0) are equally ap-
propriate for describing the Q ⇡ Q0 region phe-
nomenologically.

• For small bT, the RG scale transitions to the usual
µ ⇠ 1/bT RG-improved form, but only when bT is
very small relative to the input scale, bT ⌧ 1/Q0.

• The parametrization in Eq. (45) obeys an exact RG
equation,

dK̃
(n)

(bT;µ)

d lnµ
= ��(n)

K (↵s(µ)) , (48)

with no error terms present.

• By contrast, the “input” parametrization defined in
Eqs. (39)–(41) obeys the approximate RG equation
in Eq. (41) with possible perturbative error terms,
as shown in the equation.

• Both Eq. (41) and Eq. (48) are satisfied for all bT.

The resulting K̃
(n)

(bT;µQ0) is an accurate representation
of the exact K̃(bT;µQ0) up to at most (non-logarithmic)
order ↵s(µQ0)

n+1 errors.
There is an ambiguity in the exact choice of functional

form for Q0(bT) in Eq. (42) in the region of bT ⇡ 1/Q0,
but this is just the usual scale uncertainty that appears
in any truncated perturbation theory, akin to the depen-
dence on the exact numerical choices for C1 and C2. Since
Q0 and C1/bT are of similar size when bT ⇡ 1/Q0 the ef-
fect of the transformation is under perturbative control
and the ambiguity diminishes as one incorporates higher
orders.
To state this more explicitly, consider a family of dif-

ferent choices for Q0(bT) smoothly connected by an extra
parameter a:

Q0(bT) ! Q0(bT, a) . (49)

The only requirement is that Eq. (49) satisfies Eq. (42)
for all the a one might consider. Then,

d

da
K̃

(n)
(bT;µ) =

1

µQ0

dµQ0

da

d

d lnµQ0

K̃
(n)

(bT;µ)

=
1

µQ0

dµQ0

da

"
d

d lnµQ0

K̃(n)
input

(bT;µQ0
) + �K(↵s(µQ0

))

#

⇠ 1

µQ0

dµQ̄0

da
↵s(µQ0

)n+1 ln(n+1)

⇣
bTµQ0

⌘
. (50)

In the second line, we have substituted Eq. (45) and in
the last line we have used Eq. (41) while noting that at
small bT the suppressed errors are enhanced by terms log-

arithmic in bTµQ0
. However, by construction 1

µQ0

dµQ0
da is

only allowed to be nonzero in a region of bT where 1/bT,
Q0, and Q0 are all of comparable size. So Eq. (50) is just

d

da
K̃

(n)
(bT;µ) = O

�
↵s(µQ0)

n+1
�
, (51)

So e↵ects from varying the precise choice of transition
function Q0(bT) are always one order higher in ↵s(Q0)
than the working order n.
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K(n)
input

(kT;µQ0) ⌘

8
><

>:

K(n) (kT;µQ0) if kT & µQ0 ,

nonperturbative parametrization otherwise

. (39)

Now the “(n)” superscript on the left side of this equation
refers to the perturbative order of the large kT tail in this
input nonperturbative parametrization. When we work
with Eq. (20), we will need its coordinate space version
of the CS kernel,

K̃(n)
input

(bT;µQ0) ⌘
Z

d2kT eikTbTK(n)
input

(kT;µQ0) . (40)

The scale-dependence of the exact K̃ is exactly bT-
independent by the RG equation Eq. (18), so we will
enforce the condition that an nth-order parametrization
satisfies Eq. (18) to order ↵s(µ)n, with only O

�
↵s(µ)n+1

�

errors,

dK̃(n)
input

(bT;µ)

d lnµ
= ��(n)

K (↵s(µ)) +O
�
↵s(µ)

n+1
�
. (41)

In Sec. VIIA we will provide an example of a spe-
cific trial functional form for Eq. (39). In general, how-
ever, any phenomenologically successful parametrization
that satisfies Eq. (39) and Eq. (41) is allowed. The
parametrizations in Eq. (39) and Eq. (40) are appropri-
ate specifically when Q ⇡ Q0 such that only the region
of 0 < kT . Q0 is important.

However, it is a poor approximation to the true
K̃(bT;µQ0) in the kT � Q0 region, and this matters
if we evolve to large enough Q for contributions from
kT � Q0 to become significant. In Eq. (40), the large
errors manifest themselves as higher order terms logarith-
mic in bTµQ0 , which diverge in the bT ! 0 limit. There
needs to be a change in renormalization scale. Thus, in
coordinate space the more common choice for the RG
scale is µ = C1/bT, with C1 being an order unity propor-
tionality constant. The truncated RG improved pertur-
bation theory then increases in accuracy as bT ! 0.

To obtain a K (kT;µQ0) parametrization that works
well for all Q, we need steps that combine the stabil-
ity of fixed scale calculations in the Q ⇡ Q0, kT ⇡ Q0

region with the RG-improved calculations that optimize
for the bT ! 0 limit. Specifically, we need to perform
a scale transformation on the above parametrization us-
ing the RG equation at a bT somewhat below 1/Q0. If
we implement this scale transformation at small enough
bT, it will have a negligible e↵ect on phenomenology that
uses the above parametrization near Q ⇡ Q0 where the
bT ⌧ 1/Q0 is strongly suppressed. Therefore, fits that
use Eq. (39) will be largely una↵ected. And, if the trans-
formation takes place in a range of bT at least comparable
to . 1/Q0, then its overall e↵ect will only appear at or-
der n + 1 or higher, so the e↵ect of the transformation

will always be one order higher in perturbation theory
than the working order. So, the transformation will en-
sure an accurate treatment of evolution to large Q in any
subsequent steps. We will show how this works in detail
below.
The first step in implementing the scale transformation

is to define a bT-dependent mass scale, which we will
call Q0(bT), that smoothly transitions between Q0 and
a 1/bT-dependence in the region just below bT ⇡ 1/Q0.
Specifically,

Q0(bT) =

⇢
C1/bT bT ⌧ C1/Q0 ,

Q0 otherwise ,
(42)

where C1 is an order unity numerical constant, typically
taken to be C1 = 2e��E . When bT is comparable to
C1/Q0, the scales Q0 and C1/bT are numerically similar,
so any sensitivity to the di↵erence between the two scale
is a higher order e↵ect that can be reduced by includ-
ing higher orders in perturbation theory. Therefore, the
exact form of Q0(bT) is arbitrary so long as it provides
a reasonably smooth interpolation between the Q0 and
C1/bT behavior at large and small bT. Some example
suggestions for Q0(bT), which we will call the transfor-
mation function, are shown in Appendix C.
Next, we need to combine this with the RG equation

Eq. (18), whose exact solution is

K̃(bT;µ) = K̃(bT;µi)�
Z µ

µi

dµ0

µ0 �K(↵s(µ
0)) . (43)

Here, µi is an arbitrary initial scale. To make it useful
in applications of Eq. (20), let us evolve from an initial
scale µi = µQ0

(where µQ0
= C2Q0) so that the right

side contains K̃(bT;µQ0
):

K̃(bT;µ) = K̃(bT;µQ0
)�

Z µ

µQ0

dµ0

µ0 �K(↵s(µ
0)) . (44)

For any µ ⇡ Q0, the second term in Eq. (44) is calculable
in perturbation theory with the nth-order anomalous di-

mension, �K(↵s(µ0)) ! �(n)
K (↵s(µ0)), and it vanishes for

bT ⇡ C1/Q0 or larger.
The original parametrization in Eq. (40) was de-

signed to provide an accurate perturbative description of
K̃(bT;µQ0) in the region of bT ⇡ 1/Q0 and larger. Now if
we replace the first term on the right side of Eq. (44) with

K̃(n)
input

(bT;µQ0
), it continues to describe the bT & 1/Q0

region, by our construction of Q0(bT). However, now the

But to evolve to Q>>Q0, one needs to use  
RG improve version

At input scale Q0, either of  
“input” or “underlined” should work 

since W term is not relevant at kT>Q0



14

RG-improved perturbative contribution to K̃(bT;µQ0
)

also remains accurate into the bT ⌧ 1/Q0 region. The
second term in Eq. (44) is calculable to nth order from

the known perturbative expression for �(n)
K (↵s(µ)).

Therefore, we obtain an optimal parametrization by
replacing the exact K̃(bT;µQ0

) on the right side of

Eq. (44) by the approximate K̃(n)
input

(bT;µQ0
) and the ex-

act �K(↵s(µ0)) by �(n)
K (↵s(µ0)). We define this this as

K̃
(n)

(bT;µ)

⌘ K̃(n)
input

(bT;µQ0
)�

Z µ

µQ0

dµ0

µ0 �
(n)
K (↵s(µ

0)) . (45)

The underline on K̃
(n)

(bT;µ) is our notation for the final
parametrization to be used with evolution. The above
applies to the cases where µ ⇡ Q0, so as a final step we
set µ = µQ0 and write the underlined parametrization as

K̃
(n)

(bT;µQ0)

⌘ K̃(n)
input

(bT;µQ0
)�

Z µQ0

µQ0

dµ0

µ0 �
(n)
K (↵s(µ

0)) . (46)

This is the form of the parametrization for the CS kernel
that we will ultimately use in Eq. (20). The errors in

K̃
(n)

(bT;µQ0), as an approximation to K̃(bT;µQ0), are
suppressed by at least ↵s(µQ0)

n+1 point-by-point for all
bT.

A final constraint on parametrizations of

K(n)
input

(kT;µQ0) is obtained by recalling that soft
gluon e↵ects cancel in collinear factorization when we
integrate over all transverse momentum. Thus, after an

integration of K(n)
input

(kT;µQ0) over kT up to a cuto↵
kmax of order µQ0 , sensitivity to any nonperturbative
mass parameters must vanish as m/µQ0 ! 0. We may
express this by demanding that

⇡

Z k2
max

0

dk2
T
K(n)

input
(kT;µQ0)

= �(n)(kmax/µQ0 ,↵s(µQ0)) +O

✓
m

µQ0

,
m

kmax

◆
,

(47)

where �(n)(kmax/µ,↵s(µ)) is either zero or a perturba-
tively calculable function, independent of any nonper-

turbative mass parameters in K(n)
input

(kT;µQ0).
Before continuing, let us summarize the basic proper-

ties of the parametrization, K̃
(n)

(bT;µQ0):

• For bT ⇡ 1/Q0 or larger, it di↵ers negligibly from

K̃(n)
input

(bT;µQ0), by construction. Therefore, both

K̃
(n)

(bT;µQ0) and K̃(n)
input

(bT;µQ0) are equally ap-
propriate for describing the Q ⇡ Q0 region phe-
nomenologically.

• For small bT, the RG scale transitions to the usual
µ ⇠ 1/bT RG-improved form, but only when bT is
very small relative to the input scale, bT ⌧ 1/Q0.

• The parametrization in Eq. (45) obeys an exact RG
equation,

dK̃
(n)

(bT;µ)

d lnµ
= ��(n)

K (↵s(µ)) , (48)

with no error terms present.

• By contrast, the “input” parametrization defined in
Eqs. (39)–(41) obeys the approximate RG equation
in Eq. (41) with possible perturbative error terms,
as shown in the equation.

• Both Eq. (41) and Eq. (48) are satisfied for all bT.

The resulting K̃
(n)

(bT;µQ0) is an accurate representation
of the exact K̃(bT;µQ0) up to at most (non-logarithmic)
order ↵s(µQ0)

n+1 errors.
There is an ambiguity in the exact choice of functional

form for Q0(bT) in Eq. (42) in the region of bT ⇡ 1/Q0,
but this is just the usual scale uncertainty that appears
in any truncated perturbation theory, akin to the depen-
dence on the exact numerical choices for C1 and C2. Since
Q0 and C1/bT are of similar size when bT ⇡ 1/Q0 the ef-
fect of the transformation is under perturbative control
and the ambiguity diminishes as one incorporates higher
orders.
To state this more explicitly, consider a family of dif-

ferent choices for Q0(bT) smoothly connected by an extra
parameter a:

Q0(bT) ! Q0(bT, a) . (49)

The only requirement is that Eq. (49) satisfies Eq. (42)
for all the a one might consider. Then,

d

da
K̃

(n)
(bT;µ) =

1

µQ0

dµQ0

da

d

d lnµQ0

K̃
(n)

(bT;µ)

=
1

µQ0

dµQ0

da

"
d

d lnµQ0

K̃(n)
input

(bT;µQ0
) + �K(↵s(µQ0

))

#

⇠ 1

µQ0

dµQ̄0

da
↵s(µQ0

)n+1 ln(n+1)

⇣
bTµQ0

⌘
. (50)

In the second line, we have substituted Eq. (45) and in
the last line we have used Eq. (41) while noting that at
small bT the suppressed errors are enhanced by terms log-

arithmic in bTµQ0
. However, by construction 1

µQ0

dµQ0
da is

only allowed to be nonzero in a region of bT where 1/bT,
Q0, and Q0 are all of comparable size. So Eq. (50) is just

d

da
K̃

(n)
(bT;µ) = O

�
↵s(µQ0)

n+1
�
, (51)

So e↵ects from varying the precise choice of transition
function Q0(bT) are always one order higher in ↵s(Q0)
than the working order n.
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K(n)
input

(kT;µQ0) ⌘

8
><

>:

K(n) (kT;µQ0) if kT & µQ0 ,

nonperturbative parametrization otherwise

. (39)

Now the “(n)” superscript on the left side of this equation
refers to the perturbative order of the large kT tail in this
input nonperturbative parametrization. When we work
with Eq. (20), we will need its coordinate space version
of the CS kernel,

K̃(n)
input

(bT;µQ0) ⌘
Z

d2kT eikTbTK(n)
input

(kT;µQ0) . (40)

The scale-dependence of the exact K̃ is exactly bT-
independent by the RG equation Eq. (18), so we will
enforce the condition that an nth-order parametrization
satisfies Eq. (18) to order ↵s(µ)n, with only O

�
↵s(µ)n+1

�

errors,

dK̃(n)
input

(bT;µ)

d lnµ
= ��(n)

K (↵s(µ)) +O
�
↵s(µ)

n+1
�
. (41)

In Sec. VIIA we will provide an example of a spe-
cific trial functional form for Eq. (39). In general, how-
ever, any phenomenologically successful parametrization
that satisfies Eq. (39) and Eq. (41) is allowed. The
parametrizations in Eq. (39) and Eq. (40) are appropri-
ate specifically when Q ⇡ Q0 such that only the region
of 0 < kT . Q0 is important.

However, it is a poor approximation to the true
K̃(bT;µQ0) in the kT � Q0 region, and this matters
if we evolve to large enough Q for contributions from
kT � Q0 to become significant. In Eq. (40), the large
errors manifest themselves as higher order terms logarith-
mic in bTµQ0 , which diverge in the bT ! 0 limit. There
needs to be a change in renormalization scale. Thus, in
coordinate space the more common choice for the RG
scale is µ = C1/bT, with C1 being an order unity propor-
tionality constant. The truncated RG improved pertur-
bation theory then increases in accuracy as bT ! 0.

To obtain a K (kT;µQ0) parametrization that works
well for all Q, we need steps that combine the stabil-
ity of fixed scale calculations in the Q ⇡ Q0, kT ⇡ Q0

region with the RG-improved calculations that optimize
for the bT ! 0 limit. Specifically, we need to perform
a scale transformation on the above parametrization us-
ing the RG equation at a bT somewhat below 1/Q0. If
we implement this scale transformation at small enough
bT, it will have a negligible e↵ect on phenomenology that
uses the above parametrization near Q ⇡ Q0 where the
bT ⌧ 1/Q0 is strongly suppressed. Therefore, fits that
use Eq. (39) will be largely una↵ected. And, if the trans-
formation takes place in a range of bT at least comparable
to . 1/Q0, then its overall e↵ect will only appear at or-
der n + 1 or higher, so the e↵ect of the transformation

will always be one order higher in perturbation theory
than the working order. So, the transformation will en-
sure an accurate treatment of evolution to large Q in any
subsequent steps. We will show how this works in detail
below.
The first step in implementing the scale transformation

is to define a bT-dependent mass scale, which we will
call Q0(bT), that smoothly transitions between Q0 and
a 1/bT-dependence in the region just below bT ⇡ 1/Q0.
Specifically,

Q0(bT) =

⇢
C1/bT bT ⌧ C1/Q0 ,

Q0 otherwise ,
(42)

where C1 is an order unity numerical constant, typically
taken to be C1 = 2e��E . When bT is comparable to
C1/Q0, the scales Q0 and C1/bT are numerically similar,
so any sensitivity to the di↵erence between the two scale
is a higher order e↵ect that can be reduced by includ-
ing higher orders in perturbation theory. Therefore, the
exact form of Q0(bT) is arbitrary so long as it provides
a reasonably smooth interpolation between the Q0 and
C1/bT behavior at large and small bT. Some example
suggestions for Q0(bT), which we will call the transfor-
mation function, are shown in Appendix C.
Next, we need to combine this with the RG equation

Eq. (18), whose exact solution is

K̃(bT;µ) = K̃(bT;µi)�
Z µ

µi

dµ0

µ0 �K(↵s(µ
0)) . (43)

Here, µi is an arbitrary initial scale. To make it useful
in applications of Eq. (20), let us evolve from an initial
scale µi = µQ0

(where µQ0
= C2Q0) so that the right

side contains K̃(bT;µQ0
):

K̃(bT;µ) = K̃(bT;µQ0
)�

Z µ

µQ0

dµ0

µ0 �K(↵s(µ
0)) . (44)

For any µ ⇡ Q0, the second term in Eq. (44) is calculable
in perturbation theory with the nth-order anomalous di-

mension, �K(↵s(µ0)) ! �(n)
K (↵s(µ0)), and it vanishes for

bT ⇡ C1/Q0 or larger.
The original parametrization in Eq. (40) was de-

signed to provide an accurate perturbative description of
K̃(bT;µQ0) in the region of bT ⇡ 1/Q0 and larger. Now if
we replace the first term on the right side of Eq. (44) with

K̃(n)
input

(bT;µQ0
), it continues to describe the bT & 1/Q0

region, by our construction of Q0(bT). However, now the
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(For a textbook derivation of Eq. (71), see section 13.10.2
of [3]. Also see Ref. [81] for earlier calculations. For
higher order K̃ expressions, see also [82–85], and see
Ref. [38] for translating between di↵erent notations. See
also [86] for more discussion of the operator definition.)

As kT decreases below Q0, Eq. (70) needs to transi-
tion into a nonperturbative eparametrization in a way
that is still phenemonologically successful at describing
Q ⇡ Q0 behavior. Existing evidence, both theoretical
and phenomenological [67, 68, 87] and from lattice cal-
culations [88], points toward a shape for TMD pdfs and
↵s that varies only very weakly with scale in the Q ⇡ Q0

region. Our trial parametrization will reproduce this be-
havior if it is fairly sharply peaked around kT ⌧ Q0

and then falls o↵ rapidly for larger kT. Equation (68)
with K(1)(kT;µQ0) captures that general behavior if we
make the replacement k2

T
! k2

T
+m2

K and keep the non-
perturbative parameter mK small relative to Q0. Thus,

we obtain a reasonable candidate for a K(1)

input
(kT;µQ0)

parametrization that satisfies Eq. (39) if we combine the
k2
T
! k2

T
+m2

K modification of Eq. (71) with Eq. (69):

K(1)

input
(kT;µQ0) =

↵s(µQ0)CF

⇡2

1

k2
T
+m2

K

+ CK�(2)(kT) . (72)

The transformation into coordinate space is

K̃(1)

input
(bT;µQ0) =

2↵s(µQ0)CF

⇡
K0(bTmK) + CK . (73)

Satisfying both Eq. (41) and Eq. (47) with the MS ex-

pression for �(1)

K requires

CK =
2↵s(µQ0)CF

⇡
ln

✓
mK

µQ0

◆
(74)

So the input CS kernel is just the single parameter func-
tion

K̃(1)

input
(bT;µQ0) =

2↵s(µQ0)CF

⇡


K0(bTmK) + ln

✓
mK

µQ0

◆�
. (75)

Note that the same mass mK appears in Eq. (74) and
the first term of Eq. (75) reproduces the known lowest
order coordinate space K̃(1)(bT;µQ0) in MS at small bT:

lim
bT!0

K̃(1)

input
(bT;µQ0) =

� 2↵s(µQ0)CF

⇡


ln

✓
bTµQ0e

�E

2

◆
+ ln

✓
mK

µQ0

◆�
+ CK

= �2↵s(µQ0)CF

⇡
ln

✓
bTµQ0e

�E

2

◆
. (76)

At large bT, we get the expected (see [65, Sec. VII-A])
constant negative behavior,

lim
bT!1

K̃(1)

input
(bT;µQ0) =

2↵s(µQ0)CF

⇡
ln

✓
mK

µQ0

◆
. (77)
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FIG. 2: The example parametrization for K̃
(1)

(bT;µQ0) from
Eq. (78), obtained after performing the steps A1, A2 and A3
of Sec. VI. The top panel shows two scale transformation func-
tions Q0(bT) that satisfy Eq. (42). The choice of functional
form is Eq. (C2) from Appendix C, shown for two choices
of a (solid black and dashed red curves). For comparison,
lines for the scales µQ0 = 2 GeV (dash-dotted violet) and
C1/bT (dashed violet) are also shown. The central panel is
the percent di↵erence between the Q0(bT) obtained from the
two values a = 2 GeV and a = 4 GeV, calculated as the dif-
ference divided by the average. The bottom panel is a plot

of the actual K̃
(1)

(bT;µQ0) parametrization in Eq. (78). The
results are shown for both a = 2 GeV and a = 4 GeV (black
solid and red dashed curves), but the di↵erence between the
curves is not visible on the graph. The violet dashed curve
in the lower plot is a bT ! 0 purely perturbative calculation,
Eq. (80), shown for comparison. See text for details.

This completes steps A1 and A2 insofar as they pertain
to the CS kernel.

To get a K̃
(1)

(bT;µQ0) that can be extended to cal-
culations of K̃(bT;µQ0) at bT ⌧ 1/Q0, we need to pro-
ceed with step A3 and choose a form for the scale tran-
sition function Q0(bT). For now we will use the form in
Eq. (C1) from Appendix C for any numerical calculations
and plots. Later, we will demonstrate that the details of
this choice do not significantly a↵ect calculations.

Finally, we get K̃
(1)

(bT;µQ0) by substituting the trial

Dependence on  scale  
transformation is a higher  

Order correction
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of Eq. (52) is not entirely perturbative because it in-
volves non-perturbative collinear ↵s as input in Eq. (25).
The perturbative contribution to large transverse mo-
mentum dependence only enters in the coe�cient func-

tion C(n)
D (zkT). By contrast, the only input to the per-

turbative calculation in Eq. (37) is the strong coupling
↵s.

The conditions in Eqs. (52)–(56) are all that we need
for constructing phenomenologically useful parametriza-
tions in the Q ⇡ Q0 region. Any model or parametriza-
tion that satisfies them is acceptable, but we will give
some explicit examples in later sections.

However, the perturbative part of the parametrization
in Eq. (52) does not provide an accurate description in
the region of kT � Q0, where ratios of kT andQ0 diverge.
In coordinate space, the same issue arises at bT ⌧ 1/Q0

in the form of large logarithms of µbT. That does not

create a problem for phenomenological applications near
Q ⇡ Q0 where the kT � Q0 contributions are suppressed
in the integral of Eq. (21). However, it becomes impor-
tant as one evolves to Q � Q0 and the kT � Q0 region
starts to contribute more significantly.
Therefore, there needs to be a scale transformation

from µ = µQ0 to µ = C1/bT in the coordinate space
TMD ↵ in the region of bT just below bT ⇡ 1/Q0. This
of course is exactly the same issue that we faced in the

case of K̃(n)
input

(bT;µQ0) in the previous section. For the
TMD ↵, it also implies that we have to evolve the CS
scale

p
⇣ from Q0 to C1/bT. For the scale change we

can reuse the same scale transformation function from
Eq. (42).
The exact solution to the TMD evolution equations for

an individual TMD ↵ evolving from scales µi, Qi to µQ0 ,
Q0 is

D̃(z, bT;µQ0 , Q
2

0
) = D̃(z, bT;µi, Q

2

i ) exp

⇢Z µQ0

µi

dµ0

µ0


�(↵s(µ

0); 1)� ln
Q0

µ0 �K(↵s(µ
0))

�
+ ln

Q0

Qi
K̃(bT;µi)

�
. (59)

Or, if we use µi = µQ0
, Qi = Q0 for the input scale,

D̃(z, bT;µQ0 , Q
2

0
) = D̃(z, bT;µQ0

, Q
2

0
) exp

(Z µQ0

µQ0

dµ0

µ0


�(↵s(µ

0); 1)� ln
Q0

µ0 �K(↵s(µ
0))

�
+ ln

Q0

Q0

K̃(bT;µQ0
)

)
. (60)

As of yet, there are still no approximations on
D̃(z, bT;µQ0 , Q

2
0
). The left side has no dependence on

Q0; any Q0-dependence in D̃(z, bT;µQ0
, Q

2

0
) is exactly

canceled by an opposite Q0-dependence in the exponen-
tial factor.

Now we can substitute approximations into the right
side of Eq. (60) in a way that is again very analogous to
the way we handled K̃(bT;µ) in the previous section by
making substitutions on the right side of Eq. (44). We ap-

proximate D̃(z, bT;µQ0
, Q

2

0
) on the right side of Eq. (60)

by replacing it with the D(n,dr)

input

⇣
z, zkT;µQ0

, µ2

Q0

⌘
from

Eq. (52). Because of the scale transformation, the re-

sult is a parametrization of D̃(z, bT;µQ0
, Q

2

0
) that is an

accurate description not only for bT ⇡ 1/Q0 and larger
but also for all bT ⌧ 1/Q0. For the K̃(bT;µQ0

) in the

exponent on the right side of Eq. (60), we already have
the analogous result from Eq. (46) in Sec. IV, and we
can reuse it here. All that remains then is to substi-
tute �(↵s(µ0); 1) and �K(↵s(µ0)) by their truncated nth-
order perturbation theory approximations. Thus, our fi-
nal parametrization of the input TMD ↵ is

D̃
(n,dr)

(z, bT;µQ0 , Q
2

0
)

= D̃(n,dr)

input
(z, bT;µQ0

, Q
2

0
) exp

(Z µQ0

µQ0

dµ0

µ0


�(n)(↵s(µ

0); 1)� ln
Q0

µ0 �
(n)
K (↵s(µ

0))

�
+ ln

Q0

Q0

K̃(n)
input

(bT;µQ0
)

)
. (61)

The underline on D̃
(n,dr)

(z, bT;µQ0 , Q
2
0
) is our notation

for the final parametrization of the TMD ↵ at the input
scale µ = µQ0 , ⇣ = Q2

0
.

To summarize, D̃(z, bT;µQ0 , Q
2
0
) has the following

properties:
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K(n)
input

(kT;µQ0) ⌘

8
><

>:

K(n) (kT;µQ0) if kT & µQ0 ,

nonperturbative parametrization otherwise

. (39)

Now the “(n)” superscript on the left side of this equation
refers to the perturbative order of the large kT tail in this
input nonperturbative parametrization. When we work
with Eq. (20), we will need its coordinate space version
of the CS kernel,

K̃(n)
input

(bT;µQ0) ⌘
Z

d2kT eikTbTK(n)
input

(kT;µQ0) . (40)

The scale-dependence of the exact K̃ is exactly bT-
independent by the RG equation Eq. (18), so we will
enforce the condition that an nth-order parametrization
satisfies Eq. (18) to order ↵s(µ)n, with only O

�
↵s(µ)n+1

�

errors,

dK̃(n)
input

(bT;µ)

d lnµ
= ��(n)

K (↵s(µ)) +O
�
↵s(µ)

n+1
�
. (41)

In Sec. VIIA we will provide an example of a spe-
cific trial functional form for Eq. (39). In general, how-
ever, any phenomenologically successful parametrization
that satisfies Eq. (39) and Eq. (41) is allowed. The
parametrizations in Eq. (39) and Eq. (40) are appropri-
ate specifically when Q ⇡ Q0 such that only the region
of 0 < kT . Q0 is important.

However, it is a poor approximation to the true
K̃(bT;µQ0) in the kT � Q0 region, and this matters
if we evolve to large enough Q for contributions from
kT � Q0 to become significant. In Eq. (40), the large
errors manifest themselves as higher order terms logarith-
mic in bTµQ0 , which diverge in the bT ! 0 limit. There
needs to be a change in renormalization scale. Thus, in
coordinate space the more common choice for the RG
scale is µ = C1/bT, with C1 being an order unity propor-
tionality constant. The truncated RG improved pertur-
bation theory then increases in accuracy as bT ! 0.

To obtain a K (kT;µQ0) parametrization that works
well for all Q, we need steps that combine the stabil-
ity of fixed scale calculations in the Q ⇡ Q0, kT ⇡ Q0

region with the RG-improved calculations that optimize
for the bT ! 0 limit. Specifically, we need to perform
a scale transformation on the above parametrization us-
ing the RG equation at a bT somewhat below 1/Q0. If
we implement this scale transformation at small enough
bT, it will have a negligible e↵ect on phenomenology that
uses the above parametrization near Q ⇡ Q0 where the
bT ⌧ 1/Q0 is strongly suppressed. Therefore, fits that
use Eq. (39) will be largely una↵ected. And, if the trans-
formation takes place in a range of bT at least comparable
to . 1/Q0, then its overall e↵ect will only appear at or-
der n + 1 or higher, so the e↵ect of the transformation

will always be one order higher in perturbation theory
than the working order. So, the transformation will en-
sure an accurate treatment of evolution to large Q in any
subsequent steps. We will show how this works in detail
below.
The first step in implementing the scale transformation

is to define a bT-dependent mass scale, which we will
call Q0(bT), that smoothly transitions between Q0 and
a 1/bT-dependence in the region just below bT ⇡ 1/Q0.
Specifically,

Q0(bT) =

⇢
C1/bT bT ⌧ C1/Q0 ,

Q0 otherwise ,
(42)

where C1 is an order unity numerical constant, typically
taken to be C1 = 2e��E . When bT is comparable to
C1/Q0, the scales Q0 and C1/bT are numerically similar,
so any sensitivity to the di↵erence between the two scale
is a higher order e↵ect that can be reduced by includ-
ing higher orders in perturbation theory. Therefore, the
exact form of Q0(bT) is arbitrary so long as it provides
a reasonably smooth interpolation between the Q0 and
C1/bT behavior at large and small bT. Some example
suggestions for Q0(bT), which we will call the transfor-
mation function, are shown in Appendix C.
Next, we need to combine this with the RG equation

Eq. (18), whose exact solution is

K̃(bT;µ) = K̃(bT;µi)�
Z µ

µi

dµ0

µ0 �K(↵s(µ
0)) . (43)

Here, µi is an arbitrary initial scale. To make it useful
in applications of Eq. (20), let us evolve from an initial
scale µi = µQ0

(where µQ0
= C2Q0) so that the right

side contains K̃(bT;µQ0
):

K̃(bT;µ) = K̃(bT;µQ0
)�

Z µ

µQ0

dµ0

µ0 �K(↵s(µ
0)) . (44)

For any µ ⇡ Q0, the second term in Eq. (44) is calculable
in perturbation theory with the nth-order anomalous di-

mension, �K(↵s(µ0)) ! �(n)
K (↵s(µ0)), and it vanishes for

bT ⇡ C1/Q0 or larger.
The original parametrization in Eq. (40) was de-

signed to provide an accurate perturbative description of
K̃(bT;µQ0) in the region of bT ⇡ 1/Q0 and larger. Now if
we replace the first term on the right side of Eq. (44) with

K̃(n)
input

(bT;µQ0
), it continues to describe the bT & 1/Q0

region, by our construction of Q0(bT). However, now the
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D̃
(1,dMS)(z, bT;µQ0 , Q

2

0
)

= D̃
(1,dMS)

input
(z, bT;µQ0

, Q
2

0
) exp

(Z µQ0

µQ0

dµ0

µ0


�(1)(↵s(µ

0); 1)� ln
Q0

µ0 �
(1)

K (↵s(µ
0))

�
+ ln

Q0

Q0

K̃(1)

input
(bT;µQ0

)

)
. (92)
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FIG. 5: The n = 1 input TMD ↵ from Eq. (83). The
function is shown for M = 0.2GeV and mD = 0.3GeV at a
fixed value of z = 0.3 (blue dot-dashed). For comparison, we
have also overlaid a Gaussian (black dashed) curve. Up to
kT ⇡ 1.0GeV, both lines exhibit similar profiles. The change
in sign at larger kT is due to matching to the perturbative
collinear factorizaton expression using MS collinear ↵s.

This is simply Eq. (61) again but now we mean it to
be implied that it is being used with the specific models
from Eq. (72) and Eq. (83). From Eq. (89),

z2D̃
(1,dMS)

input
(z, bT;µQ0

, Q
2

0
) =

A(dMS)(z;µQ0
)K0(bTmD)

+B(dMS)(z;µQ0
)K0(bTmD) ln

✓
bT

2mD
Q

2

0
e�E

◆

+ C(dMS) exp

✓
�b2

T
M2

4z2

◆
, (93)

and K̃
(1)

(bT;µQ0
) is the same n = 1 result already writ-

ten in Eq. (78). C(dMS) is given by Eq. (87).
For illustration, Fig. 6 is a plot of our trial

D̃
(1,dMS)(z, bT;µQ0 , Q

2
0
) from Eq. (92), plotted in coordi-

nate space, where as before we have used an input scale
Q0 = 2GeV and z = 0.3. We have chosen typical sizes
for the nonperturbative mass parameters: M = 0.2GeV,
mD = 0.3GeV and mK = 0.1GeV. As in the case of

K̃
(1)

(bT;µQ0), we are able to test scale sensitivity in the
intermediate bT region by varying the transition function
Q0(bT). In Fig. 6, we do this by again switching between
the two Q0(bT) functions from the upper panel of Fig. 2;
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FIG. 6: A plot of the example D̃
(1,dMS)(z, bT;µQ0 , Q

2
0) from

Eq. (92), with typical nonperturbative mass parameters cho-
sen for illustration purposes; mD and M have the same val-
ues as in Fig. 5 while mK has the same value as in the lower
panel of Fig. 2. As in all previous plots, we have also fixed
Q0 = 2GeV. The di↵erence between the two curves cor-
responds to switching between the two transition functions
Q0(bT) in the upper panel of Fig. 2, as indicated by the two
values of a. This figure is the culmination of steps A1, A2
and A3 from Sec. VI.

the solid black and dashed red curves are for a = 2 GeV
and a = 4 GeV respectively. The weakness of the ob-
served variation confirms that the setup is behaving as

intended (recall Eq. (64)). As with K̃
(1)

(bT;µQ0), sensi-
tivity to parameters like a can in principle be reduced still
further by including higher orders and fitting at larger Q.
This requires matching to a higher order treatment of the
large qT tail – see, for example, Refs. [84, 90, 91].

C. Cross section examples

With Eq. (92) now completely set up, all that is
needed to get the cross section is to substitute it, along
with Eq. (78), into Eq. (65) to obtain a calculation of
W (1)(qT, Q) for any Q � Q0. To illustrate how the fea-

tures of the D̃
(1,dMS)(z, bT;µQ0 , Q

2
0
) and K̃

(1)

(bT;µQ0)
parametrizations from the previous subsections influence
W (1)(qT, Q), and to finish reviewing the steps of Sec. VI,
we will end this section below by examining several ex-
ample plots of W (1)(qT, Q).
First, Fig. 7 shows qTW (1)(qT, Q) (divided by an un-

Dependence on  scale  
transformation is a higher  

Order correction
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of Eq. (52) is not entirely perturbative because it in-
volves non-perturbative collinear ↵s as input in Eq. (25).
The perturbative contribution to large transverse mo-
mentum dependence only enters in the coe�cient func-

tion C(n)
D (zkT). By contrast, the only input to the per-

turbative calculation in Eq. (37) is the strong coupling
↵s.

The conditions in Eqs. (52)–(56) are all that we need
for constructing phenomenologically useful parametriza-
tions in the Q ⇡ Q0 region. Any model or parametriza-
tion that satisfies them is acceptable, but we will give
some explicit examples in later sections.

However, the perturbative part of the parametrization
in Eq. (52) does not provide an accurate description in
the region of kT � Q0, where ratios of kT andQ0 diverge.
In coordinate space, the same issue arises at bT ⌧ 1/Q0

in the form of large logarithms of µbT. That does not

create a problem for phenomenological applications near
Q ⇡ Q0 where the kT � Q0 contributions are suppressed
in the integral of Eq. (21). However, it becomes impor-
tant as one evolves to Q � Q0 and the kT � Q0 region
starts to contribute more significantly.
Therefore, there needs to be a scale transformation

from µ = µQ0 to µ = C1/bT in the coordinate space
TMD ↵ in the region of bT just below bT ⇡ 1/Q0. This
of course is exactly the same issue that we faced in the

case of K̃(n)
input

(bT;µQ0) in the previous section. For the
TMD ↵, it also implies that we have to evolve the CS
scale

p
⇣ from Q0 to C1/bT. For the scale change we

can reuse the same scale transformation function from
Eq. (42).
The exact solution to the TMD evolution equations for

an individual TMD ↵ evolving from scales µi, Qi to µQ0 ,
Q0 is

D̃(z, bT;µQ0 , Q
2

0
) = D̃(z, bT;µi, Q

2

i ) exp

⇢Z µQ0

µi

dµ0

µ0


�(↵s(µ

0); 1)� ln
Q0

µ0 �K(↵s(µ
0))

�
+ ln

Q0

Qi
K̃(bT;µi)

�
. (59)

Or, if we use µi = µQ0
, Qi = Q0 for the input scale,

D̃(z, bT;µQ0 , Q
2

0
) = D̃(z, bT;µQ0

, Q
2

0
) exp

(Z µQ0

µQ0

dµ0

µ0


�(↵s(µ

0); 1)� ln
Q0

µ0 �K(↵s(µ
0))

�
+ ln

Q0

Q0

K̃(bT;µQ0
)

)
. (60)

As of yet, there are still no approximations on
D̃(z, bT;µQ0 , Q

2
0
). The left side has no dependence on

Q0; any Q0-dependence in D̃(z, bT;µQ0
, Q

2

0
) is exactly

canceled by an opposite Q0-dependence in the exponen-
tial factor.

Now we can substitute approximations into the right
side of Eq. (60) in a way that is again very analogous to
the way we handled K̃(bT;µ) in the previous section by
making substitutions on the right side of Eq. (44). We ap-

proximate D̃(z, bT;µQ0
, Q

2

0
) on the right side of Eq. (60)

by replacing it with the D(n,dr)

input

⇣
z, zkT;µQ0

, µ2

Q0

⌘
from

Eq. (52). Because of the scale transformation, the re-

sult is a parametrization of D̃(z, bT;µQ0
, Q

2

0
) that is an

accurate description not only for bT ⇡ 1/Q0 and larger
but also for all bT ⌧ 1/Q0. For the K̃(bT;µQ0

) in the

exponent on the right side of Eq. (60), we already have
the analogous result from Eq. (46) in Sec. IV, and we
can reuse it here. All that remains then is to substi-
tute �(↵s(µ0); 1) and �K(↵s(µ0)) by their truncated nth-
order perturbation theory approximations. Thus, our fi-
nal parametrization of the input TMD ↵ is

D̃
(n,dr)

(z, bT;µQ0 , Q
2

0
)

= D̃(n,dr)

input
(z, bT;µQ0

, Q
2

0
) exp

(Z µQ0

µQ0

dµ0

µ0


�(n)(↵s(µ

0); 1)� ln
Q0

µ0 �
(n)
K (↵s(µ

0))

�
+ ln

Q0

Q0

K̃(n)
input

(bT;µQ0
)

)
. (61)

The underline on D̃
(n,dr)

(z, bT;µQ0 , Q
2
0
) is our notation

for the final parametrization of the TMD ↵ at the input
scale µ = µQ0 , ⇣ = Q2

0
.

To summarize, D̃(z, bT;µQ0 , Q
2
0
) has the following

properties:

14

RG-improved perturbative contribution to K̃(bT;µQ0
)

also remains accurate into the bT ⌧ 1/Q0 region. The
second term in Eq. (44) is calculable to nth order from

the known perturbative expression for �(n)
K (↵s(µ)).

Therefore, we obtain an optimal parametrization by
replacing the exact K̃(bT;µQ0

) on the right side of

Eq. (44) by the approximate K̃(n)
input

(bT;µQ0
) and the ex-

act �K(↵s(µ0)) by �(n)
K (↵s(µ0)). We define this this as

K̃
(n)

(bT;µ)

⌘ K̃(n)
input

(bT;µQ0
)�

Z µ

µQ0

dµ0

µ0 �
(n)
K (↵s(µ

0)) . (45)

The underline on K̃
(n)

(bT;µ) is our notation for the final
parametrization to be used with evolution. The above
applies to the cases where µ ⇡ Q0, so as a final step we
set µ = µQ0 and write the underlined parametrization as

K̃
(n)

(bT;µQ0)

⌘ K̃(n)
input

(bT;µQ0
)�

Z µQ0

µQ0

dµ0

µ0 �
(n)
K (↵s(µ

0)) . (46)

This is the form of the parametrization for the CS kernel
that we will ultimately use in Eq. (20). The errors in

K̃
(n)

(bT;µQ0), as an approximation to K̃(bT;µQ0), are
suppressed by at least ↵s(µQ0)

n+1 point-by-point for all
bT.

A final constraint on parametrizations of

K(n)
input

(kT;µQ0) is obtained by recalling that soft
gluon e↵ects cancel in collinear factorization when we
integrate over all transverse momentum. Thus, after an

integration of K(n)
input

(kT;µQ0) over kT up to a cuto↵
kmax of order µQ0 , sensitivity to any nonperturbative
mass parameters must vanish as m/µQ0 ! 0. We may
express this by demanding that

⇡

Z k2
max

0

dk2
T
K(n)

input
(kT;µQ0)

= �(n)(kmax/µQ0 ,↵s(µQ0)) +O

✓
m

µQ0

,
m

kmax

◆
,

(47)

where �(n)(kmax/µ,↵s(µ)) is either zero or a perturba-
tively calculable function, independent of any nonper-

turbative mass parameters in K(n)
input

(kT;µQ0).
Before continuing, let us summarize the basic proper-

ties of the parametrization, K̃
(n)

(bT;µQ0):

• For bT ⇡ 1/Q0 or larger, it di↵ers negligibly from

K̃(n)
input

(bT;µQ0), by construction. Therefore, both

K̃
(n)

(bT;µQ0) and K̃(n)
input

(bT;µQ0) are equally ap-
propriate for describing the Q ⇡ Q0 region phe-
nomenologically.

• For small bT, the RG scale transitions to the usual
µ ⇠ 1/bT RG-improved form, but only when bT is
very small relative to the input scale, bT ⌧ 1/Q0.

• The parametrization in Eq. (45) obeys an exact RG
equation,

dK̃
(n)

(bT;µ)

d lnµ
= ��(n)

K (↵s(µ)) , (48)

with no error terms present.

• By contrast, the “input” parametrization defined in
Eqs. (39)–(41) obeys the approximate RG equation
in Eq. (41) with possible perturbative error terms,
as shown in the equation.

• Both Eq. (41) and Eq. (48) are satisfied for all bT.

The resulting K̃
(n)

(bT;µQ0) is an accurate representation
of the exact K̃(bT;µQ0) up to at most (non-logarithmic)
order ↵s(µQ0)

n+1 errors.
There is an ambiguity in the exact choice of functional

form for Q0(bT) in Eq. (42) in the region of bT ⇡ 1/Q0,
but this is just the usual scale uncertainty that appears
in any truncated perturbation theory, akin to the depen-
dence on the exact numerical choices for C1 and C2. Since
Q0 and C1/bT are of similar size when bT ⇡ 1/Q0 the ef-
fect of the transformation is under perturbative control
and the ambiguity diminishes as one incorporates higher
orders.
To state this more explicitly, consider a family of dif-

ferent choices for Q0(bT) smoothly connected by an extra
parameter a:

Q0(bT) ! Q0(bT, a) . (49)

The only requirement is that Eq. (49) satisfies Eq. (42)
for all the a one might consider. Then,

d

da
K̃

(n)
(bT;µ) =

1

µQ0

dµQ0

da

d

d lnµQ0

K̃
(n)

(bT;µ)

=
1

µQ0

dµQ0

da

"
d

d lnµQ0

K̃(n)
input

(bT;µQ0
) + �K(↵s(µQ0

))

#

⇠ 1

µQ0

dµQ̄0

da
↵s(µQ0

)n+1 ln(n+1)

⇣
bTµQ0

⌘
. (50)

In the second line, we have substituted Eq. (45) and in
the last line we have used Eq. (41) while noting that at
small bT the suppressed errors are enhanced by terms log-

arithmic in bTµQ0
. However, by construction 1

µQ0

dµQ0
da is

only allowed to be nonzero in a region of bT where 1/bT,
Q0, and Q0 are all of comparable size. So Eq. (50) is just

d

da
K̃

(n)
(bT;µ) = O

�
↵s(µQ0)

n+1
�
, (51)

So e↵ects from varying the precise choice of transition
function Q0(bT) are always one order higher in ↵s(Q0)
than the working order n.
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K(n)
input

(kT;µQ0) ⌘

8
><

>:

K(n) (kT;µQ0) if kT & µQ0 ,

nonperturbative parametrization otherwise

. (39)

Now the “(n)” superscript on the left side of this equation
refers to the perturbative order of the large kT tail in this
input nonperturbative parametrization. When we work
with Eq. (20), we will need its coordinate space version
of the CS kernel,

K̃(n)
input

(bT;µQ0) ⌘
Z

d2kT eikTbTK(n)
input

(kT;µQ0) . (40)

The scale-dependence of the exact K̃ is exactly bT-
independent by the RG equation Eq. (18), so we will
enforce the condition that an nth-order parametrization
satisfies Eq. (18) to order ↵s(µ)n, with only O

�
↵s(µ)n+1

�

errors,

dK̃(n)
input

(bT;µ)

d lnµ
= ��(n)

K (↵s(µ)) +O
�
↵s(µ)

n+1
�
. (41)

In Sec. VIIA we will provide an example of a spe-
cific trial functional form for Eq. (39). In general, how-
ever, any phenomenologically successful parametrization
that satisfies Eq. (39) and Eq. (41) is allowed. The
parametrizations in Eq. (39) and Eq. (40) are appropri-
ate specifically when Q ⇡ Q0 such that only the region
of 0 < kT . Q0 is important.

However, it is a poor approximation to the true
K̃(bT;µQ0) in the kT � Q0 region, and this matters
if we evolve to large enough Q for contributions from
kT � Q0 to become significant. In Eq. (40), the large
errors manifest themselves as higher order terms logarith-
mic in bTµQ0 , which diverge in the bT ! 0 limit. There
needs to be a change in renormalization scale. Thus, in
coordinate space the more common choice for the RG
scale is µ = C1/bT, with C1 being an order unity propor-
tionality constant. The truncated RG improved pertur-
bation theory then increases in accuracy as bT ! 0.

To obtain a K (kT;µQ0) parametrization that works
well for all Q, we need steps that combine the stabil-
ity of fixed scale calculations in the Q ⇡ Q0, kT ⇡ Q0

region with the RG-improved calculations that optimize
for the bT ! 0 limit. Specifically, we need to perform
a scale transformation on the above parametrization us-
ing the RG equation at a bT somewhat below 1/Q0. If
we implement this scale transformation at small enough
bT, it will have a negligible e↵ect on phenomenology that
uses the above parametrization near Q ⇡ Q0 where the
bT ⌧ 1/Q0 is strongly suppressed. Therefore, fits that
use Eq. (39) will be largely una↵ected. And, if the trans-
formation takes place in a range of bT at least comparable
to . 1/Q0, then its overall e↵ect will only appear at or-
der n + 1 or higher, so the e↵ect of the transformation

will always be one order higher in perturbation theory
than the working order. So, the transformation will en-
sure an accurate treatment of evolution to large Q in any
subsequent steps. We will show how this works in detail
below.
The first step in implementing the scale transformation

is to define a bT-dependent mass scale, which we will
call Q0(bT), that smoothly transitions between Q0 and
a 1/bT-dependence in the region just below bT ⇡ 1/Q0.
Specifically,

Q0(bT) =

⇢
C1/bT bT ⌧ C1/Q0 ,

Q0 otherwise ,
(42)

where C1 is an order unity numerical constant, typically
taken to be C1 = 2e��E . When bT is comparable to
C1/Q0, the scales Q0 and C1/bT are numerically similar,
so any sensitivity to the di↵erence between the two scale
is a higher order e↵ect that can be reduced by includ-
ing higher orders in perturbation theory. Therefore, the
exact form of Q0(bT) is arbitrary so long as it provides
a reasonably smooth interpolation between the Q0 and
C1/bT behavior at large and small bT. Some example
suggestions for Q0(bT), which we will call the transfor-
mation function, are shown in Appendix C.
Next, we need to combine this with the RG equation

Eq. (18), whose exact solution is

K̃(bT;µ) = K̃(bT;µi)�
Z µ

µi

dµ0

µ0 �K(↵s(µ
0)) . (43)

Here, µi is an arbitrary initial scale. To make it useful
in applications of Eq. (20), let us evolve from an initial
scale µi = µQ0

(where µQ0
= C2Q0) so that the right

side contains K̃(bT;µQ0
):

K̃(bT;µ) = K̃(bT;µQ0
)�

Z µ

µQ0

dµ0

µ0 �K(↵s(µ
0)) . (44)

For any µ ⇡ Q0, the second term in Eq. (44) is calculable
in perturbation theory with the nth-order anomalous di-

mension, �K(↵s(µ0)) ! �(n)
K (↵s(µ0)), and it vanishes for

bT ⇡ C1/Q0 or larger.
The original parametrization in Eq. (40) was de-

signed to provide an accurate perturbative description of
K̃(bT;µQ0) in the region of bT ⇡ 1/Q0 and larger. Now if
we replace the first term on the right side of Eq. (44) with

K̃(n)
input

(bT;µQ0
), it continues to describe the bT & 1/Q0

region, by our construction of Q0(bT). However, now the

At input scale Q0, either of  
“input” or “underlined” should work 

since W term is not relevant at kT>Q0

But to evolve to Q>>Q0, one needs to use  
RG improve version

Verify these claims

Phone at Q~Q0
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FIG. 7: W
(1)(qT, Q) from Eq. (65) calculated using

D̃
(1,dMS)(z, bT;µQ0 , Q

2
0) and K̃

(1)
(bT;µQ0) from Eq. (78) and

Eq. (92) (solid black curves) for Q = Q0, 2Q0 and 5Q0. Here,
as in all remaining plots that we will show, we use an in-
put scale of Q0 = 2GeV and z = 0.3. The scale trans-
formation function Q0(bT) used to produce these curves is
the solid black function in the upper panel of Fig. 2 cor-
responding to a = 2 GeV. The model parameters are the
same M = 0.2GeV, mD = 0.3GeV and mK = 0.1GeV
that we used in the plots of the previous subsection. For
comparison, W (1)(qT, Q) calculations are also shown wherein

K̃
(1)
input(bT;µQ0

) and D̃
(1,dMS)

input (z, bT;µQ0 , Q
2
0) from Eq. (75)

and Eq. (91) are used in Eq. (65) (blue dot-dashed curves),
in place of the underlined parametrizations. Note the negli-
gible di↵erent for Q ⇡ Q0 and small qT. See text for further
discussion.

interesting normalization H(1)), plotted versus qT and
with a selection of Q values just above the input scale
Q0 = 2 GeV. The nonperturbative parameters are the
same M = 0.2GeV, mD = 0.3GeV and mK = 0.1GeV
values that we used in our illustrations from the previous
subsection, and the Q0(bT) is the same transition func-
tion from the upper panel of Fig. 2 with a = 2 GeV. The
solid black curves are what are obtained if we substitute
the underlined functions of Eq. (78) and Eq. (92) into
Eq. (65). For comparison, the blue dot-dashed curves are
what are obtained when we simply substitute the input
parametrizations, Eq. (75) and Eq. (91) into Eq. (65), in-
stead of the final underlined parametrizations optimized
for the small bT limit. Showing both curves confirms that
switching between “input” and underlined parametriza-
tions results in a negligible di↵erence in the cross section
calculation at qT ⌧ Q when Q is only slightly larger than
Q0. In Fig. 7, the di↵erence between the solid black and
dot-dashed blue curves is nearly invisible for Q between
Q0 and 2Q0, and only becomes significant for Q ⇡ 5Q0

and larger qT. Making these observations corresponds to
step B3 from Sec. VI. They confirm that the input or
the underlined parametrizations are both valid and in-
terchangeable for phenomenological Type I applications
near Q ⇡ Q0.
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FIG. 8: W
(1)(qT, Q), calculated using the trial underlined

parametrizations from this section and evolved to scales much
larger than Q0. The dotted lines are calculated using fixed
intrinsic scales M = 0.2GeV, mD = 0.3GeV and mK =
0.1GeV and the usual scale transformation function with a =
2GeV. The colored bands in the top panel show the e↵ect
of varying nonperturbative mass parameters by ±50% with
respect to the values used for dotted lines. The bands in
the bottom panel show the perturbative scale sensitivity from
varying a between 2GeV and 4GeV, with masses fixed to
those of the dotted lines. For reference, we also show the
Q = Q0 case as the black dotted line.

Next, Fig. 8 shows the W (1)(qT, Q) calculation (from
now on, we will always use the underlined parametriza-
tions), plotted against qT on a logarithmic scale for a se-
lection of Q covering a large range between Q0 = 2 GeV
and Q = 1000 GeV. The top panel is calculated with a
fixed scale transformation function Q0(bT), specifically
the a = 2 GeV curve in Fig. 2. The bands in the top
panel were generated by varying the parameters M , mD,
and mK associated with intrinsic transverse momentum
by 50% around the values we used in the previous subsec-
tions, M = 0.2GeV, mD = 0.3GeV and mK = 0.1GeV.
The lower panel in Fig. 8 shows the same W (1)(qT, Q)
calculations, but now with the intrinsic nonperturbative
scales fixed to their previous values. Instead, the bands
are generated by varying the scale transformation func-
tion Q0(bT) between the two curves in the upper panel of
Fig. 2 corresponding to a = 2 GeV and a = 4 GeV. Com-
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FIG. 7: W
(1)(qT, Q) from Eq. (65) calculated using

D̃
(1,dMS)(z, bT;µQ0 , Q

2
0) and K̃

(1)
(bT;µQ0) from Eq. (78) and

Eq. (92) (solid black curves) for Q = Q0, 2Q0 and 5Q0. Here,
as in all remaining plots that we will show, we use an in-
put scale of Q0 = 2GeV and z = 0.3. The scale trans-
formation function Q0(bT) used to produce these curves is
the solid black function in the upper panel of Fig. 2 cor-
responding to a = 2 GeV. The model parameters are the
same M = 0.2GeV, mD = 0.3GeV and mK = 0.1GeV
that we used in the plots of the previous subsection. For
comparison, W (1)(qT, Q) calculations are also shown wherein

K̃
(1)
input(bT;µQ0

) and D̃
(1,dMS)

input (z, bT;µQ0 , Q
2
0) from Eq. (75)

and Eq. (91) are used in Eq. (65) (blue dot-dashed curves),
in place of the underlined parametrizations. Note the negli-
gible di↵erent for Q ⇡ Q0 and small qT. See text for further
discussion.

interesting normalization H(1)), plotted versus qT and
with a selection of Q values just above the input scale
Q0 = 2 GeV. The nonperturbative parameters are the
same M = 0.2GeV, mD = 0.3GeV and mK = 0.1GeV
values that we used in our illustrations from the previous
subsection, and the Q0(bT) is the same transition func-
tion from the upper panel of Fig. 2 with a = 2 GeV. The
solid black curves are what are obtained if we substitute
the underlined functions of Eq. (78) and Eq. (92) into
Eq. (65). For comparison, the blue dot-dashed curves are
what are obtained when we simply substitute the input
parametrizations, Eq. (75) and Eq. (91) into Eq. (65), in-
stead of the final underlined parametrizations optimized
for the small bT limit. Showing both curves confirms that
switching between “input” and underlined parametriza-
tions results in a negligible di↵erence in the cross section
calculation at qT ⌧ Q when Q is only slightly larger than
Q0. In Fig. 7, the di↵erence between the solid black and
dot-dashed blue curves is nearly invisible for Q between
Q0 and 2Q0, and only becomes significant for Q ⇡ 5Q0

and larger qT. Making these observations corresponds to
step B3 from Sec. VI. They confirm that the input or
the underlined parametrizations are both valid and in-
terchangeable for phenomenological Type I applications
near Q ⇡ Q0.
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FIG. 8: W
(1)(qT, Q), calculated using the trial underlined

parametrizations from this section and evolved to scales much
larger than Q0. The dotted lines are calculated using fixed
intrinsic scales M = 0.2GeV, mD = 0.3GeV and mK =
0.1GeV and the usual scale transformation function with a =
2GeV. The colored bands in the top panel show the e↵ect
of varying nonperturbative mass parameters by ±50% with
respect to the values used for dotted lines. The bands in
the bottom panel show the perturbative scale sensitivity from
varying a between 2GeV and 4GeV, with masses fixed to
those of the dotted lines. For reference, we also show the
Q = Q0 case as the black dotted line.

Next, Fig. 8 shows the W (1)(qT, Q) calculation (from
now on, we will always use the underlined parametriza-
tions), plotted against qT on a logarithmic scale for a se-
lection of Q covering a large range between Q0 = 2 GeV
and Q = 1000 GeV. The top panel is calculated with a
fixed scale transformation function Q0(bT), specifically
the a = 2 GeV curve in Fig. 2. The bands in the top
panel were generated by varying the parameters M , mD,
and mK associated with intrinsic transverse momentum
by 50% around the values we used in the previous subsec-
tions, M = 0.2GeV, mD = 0.3GeV and mK = 0.1GeV.
The lower panel in Fig. 8 shows the same W (1)(qT, Q)
calculations, but now with the intrinsic nonperturbative
scales fixed to their previous values. Instead, the bands
are generated by varying the scale transformation func-
tion Q0(bT) between the two curves in the upper panel of
Fig. 2 corresponding to a = 2 GeV and a = 4 GeV. Com-
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In this example by construction W is independent of bmax.  
This mimics what the  original exact formula Implies  
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regards the integral relation, one does not need to modify
either Eq. (94) or Eq. (95) other than to explicitly indi-
cate an upper cuto↵ on the integral on the right-hand
side of Eq. (95) and to specify that higher orders in ↵s

and/or 1/Q0 are neglected:

2⇡z2
Z µQ0

0

dkT kTD(z, zkT;µQ0 , Q
2

0
)

??
= d(z;µQ0) + small corrections . (96)

A problem with this approach can be seen, however, in
our examples from the previous section, where Eq. (96)
would amount to applying the transverse momentum in-
tegral in Eq. (96) to Eq. (83) with C(dr) = dr(z;µQ0)
instead of Eq. (87) so that

z2D̃(1,dr)

input
(z, bT;µQ0 , Q

2

0
) = A(dr)(z;µQ0)K0(bTmD)

+B(dr)(z;µQ0)K0(bTmD) ln

✓
bT

2mD
Q2

0
e�E

◆

+ dr(z;µQ0) exp

✓
�b2

T
M2

4z2

◆
. (97)

But then the integral on the left side of Eq. (96) becomes

2⇡z2
Z µQ0

0

dkT kTDinput(z, zkT;µQ0 , Q
2

0
) =

dr(z;µQ0) +A(dr)(z;µQ0) ln

✓
µQ0

mD

◆

+B(dr)(z;µQ0) ln
2

 
µ2

Q0

m2

D

!
. (98)

The last two terms involving A(dr) and B(dr) would thus
need to be identified with the “small corrections” of
Eq. (96). However, the factorization theorem applies to
the limit that m/µQ0 ! 0, so the last two terms are not
the purely perturbative corrections implied by an expres-
sion like Eq. (96). While A(dr)(z;µQ0) and B(dr)(z;µQ0)
involve a coupling ↵s(µQ0) that vanishes asymptotically
like

↵s(µQ0) ⇠
1

ln(µQ0/⇤QCD)
,

at large µQ0 , the logarithms in Eq. (98) more than
compensate for this in the limit of large µQ0 . Indeed,
the term in Eq. (98) involving B(dr)(z;µQ0) blows up
as µQ0/m ! 1. To keep a consistent integral rela-
tion that matches a parton model interpretation while
also accounting for tails, evolution, etc, the coe�cient of
the Gaussian in Eq. (94) needs to be an expression like
Eq. (87) rather than a simple collinear ↵.

To write a version of Eq. (96), that is consistent with
the presence of a large kT tail region, as with our ex-
ample in Sec. VIIB with Eq. (89), it was necessary to
interpolate between the nonperturbative and tail regions
first.
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FIG. 10: The example K̃
(1)

(bT;µQ0) from Eq. (78) and the

corresponding g
(1)

K
(bT) (Eq. (115)) and K̃

(1)
(b⇤;µQ0) calcu-

lated in the b⇤-prescription with Eq. (101). Results are ob-
tained using the same mK = 0.1GeV and a = 2GeV as in
Fig. 2. The top panel is the case of bmax = 0.1GeV�1 and
the bottom panel is the case of bmax = 1.0GeV�1. The bmax-

dependence in K̃
(1)

(b⇤;µQ0) (violet dot-dashed) cancels that
of �g

(1)

K
(bT) (blue-dashed). The solid black curve showing

K̃
(1)

(bT;µQ0) is identical in the top and bottom.

IX. COMPARISON WITH THE STANDARD
PRESENTATION

After step C2 of Sec. VI, we noted that it is possible
to recast final results into a form more familiar from past
applications of TMD evolution in Type II contexts. We
will show how to perform that translation in this section.
We emphasize that the steps below are not necessary for
implementing the approach above, so this section may be
skipped without missing the main points of this article.
Most of the steps below amount to reshu✏ing factors in
the cross section expression. Ultimately, however, the
translation is important for comparing approaches.
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FIG. 11: The example D̃
(1,dMS)(z, bT;µQ0 , Q

2
0) from

Eq. (92), and the corresponding g
(1,dMS)(z, bT) (Eq. (116))

and D̃
(1,dMS)(z, b⇤;µQ0 , Q

2
0) from the b⇤-prescription

(Eq. (101)). The curves are generated using the same
M = 0.2GeV, mD = 0.3GeV, and a = 2GeV as in Fig. 7.
The top panel is the case of bmax = 0.1GeV�1 and the bottom
panel is the case of bmax = 1.0GeV�1. The bmax-dependence

in ln(D̃
(1,dMS)(z, b⇤;µQ0 , Q

2
0)) (violet dot-dashed) cancels

that of �g
(1,dMS)(z, bT) (blue-dashed). The solid black

curves for D̃
(1,dMS)(z, bT;µQ0 , Q

2
0) are identical in the top

and bottom panels.

A. The b⇤ method

Readers who are familiar with standard implementa-
tions of the CSS formalism might find the surface ap-
pearance of our expressions for the evolved W (n)(qT, Q)
in sections Sec. IV-Sec. VII somewhat odd. Normally,
the cross section is written with nonperturbative TMD
e↵ects contained in separate exponential factors usually
notated

e�gA(zA,bT), e�gB(zB ,bT), and e
�gK(bT) ln

Q2

Q2
0 , (99)

where the nonperturbative transverse momentum depen-
dence is encoded in the (coordinate dependence of) the
lower-case g-functions in the exponents. (The gA and gB
functions are placed inside exponents so that they retain
the appearance of Sudakov form factor contributions.)

Then, in the usual presentation, the rest of the factors
in the cross section automatically get expressed in terms
of collinear functions by using the OPE to approximate
the small bT behavior. For a specific example of what we
mean here, consider Eq.(13.81) of [3].
In this subsection, we will review the steps for trans-

forming the low-qT cross section (or rather W (qT, Q)) in
Eq. (20) into the form that involves Eq. (99) g-functions.
Setting up the usual presentation of the cross section

begins with a partition of the coordinate space W̃ (bT, Q)
into regions considered large and small bT. One does
this by defining an arbitrary function of bT, traditionally
called b⇤(bT). The function should smoothly interpolate
between bT at small values of bT and a maximum trans-
verse size bmax as bT grows to bT � bmax. It is otherwise
arbitrary. In other words,

b⇤(bT) =

⇢
bT bT ⌧ bmax

bmax bT � bmax

. (100)

The value of bmax is also arbitrary, but it is usually in-
terpreted roughly as a value somewhere near the bound-
ary between nonperturbatively large and perturbatively
small regions of bT. The purpose of the “b⇤ method” [93]
is to sequester a purely perturbative calculation of trans-
verse coordinate dependence away from a part that in-
volves nonperturbative modeling or fitting. While any
reasonably well-behaved, smooth function of bT that
obeys the right side of Eq. (100) is a valid b⇤(bT), the
most often used choice is

b⇤(bT) =
bTp

1 + b2
T
/b2

max

. (101)

Later on, we will also need to define another hard scale
that approaches the RG improve value of µ = C1/bT
appropriate to the bT ! 0 limit but that levels o↵ at a
fixed scale at large bT. The simplest (and standard) way
to do this is to just use the inverse of b⇤ and define

µb⇤ ⌘ C1/b⇤ . (102)

The behavior of µb⇤ is similar to that of our Q0(bT), but
Q0(bT) approaches Q0 at large bT while µb⇤ approaches
C1/bmax. (Indeed, in our treatment below we could opt
to use Q0(bT) instead of µb⇤ , but we will continue with
µb⇤ to make the comparison with standard expressions
clear.)
Next, one solves Eq. (18) to relate a TMD ↵ (for hadron

A, for example) at an input scale Q0 to the TMD ↵ at
any other scale

p
⇣ by

D̃A(z, bT;µ, ⇣)

= D̃A(z, bT;µ,Q
2

0
) exp

⇢
K̃(bT;µ) ln

✓p
⇣

Q0

◆�
.

(103)

Exactly the same equation applies independently of the
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• Each factor in Eq. (61) is an accurate approxi-
mation to the corresponding factor in the exact
Eq. (60) point-by-point in bT.

• For bT ⇡ 1/Q0 or larger, the exponential evo-
lution factor deviates from unity by a negligible
amount. This is by our construction of Q0(bT).

D̃
(n,dr)

(z, bT;µQ0 , Q
2
0
) therefore deviates negligibly

from D̃(n,dr)

input
(z, bT;µQ0 , Q

2
0
) when Q ⇡ Q0. Both

D̃
(n,dr)

(z, bT;µQ0 , Q
2
0
) and D̃(n,dr)

input
(z, bT;µQ0 , Q

2
0
)

with Eq. (22) are equally appropriate for applica-
tions to phenomenology when Q ⇡ Q0. Also, recall

that the D̃(n,dr)

input
(z, bT;µQ0 , Q

2
0
) was originally for-

mulated in transverse momentum space.

• There is a smooth scale transformation to µ ⇠p
⇣ ⇠ 1/bT at small bT, but only when bT ⌧ 1/Q0.

Therefore, D̃
(n,dr)

(z, bT;µQ0 , Q
2
0
) continues to pro-

vide an accurate approximation to the exact TMD
↵ after Q � Q0 where the bT ⌧ 1/Q0 region starts
to be relevant.

• Thus, at small bT we may express the TMD ↵ in
terms of collinear ↵s dr using the usual OPE meth-
ods.

• D̃
(n,dr)

(z, bT;µQ0 , Q
2
0
) satisfies the exact evolution

equations

@ ln D̃
(n,dr)

(z, bT;µQ0 , Q
2
0
)

@ lnQ0

= K̃
(n)

(bT;µQ0) , (62)

d ln D̃
(n,dr)

(z, bT;µQ0 , Q
2
0
)

d lnµQ0

= �(n)(↵s(µQ0); 1)

� �(n)
K (↵s(µQ0)) ln

✓
Q0

µQ0

◆
. (63)

There are no error terms in either of these equa-
tions, and both Eq. (62) and Eq. (63) are valid for
all bT.

• By contrast, the evolution equations for the “input”
subscript TMD ↵s in Eqs. (54)–(55) do come with
explicit error terms.

As was the case for K̃
(n)

(bT;µQ0), sensitivity to the
choice of functional form for Q0(bT) is the standard scale

uncertainty in truncated perturbation theory, and it van-
ishes in the limit that Q0 is large and/or high enough or-
ders in ↵s(Q0) are included. To see this, we may repeat
steps analogous to those after Eq. (49):

d

da
ln D̃

(n,dr)

(z, bT;µQ0 , Q
2

0
)

=
1

µQ0

dµQ0

da

d

d lnµQ0

ln D̃
(n,dr)

(z, bT;µQ0 , Q
2

0
)

+
1

Q0

dQ0

da

@

@ lnQ0

ln D̃
(n,dr)

(z, bT;µQ0 , Q
2

0
)

=
1

µQ0

dµQ0

da

h
K̃(n)

input
(bT;µQ0

) + �(n)(↵s(µQ0
); 1)

�K̃(n)
input

(bT;µQ0
)� �(n)(↵s(µQ0

); 1)

+O
⇣
↵s(µQ0

)n+1

⌘
+O (bTm)

i
.

= O
�
↵s(µQ0)

n+1
�
+O

✓
m

Q0

◆
. (64)

After the second equality, we have substituted the ex-

pression for D̃
(n,dr)

(z, bT;µQ0 , Q
2
0
) from Eq. (61) and

applied Eqs. (54)–(55) to D̃(n,dr)

input
(z, bT;µQ0

, Q
2

0
). We

have also used that µQ0
= Q0 when C2 = 1 to sim-

plify expressions. On the last line, we have used the fact

that 1

µQ̄0

dµQ̄0
da vanishes by construction everywhere ex-

cept where bT ⇠ 1/Q0.

Thus, sensitivity to the choice of Q0(bT), at any order
n, vanishes as m/Q0 ! 0.

Since our notation has now grown rather extensive, we
remind the reader that it is summarized in Appendix A.

VI. SUMMARY OF STEPS

So far, we have focused on describing D̃(z, bT;µQ0 , Q
2
0
)

only at a fixed input scale Q0. Now all that is nec-
essary to calculate W (qT, Q) at any other scale using

D̃
(n,dr)

(z, bT;µQ0 , Q
2
0
) and K̃

(n)
(bT;µQ0) is to substitute

them into the right side of Eq. (20), along with the
nth-order perturbative expressions for H(↵s(µQ);C2),
�(↵s(µ0); 1), and �K(↵s(µ0)). The result is an approx-
imation for W (qT, Q) that includes evolution and is ac-
curate for Q � Q0,

Bottom up approach advantages: 
• Allows to use existing pheno models/results 
• Easy to constrain nonperturbative models (in relevant region)  
• Defined “underlined” functions obey exact evolution equations 
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RG-improved perturbative contribution to K̃(bT;µQ0
)

also remains accurate into the bT ⌧ 1/Q0 region. The
second term in Eq. (44) is calculable to nth order from

the known perturbative expression for �(n)
K (↵s(µ)).

Therefore, we obtain an optimal parametrization by
replacing the exact K̃(bT;µQ0

) on the right side of

Eq. (44) by the approximate K̃(n)
input

(bT;µQ0
) and the ex-

act �K(↵s(µ0)) by �(n)
K (↵s(µ0)). We define this this as

K̃
(n)

(bT;µ)

⌘ K̃(n)
input

(bT;µQ0
)�

Z µ

µQ0

dµ0

µ0 �
(n)
K (↵s(µ

0)) . (45)

The underline on K̃
(n)

(bT;µ) is our notation for the final
parametrization to be used with evolution. The above
applies to the cases where µ ⇡ Q0, so as a final step we
set µ = µQ0 and write the underlined parametrization as

K̃
(n)

(bT;µQ0)

⌘ K̃(n)
input

(bT;µQ0
)�

Z µQ0

µQ0

dµ0

µ0 �
(n)
K (↵s(µ

0)) . (46)

This is the form of the parametrization for the CS kernel
that we will ultimately use in Eq. (20). The errors in

K̃
(n)

(bT;µQ0), as an approximation to K̃(bT;µQ0), are
suppressed by at least ↵s(µQ0)

n+1 point-by-point for all
bT.

A final constraint on parametrizations of

K(n)
input

(kT;µQ0) is obtained by recalling that soft
gluon e↵ects cancel in collinear factorization when we
integrate over all transverse momentum. Thus, after an

integration of K(n)
input

(kT;µQ0) over kT up to a cuto↵
kmax of order µQ0 , sensitivity to any nonperturbative
mass parameters must vanish as m/µQ0 ! 0. We may
express this by demanding that

⇡

Z k2
max

0

dk2
T
K(n)

input
(kT;µQ0)

= �(n)(kmax/µQ0 ,↵s(µQ0)) +O

✓
m

µQ0

,
m

kmax

◆
,

(47)

where �(n)(kmax/µ,↵s(µ)) is either zero or a perturba-
tively calculable function, independent of any nonper-

turbative mass parameters in K(n)
input

(kT;µQ0).
Before continuing, let us summarize the basic proper-

ties of the parametrization, K̃
(n)

(bT;µQ0):

• For bT ⇡ 1/Q0 or larger, it di↵ers negligibly from

K̃(n)
input

(bT;µQ0), by construction. Therefore, both

K̃
(n)

(bT;µQ0) and K̃(n)
input

(bT;µQ0) are equally ap-
propriate for describing the Q ⇡ Q0 region phe-
nomenologically.

• For small bT, the RG scale transitions to the usual
µ ⇠ 1/bT RG-improved form, but only when bT is
very small relative to the input scale, bT ⌧ 1/Q0.

• The parametrization in Eq. (45) obeys an exact RG
equation,

dK̃
(n)

(bT;µ)

d lnµ
= ��(n)

K (↵s(µ)) , (48)

with no error terms present.

• By contrast, the “input” parametrization defined in
Eqs. (39)–(41) obeys the approximate RG equation
in Eq. (41) with possible perturbative error terms,
as shown in the equation.

• Both Eq. (41) and Eq. (48) are satisfied for all bT.

The resulting K̃
(n)

(bT;µQ0) is an accurate representation
of the exact K̃(bT;µQ0) up to at most (non-logarithmic)
order ↵s(µQ0)

n+1 errors.
There is an ambiguity in the exact choice of functional

form for Q0(bT) in Eq. (42) in the region of bT ⇡ 1/Q0,
but this is just the usual scale uncertainty that appears
in any truncated perturbation theory, akin to the depen-
dence on the exact numerical choices for C1 and C2. Since
Q0 and C1/bT are of similar size when bT ⇡ 1/Q0 the ef-
fect of the transformation is under perturbative control
and the ambiguity diminishes as one incorporates higher
orders.
To state this more explicitly, consider a family of dif-

ferent choices for Q0(bT) smoothly connected by an extra
parameter a:

Q0(bT) ! Q0(bT, a) . (49)

The only requirement is that Eq. (49) satisfies Eq. (42)
for all the a one might consider. Then,

d

da
K̃

(n)
(bT;µ) =

1

µQ0

dµQ0

da

d

d lnµQ0

K̃
(n)

(bT;µ)

=
1

µQ0

dµQ0

da

"
d

d lnµQ0

K̃(n)
input

(bT;µQ0
) + �K(↵s(µQ0

))

#

⇠ 1

µQ0

dµQ̄0

da
↵s(µQ0

)n+1 ln(n+1)

⇣
bTµQ0

⌘
. (50)

In the second line, we have substituted Eq. (45) and in
the last line we have used Eq. (41) while noting that at
small bT the suppressed errors are enhanced by terms log-

arithmic in bTµQ0
. However, by construction 1

µQ0

dµQ0
da is

only allowed to be nonzero in a region of bT where 1/bT,
Q0, and Q0 are all of comparable size. So Eq. (50) is just

d

da
K̃

(n)
(bT;µ) = O

�
↵s(µQ0)

n+1
�
, (51)

So e↵ects from varying the precise choice of transition
function Q0(bT) are always one order higher in ↵s(Q0)
than the working order n.

• Can compare models agains each other: 
•  a)  do pheno at input scale Q0 
•  b) evolve to larger scales to decide which model is better

This is related to predictive power, the more you can predict, the better  
The formulation + models + approximations work



Thanks


