Fracture functions from back-to-back dihadron production

Timothy B. Hayward, Harut Avakian, Aram Kotzinian

May 23, 2022

Traditional SIDIS measurements

- Decades of study have led to detailed mappings of the momentum distribution of partons in the ٠ nucleon in terms of 1-D and 3-D (TMD) parton distribution functions (PDFs).
- SIDIS measurements rely on the assumption that measured hadrons are produced in the CFR. .
- Cross section factorized as a convolution of PDFs and Fragmentation Functions (FFs)¹.

$$\frac{d\sigma^{CFR}}{dx_B dy dz_h} = \sum_a e_a^2 f_a(x_B) \frac{d\hat{\sigma}}{dy} D_a(z_h)$$
• PDFs
• Confined motion of quarks and gluons inside the nucleus
• Orbital motion of quarks, correlations between quarks and gluons
• Fragmentation Functions
• Insight into transverse momenta and polarization
• Probability for a quark to form particular final state particles
• Insight into transverse momenta and polarization
• Probability for a quark to form particular final state particles
• Insight into transverse momenta and polarization
• Probability for a quark to form particular final state particles
• Insight into transverse momenta and polarization
• Probability for a quark to form particular final state particles
• Insight into transverse momenta and polarization
• Probability for a quark to form particular final state particles
• Insight into transverse momenta and polarization
• Probability for a quark to form particular final state particles
• Insight into transverse momenta and polarization
• Probability for a quark to form particular final state particles
• Insight into transverse momenta and polarization
• Probability for a quark to form particular final state particles
• Insight into transverse momenta and polarization
• Probability for a quark to form particular final state particles
• Insight into transverse momenta and polarization
• Probability for a quark to form particular final state particles

M. Anselmino et al., Phys. Lett. B. 706 (2011), 46-52, [hep-ph] 1109.1132

UCONN

PDFs

1. A. Bacchetta et al., JHEP 02 (2007) 093 [hep-ph] 0611265,

The Neglected Hemisphere – Target Fragmentation

- Final state hadrons also form from the left-over target remnant (TFR) whose partonic structure is defined by "fracture functions"^{1,2}: the probability for the target remnant to form a certain hadron given a particular ejected quark.
- In the TFR, factorization into x and z does not hold because it is not possible to separate quark emission from hadron production.

$$\frac{\mathrm{d}\sigma^{\mathrm{TFR}}}{\mathrm{d}x_B\,\mathrm{d}y\,\mathrm{d}z} = \sum_a e_a^2 \left(1 - x_B\right) M_a(x_B, (1 - x_B)z) \frac{\mathrm{d}\hat{\sigma}}{\mathrm{d}y}$$

- Sometimes possible to kinematically separate CFR and TFR ... but not always clear.
- Studying the TFR tests our complete understanding of the SIDIS production mechanism while also providing access to information not available in the CFR. *P*,*S*

M. Anselmino et al., Phys. Lett. B. 706 (2011), 46-52, [hep-ph] 1109.1132

UCONN

1. L. Trentadue and G. Veneziano, Phys. Lett. B323 (1994) 201,

2. M. Anselmino et al., Phys. Lett. B. 699 (2011), 108-118, [hep-ph] 1102.4214

Categorizing Fracture Functions

• At leading twist 16 fracture functions exist that can be organized into tables of quark and nucleon polarizations just like the more familiar PDFs.

M. Anselmino et al., Phys. Lett. B. 706 (2011), 46-52, [hep-ph] 1109.1132

Analog to PDFs; Momentum Sum Rules

• A direct relationship exists to the eight leading twist PDFs after the fracture functions are integrated over the fractional longitudinal nucleon momentum, ζ .

Single hadron limitations

- FrFs describing transversely polarized quarks are chiral odd and inaccessible in single hadron production.
- Functions with double superscripts containing h and ⊥ have no analog and disappear after integration over either momentum.

M. Anselmino et al., Phys. Lett. B. 706 (2011), 46-52, [hep-ph] 1109.1132

Back-to-back Formalism

• When two hadrons are produced "back-to-back"^{1,2} with one in the CFR and one in the TFR the structure function contains a convolution of a fracture function, $\hat{l}_1^{\perp h}$, and a fragmentation function, D_1 .

UCONN

1. M. Anselmino et al., Phys. Lett. B. 706 (2011), 46-52, [hep-ph] 1109.1132 2. M. Anselmino et al., Phys. Lett. B. 713 (2012), 317-320, [hep-ph] 1112.2604

CLAS12 Experimental Setup

V. Burkert et al., Nucl. Instrum. Meth. A 959 (2020) 163419

clas

- CLAS12: very high luminosity, wide acceptance, low Q² (higher twist measurements)
- Began data taking in Spring 2018 many "run periods" now available.
- 10.6 (2018) and 10.2 (2019) GeV electron beam, longitudinally polarized beam, liquid H_2 target.

Selecting back-to-back events

• A natural choice for a first analysis are events with a pion (CFR biased) and proton (TFR biased).

9

Extracting A_{LU}

- Select $ep \rightarrow e'P \pi^+ + X$.
- Consider all possible hadron pairs.
- Amplitudes are extracted simultaneously via maximizing a likelihood function.
- Unbinned maximum likelihood method:

$$-\ln \mathcal{L}_{ML}(A) = N - \sum_{i}^{N} \ln \left[1 + h_i P_i \left(A_1 \sin \Delta \phi_i + A_2 \sin 2\Delta \phi_i \right) \right]$$

• Include relevant beam polarization (~85% at JLab).

Initial Observation

- Observed linear dependence on the product of transverse momenta is consistent with expectations (linear, goes to zero at zero transverse momenta, etc.)
- Non-zero asymmetries are the first experimental observation of possible spin-orbit correlations between hadrons produced simultaneously in the CFR and TFR.

$$\mathcal{A}_{LU} = -\sqrt{1 - \epsilon^2} \frac{|\vec{P}_{T1}||\vec{P}_{T2}|}{m_N m_2} \frac{\mathcal{C}[w_5 \, \hat{l}_1^{\perp h} D_1]}{\mathcal{C}[\hat{u}_1 D_1]} \sin \Delta \phi$$

Divide out the kinematic factors for clearer description of fracture and fragmentation function dependence...

Access to unmeasured fracture functions

• x-dependence increases in magnitude in the valance quark region.

Relatively flat as a function of z_1 , likely due to cancellation

 ζ₂-dependence shows decreasing amplitude with increasing momenta. Possibly due to correlations with x.

of fragmentation functions.

Conclusions

- Kinematic dependencies of SSAs in back-to-back dihadron production observed for the first time.
- SSAs can be interpreted in a framework using FrFs, specifically the leading twist FrF l^{1h}₁, describing the conditional probability of the target remnant forming a proton after the emission of a longitudinally polarized quark from an unpolarized proton.
- Future work: deuterium target, separate pion flavors, polarized targets $(\hat{u}_{1L}^{\perp h})$, etc.

The new beam-spin asymmetry introduced here has a definite and clear signature which can be experimentally tested, both in running experiments (JLab) and future ones (upgraded JLab and future electron-ion or electronnucleon colliders, EIC/ENC). If experimentally observed, it would confirm the validity of the TMD factorization in high energy lepto-production for TFR events, thus opening new ways of exploring the nucleon internal structure.

UCONN

M. Anselmino et al., Phys. Lett. B. 713 (2012), 317-320, [hep-ph] 1112.2604

Backup Slides

PDF Sensitive CLAS12 Measurements

 Measurements traditionally focus on factorization theorems and assumption that hadrons are produced in current fragmentation.

UCONN

15

Ambiguous Modulations

$$\frac{\mathrm{d}\sigma^{\mathrm{TFR}}}{\mathrm{d}x_{B}\,\mathrm{d}y\,\mathrm{d}\zeta\,\mathrm{d}^{2}\boldsymbol{P}_{h\perp}\,\mathrm{d}\phi_{S}} = \frac{2\alpha_{\mathrm{em}}^{2}}{Q^{2}y}\left\{\left(1-y+\frac{y^{2}}{2}\right) \times \sum_{a}e_{a}^{2}\left[\hat{u}_{1}(x_{B},\zeta,\boldsymbol{P}_{h\perp}^{2})-|\boldsymbol{S}_{\perp}|\frac{|\boldsymbol{P}_{h\perp}|}{m_{h}}\hat{u}_{1T}^{\perp}(x_{B},\zeta,\boldsymbol{P}_{h\perp}^{2})\right] \sin(\phi_{h}-\phi_{S})\right] \times \left[F_{UT,T}^{\sin(\phi_{h}-\phi_{S})}\right]_{\mathrm{TFR}} = -\sum_{a}e_{a}^{2}x_{B}\frac{|\boldsymbol{P}_{h\perp}|}{m_{h}}\hat{u}_{1T}^{\perp}(x_{B},\zeta,\boldsymbol{P}_{h\perp}^{2}) + \lambda_{l}y\left(1-\frac{y}{2}\right)\sum_{a}e_{a}^{2}\left[S_{\parallel}|\hat{l}_{1L}(x_{B},\zeta,\boldsymbol{P}_{h\perp}^{2})\right] + |\boldsymbol{S}_{\perp}|\frac{|\boldsymbol{P}_{h\perp}|}{m_{h}}\hat{u}_{1T}^{\perp}(x_{B},\zeta,\boldsymbol{P}_{h\perp}^{2})\right] \times \left[F_{UT,T}^{\sin(\phi_{h}-\phi_{S})}\right]_{\mathrm{CFR}} = \mathcal{C}\left[-\frac{\hat{h}\cdot\boldsymbol{k}_{\perp}}{m_{N}}f_{1T}^{\perp}D_{1}\right] + |\boldsymbol{S}_{\perp}|\frac{|\boldsymbol{P}_{h\perp}|}{m_{h}}\hat{u}_{1T}^{\perp}(x_{B},\zeta,\boldsymbol{P}_{h\perp}^{2})\cos(\phi_{h}-\phi_{S})\right]\right\}.$$
M. Ansembro et al. Phys. Lett. B. 669 (2011), 108-118, [hep-ph] + 102.4214
$$\left[F_{LT}^{\cos(\phi_{h}-\phi_{S})}\right]_{\mathrm{TFR}} = \sum_{a}e_{a}^{2}x_{B}\frac{|\boldsymbol{P}_{h\perp}|}{m_{h}}\hat{u}_{1T}^{\perp}(x_{B},\zeta,\boldsymbol{P}_{h\perp}^{2})\left[F_{LT}^{\perp}(x_{B},\zeta,\boldsymbol{P}_{h\perp}^{2})\right]\right]_{\mathrm{CFR}} = \mathcal{C}\left[\frac{\hat{h}\cdot\boldsymbol{k}_{\perp}}{m_{N}}g_{1T}D_{1}\right]$$

$$\left[F_{LT}^{\cos(\phi_{h}-\phi_{S})}\right]_{\mathrm{CFR}} = \mathcal{C}\left[\frac{\hat{h}\cdot\boldsymbol{k}_{\perp}}{m_{N}}g_{1T}D_{1}\right]$$

$$(F_{LT}^{\cos(\phi_{h}-\phi_{S})})_{\mathrm{CFR}} = \mathcal{C}\left[\frac{\hat{h}\cdot\boldsymbol{k}_{\perp}}{m_{N}}g_{1T}D_{1}\right]$$

$$(F_{LT}^{\cos(\phi_{h}-\phi_{S})})_{\mathrm{CFR}} = \mathcal{C}\left[\frac{\hat{h}\cdot\boldsymbol{k}_{\perp}}{m_{N}}g_{1T}D_{1}\right]$$

$$(F_{LT}^{\cos(\phi_{h}-\phi_{S})})_{\mathrm{CFR}} = \mathcal{C}\left[\frac{\hat{h}\cdot\boldsymbol{k}_{\perp}}{m_{N}}g_{1T}D_{1}\right]$$

$$(F_{LT}^{\cos(\phi_{h}-\phi_{S})})_{\mathrm{CFR}} = \mathcal{C}\left[\frac{\hat{h}\cdot\boldsymbol{k}_{\perp}}{m_{N}}g_{1T}D_{1}\right]$$

Accessing longitudinal polarization

• TFR studies provide unique access to longitudinally polarized quarks in unpolarized nucleons and unpolarized quarks in longitudinally polarized nucleons which ordinarily disappear after integration over either momentum.

M. Anselmino et al., Phys. Lett. B. 706 (2011), 46-52, [hep-ph] 1109.1132

Differential Cross Section

Contracting the hadronic tensor (8) with the leptonic tensor we get the differential cross section (for details of the calculations, see [13, 16]):

$$\frac{\mathrm{d}\sigma^{l(\lambda_{l}) N \to l h_{1}h_{2} X}}{\mathrm{d}x_{B} \mathrm{d}y \mathrm{d}z_{1} \mathrm{d}\zeta_{2} \mathrm{d}\mathbf{P}_{1\perp}^{2} \mathrm{d}\mathbf{P}_{2\perp}^{2} \mathrm{d}\phi_{1} \mathrm{d}\phi_{2}} \\
= \frac{\pi \alpha_{\mathrm{em}}^{2}}{x_{B} y Q^{2}} \left\{ \left(1 - y + \frac{y^{2}}{2} \right) \mathcal{F}_{UU} \\
+ (1 - y) \mathcal{F}_{UU}^{\cos(\phi_{1} + \phi_{2})} \cos(\phi_{1} + \phi_{2}) \\
+ (1 - y) \mathcal{F}_{UU}^{\cos(2\phi_{1})} \cos(2\phi_{1}) \\
+ (1 - y) \mathcal{F}_{UU}^{\cos(2\phi_{2})} \cos(2\phi_{2}) \\
- \lambda_{l} y \left(1 - \frac{y}{2} \right) \mathcal{F}_{LU}^{\sin(\phi_{1} - \phi_{2})} \sin \Delta\phi \right\} \\
\equiv \sigma_{UU} + \lambda_{l} \sigma_{LU}, \qquad (9)$$

where λ_l is the lepton helicity and the structure functions $\mathcal{F}(x_B, z_1, \zeta_2, \mathbf{P}_{1\perp}^2, \mathbf{P}_{2\perp}^2, \mathbf{P}_{1\perp} \cdot \mathbf{P}_{2\perp})$ are given, at leading twist, by:

$$\mathcal{F}_{UU} = \mathcal{C} \left[\hat{u}_1 D_1 \right], \tag{10}$$

$$\mathcal{F}_{UU}^{\cos(\phi_1 + \phi_2)} = \frac{|\mathbf{P}_{1\perp}| |\mathbf{P}_{2\perp}|}{m_1 m_2} \mathcal{C} \left[w_1 \, \hat{t}_1^h H_1^\perp \right] \qquad (11)$$

$$\mathcal{F}_{UU}^{\cos(2\phi_1)} = \frac{\mathbf{P}_{1\perp}^2}{m_1 m_N} \mathcal{C} \left[w_2 \, \hat{t}_1^\perp H_1^\perp \right] \tag{12}$$

$$\mathcal{F}_{UU}^{\cos(2\phi_2)} = \frac{\mathbf{P}_{2\perp}^2}{m_1 m_2} \mathcal{C} \left[w_3 \, \hat{t}_1^h H_1^\perp \right] \\ + \frac{\mathbf{P}_{2\perp}^2}{m_1 m_N} \mathcal{C} \left[w_4 \, \hat{t}_1^\perp H_1^\perp \right]$$
(13)
$$\mathcal{F}_{LU}^{\sin(\phi_1 - \phi_2)} = \frac{|\mathbf{P}_{1\perp}| |\mathbf{P}_{2\perp}|}{m_N m_2} \mathcal{C} \left[w_5 \, \hat{l}_1^{\perp h} D_1 \right],$$
(14)

with the following notation for the transverse momentum convolution

$$\mathcal{C}\left[f(\mathbf{k}_{\perp}, \mathbf{k}_{\perp}', \ldots)\right] \equiv \sum_{a} e_{a}^{2} x_{B} \int \mathrm{d}^{2} \mathbf{k}_{\perp} \int \mathrm{d}^{2} \mathbf{k}_{\perp}'$$
$$\times \delta^{2}(\mathbf{k}_{\perp} - \mathbf{k}_{\perp}' - \mathbf{P}_{1\perp}/z_{1}) f(\mathbf{k}_{\perp}, \mathbf{k}_{\perp}', \ldots). \quad (15)$$

UCONN

M. Anselmino et al., Phys. Lett. B. 713 (2012), 317-320, [hep-ph] 1112.2604

18

Monte Carlo

- SIDIS MC "clasdis"¹ based on PEPSI² generator, the polarized version of the wellknown LEPTO³ generator.
- Parameters changed to reproduce observed distributions include average transverse momentum, fraction of spin-1 light mesons and fraction of spin-1 strange mesons.
- CLAS12 detector system described in "GEMC^{*4,} a detailed GEANT4 simulation package.
- Excellent agreement between data and MC!

0.0

0.06

0.04

0.02

0.00

0.0

UCONN

- 1. H. Avakian, "clasdis." https://github.com/JeffersonLab/clasdis, 2020.
- 2. L. Mankiewicz, A. Schafer, and M. Veltri, "Pepsi: A monte carlo generator for polarized leptoproduction," Comput. Phys. Commun., vol. 71, pp. 305–318, 1992.
- G. Ingelman, A. Edin, and J. Rathsman, "LEPTO 6.5: A Monte Carlo generator for deep inelastic lepton nucleon scattering," Comput. Phys. Commun., vol. 101, pp. 108–134, 1997.
- 4. M. Ungaro et al., "The CLAS12 Geant4 simulation," Nucl. Instrum. Meth. A, vol. 959, p. 163422, 2020.

clas

0.0

-0.2

Particle ID

- Electron
 - Electromagnetic calorimeter.
 - Cherenkov detector.
 - Vertex and fiducial cuts.

Hadron

•

- β vs p comparison between vertex timing and event start time.
- Vertex and fiducial cuts.

Removing background

Exclusive pion and rho production clearly visible.

Different amplitudes at low M_x are generated from separate physics than our signal.

- Little sign of ∆s; cut on mass > 1.5 GeV for safety.
- Estimate remaining contribution from MC.

Additional Modulations

$$\mathcal{F}_{LU} = \frac{|p_{\pi}^{\perp}||p_{P}^{\perp}|}{m_{p}m_{\pi}} \mathcal{C} \left[w_{5} \hat{l}_{1}^{\perp h} D_{1} \right] -$$

If the correlations are assumed small, the fracture functions can be expanded in powers of $k^{\perp} \cdot p_P^{\perp}$.

Structure functions carry a dependence on $|p_{\pi}^{\perp}||p_{P}^{\perp}|$ which introduces a dependence on $\cos \Delta \phi$.

$$\hat{l}_{1}^{\perp h}(x,\zeta,\mathbf{k}^{\perp 2},\mathbf{p}_{\mathbf{P}}^{\perp 2},\mathbf{k}^{\perp}\cdot\mathbf{p}_{\mathbf{P}}^{\perp}) \\\approx a(x,\zeta,\mathbf{k}^{\perp 2},\mathbf{p}_{\mathbf{P}}^{\perp 2}) \\+b(x,\zeta,\mathbf{k}^{\perp 2},\mathbf{p}_{\mathbf{P}}^{\perp 2})\mathbf{k}^{\perp}\cdot\mathbf{p}_{\mathbf{P}}^{\perp}$$

The term linear in $k^{\perp} \cdot p_P^{\perp}$ yields a $\cos \Delta \phi$ which when combined with the already existing $\sin \Delta \phi$ term results in a $\sin 2\Delta \phi$.

$$\mathcal{A}_{LU}(x,\zeta,\mathbf{k}^{\perp^2},\mathbf{p}_{\mathbf{P}}^{\perp^2},\Delta\phi) = A(x,\zeta,\mathbf{k}^{\perp^2},\mathbf{p}_{\mathbf{P}}^{\perp^2})\sin\Delta\phi + B(x,\zeta,\mathbf{k}^{\perp^2},\mathbf{p}_{\mathbf{P}}^{\perp^2})\sin(2\Delta\phi)$$

Phys. Lett. B. 713 (2012), 317-320, [hep-ph] 1112.2604

Additional modulation is small

- The sin($2\Delta \phi$) is mostly (coincidentally) very small.
- Still important to extract simultaneously.

Directly plotting FrFs and FFs

Subtly different z defintions

In the TFR the factorization in x_B and z_h of Eq. (3) does not hold any longer, as it is not possible to separate the quark emission from the hadron production. Moreover, z_h is not the proper variable to describe this region. The reason is easily understood if we write z_h in the c.m. γ^*N frame (we neglect as usual hadron masses):

$$z_{h} = \frac{E_{h}}{E(1-x_{B})} \frac{(1-\cos\theta_{h})}{2}, \qquad (4)$$

where θ_h is the angle between \mathbf{P}_h and \mathbf{P} . The z_h variable does not discriminate between two different physical situations, namely $E_h = 0$ (soft hadron emission) and $\theta_h = 0$ (target fragmentation: emission of a hadron collinear with the target remnant), which both correspond to $z_h = 0$.

In order to describe the production of hadrons in the target fragmentation region, one has to define the fracture functions $M_a(x_B, (1-x_B)z)$, which depend on x_B and on a new variable $z = E_h/E(1-x_B)$, and represent the distributions of partons inside a nucleon fragmenting almost collinearly into a given hadron [4, 5]. Notice that, differently from z_h , the variable z vanishes in the soft limit only $(E_h \to 0)$. The SIDIS cross section in the TFR, integrated over the transverse momentum of the final hadron, thus becomes

$$\frac{\mathrm{d}\sigma^{\mathrm{TFR}}}{\mathrm{d}x_B\,\mathrm{d}y\,\mathrm{d}z} = \sum_a e_a^2 \left(1 - x_B\right) M_a(x_B, (1 - x_B)z) \,\frac{\mathrm{d}\hat{\sigma}}{\mathrm{d}y} \,\,. \tag{5}$$

M. Anselmino et al., Phys. Lett. B. 706 (2011), 46-52, [hep-ph] 1109.1132

Fracture Functions Renamed

Quark polarization

Nucleon polarization		U	L	Т
	U	\hat{u}_1	$\hat{l}_1^{\perp h}$	$\hat{t}_1^h, \hat{t}_1^\perp$
	L	$\hat{u}_{1L}^{\perp h}$	\hat{l}_{1L}	$\hat{t}^h_{1L}, \hat{t}^\perp_{1L}$
	Т	$\hat{u}_{1T}^h, \hat{u}_{1T}^\perp$	$\hat{l}^h_{1T}, \hat{l}^\perp_{1T}$	$\hat{t}_{1T}, \hat{t}_{1T}^{hh}$ $\hat{t}_{1T}^{\perp\perp}, \hat{t}_{1T}^{\perp h}$

ALU(xFp)

UCONN

27