TMD Measurements in *hadronhadron* and in *e*⁺-*e*⁻ Collisions

M. Grosse Perdekamp, University of Illinois

Outline

Polarized p-p

- Observation of Large A_N and TMD Mechanisms
 - A_N of inclusive hadrons
 - A_N for forward neutrons at RHIC
- o The Sivers effect
- o Constraining Transversity
 - Transverse spin dependent hadron fragmentation
 - Collins in jets and di-hadrons
 - Measurements with Lambdas

2

Technology from a Happy Past: Polarization in RHIC as US-Japanese-Russian Technology Development

Example: Siberian Snakes

Snake like p-trajectories

TMD Measurements in hadron-hadron and e+-e- Collisions

RHIC Versatile Polarized p-p and Heavy Ion Collider

RHIC Runs 2001 to 2022 Energies – Particle Species and Luminosities

Single Transverse Spin Asymmetries A_N in Hadron-Hadron Collisions

Origin of Large SSA → Inspect Factorized Components of Cross Section

May 22nd

7

A_N for Pions for ZGS to RHIC

JAM fit to A_N^h

JAM, PHYSICAL REVIEW D 102, 054002 (2020)

$$p^{\uparrow} + p \rightarrow (\pi^+, \pi^-, \pi^0) + X$$
 $h_1(x), F_{FT}(x, x) = \frac{1}{\pi} f_{1T}^{\perp(1)}(x), H_1^{\perp(1)}(z)$ 66.5/60 = 1.11

Origin of single transverse-spin asymmetries in high-energy collisions

Justin Cammarota,^{1,2,*} Leonard Gamberg,^{3,†} Zhong-Bo Kang,^{4,5,6,‡} Joshua A. Miller,^{2,§} Daniel Pitonyak,^{2,∥} Alexei Prokudin,^{3,7,¶} Ted C. Rogers,^{7,8,**} and Nobuo Sato^{7,††}

(Jefferson Lab Angular Momentum (JAM) Collaboration)

Observable	Reactions	Nonperturbative function(s)	$\chi^2/N_{\rm pts.}$.	Refs.
$\begin{array}{c} A_{\rm SIDIS}^{\rm Siv} \\ A_{\rm SIDIS}^{\rm Col} \end{array}$	$\begin{array}{c} e + (p,d)^{\uparrow} \rightarrow e + (\pi^{+},\pi^{-},\pi^{0}) + X \\ e + (p,d)^{\uparrow} \rightarrow e + (\pi^{+},\pi^{-},\pi^{0}) + X \end{array}$	$f_{1T}^{\perp}(x, k_T^2) \ h_1(x, k_T^2), H_1^{\perp}(z, z^2 p_{\perp}^2)$	$\frac{150.0}{126} = 1.19$ $\frac{111.3}{126} = 0.88$	[65,66,68] [66,68,71]
$A_{\rm SIA}^{ m Col}$	$e^+ + e^- \rightarrow \pi^+ \pi^-(UC, UL) + X$	$H_1^\perp(z,z^2 p_\perp^2)$	154.5/176 = 0.88	[74–77]
$\begin{array}{c} A_{\rm DY}^{\rm Siv} \\ A_{\rm DY}^{\rm Siv} \\ A_N^h \end{array} \blacksquare$	$\begin{aligned} \pi^- + p^\uparrow &\to \mu^+ \mu^- + X \\ p^\uparrow + p &\to (W^+, W^-, Z) + X \\ p^\uparrow + p &\to (\pi^+, \pi^-, \pi^0) + X \end{aligned}$	$f_{1T}^{\perp}(x, k_T^2) \\ f_{1T}^{\perp}(x, k_T^2) \\ h_1(x), F_{FT}(x, x) = \frac{1}{\pi} f_{1T}^{\perp(1)}(x), H_1^{\perp(1)}(z)$	5.96/12 = 0.50 31.8/17 = 1.87 66.5/60 = 1.11	[73] [72] [7,9,10,13]
	$\begin{bmatrix} 0 \\ 0 $	20 - STAR	$3 P_{hT}$	
May 22nd TMD Measurements in hadron-hadron and e+-e- Collisions				9

A_N: inclusive Jets, inclusive π⁰s, isolated π⁰s, Collins π⁰s STAR PRD 103, 092009 (2021)

May 22nd

TMD Measurements in hadron-hadron and e+-e- Collisions

 A_N for neutrons, $\eta > 6.8$

Compare samples with enhanced UPC (BBC veto) to events with lower UPC contributions (BBC Tag)

 A_N for neutrons, $\eta > 6.8$

Compare samples with enhanced UPC (BBC veto) to events with lower UPC contributions (BBC Tag)

 A_{N} for neutrons, $\eta > 6.8$

Compare samples with enhanced UPC (BBC veto) to events with lower UPC contributions (BBC Tag)

Competing mechanisms contributing to A_N!

The Sivers Effect in h-h Collisions

Constraining Sivers Functions

Origin of single transverse-spin asymmetries in high-energy collisions

Justin Cammarota,^{1,2,*} Leonard Gamberg,^{3,†} Zhong-Bo Kang,^{4,5,6,‡} Joshua A. Miller,^{2,§} Daniel Pitonyak,^{2,∥} Alexei Prokudin,^{3,7,¶} Ted C. Rogers,^{7,8,**} and Nobuo Sato^{7,††}

(Jefferson Lab Angular Momentum (JAM) Collaboration)

Observable	Reactions	Nonperturbative function(s)	$\chi^2/N_{\rm pts.}$.	Refs.
$A_{\text{SIDIS}}^{\text{Siv}}$	$e + (p, d)^{\uparrow} \rightarrow e + (\pi^+, \pi^-, \pi^0) + X$ $e + (p, d)^{\uparrow} \rightarrow e + (\pi^+, \pi^-, \pi^0) + X$	$f_{1T}^{\perp}(x, k_T^2)$ $h_{\tau}(x, k_T^2) + H^{\perp}(z, z^2 n^2)$	150.0/126 = 1.19 111.3/126 = 0.88	[65,66,68]
$A_{\rm SIDIS}^{\rm Col}$	$e^+ + e^- \rightarrow \pi^+ \pi^- (UC, UL) + X$	$H_1^{\perp}(z, z^2 p_{\perp}^2)$ $H_1^{\perp}(z, z^2 p_{\perp}^2)$	154.5/176 = 0.88	[74–77]
$\begin{array}{c} A_{\mathrm{DY}}^{\mathrm{Siv}} \\ A_{\mathrm{DY}}^{\mathrm{Siv}} \\ A_{N}^{h} \end{array} \end{array}$	$\begin{aligned} \pi^- + p^\uparrow &\to \mu^+ \mu^- + X \\ p^\uparrow + p &\to (W^+, W^-, Z) + X \\ p^\uparrow + p &\to (\pi^+, \pi^-, \pi^0) + X \end{aligned}$	$\begin{aligned} f_{1T}^{\perp}(x,k_T^2) \\ f_{1T}^{\perp}(x,k_T^2) \\ h_1(x), F_{FT}(x,x) &= \frac{1}{\pi} f_{1T}^{\perp(1)}(x), H_1^{\perp(1)}(z) \end{aligned}$	5.96/12 = 0.50 31.8/17 = 1.87 66.5/60 = 1.11	[73] [72] [7,9,10,13]
$xf_{\scriptscriptstyle 1T}^{\perp(1)}(x)$	-0.02 -0.04 0.2 0.4	$\begin{array}{c} \mathbf{u} \\ \mathbf{u} \\ 0.02 \\ \mathbf{JAM20} \\ 0.6 \mathbf{x} \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.01 \\ 0.0$	Echevarri Anselmin 2 0.4 0	a et al '14 o et al '17 .6 X

Sign Change of Sivers-Function Between SIDIS and Drell-Yan

Sign Change preferred, also compatible with zero. Data taking complete.

More data to come!!

Constraining Transversity Knowledge of Transversity and Tensor Charge Requires Measurements in p-p, lepton-p and e⁺e⁻

Lattice QCD: Tensor Charge = $\Sigma_{q=u,d} \int_0^1 \delta q(x) dx$

Constraining Transversity & Collins JAM, PHYSICAL REVIEW D 102, 054002 (2020)

Observable	Reactions	Nonperturbative function(s)	$\chi^2/N_{\rm pts.}$.	Refs.
$A_{\text{SIDIS}}^{\text{Siv}}$ $A_{\text{SIDIS}}^{\text{Col}}$	$\begin{array}{c} e + (p,d)^{\uparrow} \rightarrow e + (\pi^{+},\pi^{-},\pi^{0}) + X \\ e + (p,d)^{\uparrow} \rightarrow e + (\pi^{+},\pi^{-},\pi^{0}) + X \end{array}$	$f_{1T}^{\perp}(x,k_T^2) \ h_1(x,k_T^2), H_1^{\perp}(z,z^2p_{\perp}^2)$	$\frac{150.0}{126} = 1.19$ $\frac{111.3}{126} = 0.88$	[65,66,68] [66,68,71]
$A_{\rm SIA}^{\rm Col}$	$e^+ + e^- \rightarrow \pi^+ \pi^- (UC, UL) + X$	$H_1^\perp(z,z^2 p_\perp^2)$	154.5/176 = 0.88	[74–77]
$ \begin{array}{c} A_{\rm DY}^{\rm Siv} \\ A_{\rm DY}^{\rm Siv} \\ A_N^h \end{array} $	$\begin{aligned} \pi^- + p^\uparrow &\rightarrow \mu^+ \mu^- + X \\ p^\uparrow + p &\rightarrow (W^+, W^-, Z) + X \\ p^\uparrow + p &\rightarrow (\pi^+, \pi^-, \pi^0) + X \end{aligned}$	$\begin{aligned} f_{1T}^{\perp}(x,k_T^2) \\ f_{1T}^{\perp}(x,k_T^2) \\ h_1(x), F_{FT}(x,x) &= \frac{1}{\pi} f_{1T}^{\perp(1)}(x), H_1^{\perp(1)}(z) \end{aligned}$	5.96/12 = 0.50 31.8/17 = 1.87 66.5/60 = 1.11	[73] [72] [7,9,10,13]
$xh_1(x)$	0.4 0.2 0.0	u 0.0 -0.1 -0.2	d	
$zH_1^{\perp(1)}(z)$	0.2 0.4 0.6 0.3 0.2 0.1 0.2 0.4 0.4 0.6 Anselmin Kang et a	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.6 0.8 2 unf Radici, Bacchetta '18 Benel et al '19 D'Alesio et al '20	
7	0.4 0.6 ($0.8 \boldsymbol{\mathcal{Z}} \qquad 0.4 0$).6 0.8 2	

May 22nd

TMD Measurements in hadron-hadron and e+-e- Collisions

JAM, PHYSICAL REVIEW D 102, 054002 (2020)

FIG. 6. The tensor charges δu , δd , and g_T . Our (JAM20) results at $Q^2 = 4 \text{ GeV}^2$ along with others from phenomenology (black), lattice QCD (purple), and Dyson-Schwinger (cyan).

Collins Effect in di-Hadron Correlations In e⁺e⁻ Annihilation into Quarks!

May 22nd

Collins effect in e⁺e⁻ quark fragmentation will lead to azimuthal asymmetries in di-hadron correlation measurements:

$$\mathsf{N}_{\pi_1,\pi_2}(\phi_1 + \phi_2) \sim \mathsf{a}_{12} \mathsf{cos}(\phi_1 + \phi_2)$$

Experimental requirements:

- Small asymmetries → very large data sample!
- Good particle ID to high momenta.
- Hermetic detector
- Events with back-to-back jets

Good coverage, tracking and particle identification!

TMD Measurements in hadron-hadron and e+-e- Collisions

Super Belle: detector for SuperKEKB

Observation of the Collins Effect in e⁺e⁻ Annihilation with Belle

JAM fit to e+e- JAM, PHYSICAL REVIEW D 102, 054002 (2020)

 $A_{\mathrm{SIA}}^{\mathrm{Col}}$

$e^+ + e^- \rightarrow \pi^+ \pi^- (UC, UL) + X$

 $H_1^\perp(z, z^2 p_\perp^2)$

154.5/176 = 0.88

IFF measurement at **BELLE**

 $e^{+}e^{-} \to (\pi^{+}\pi^{-})_{jet1}(\pi^{+}\pi^{-})_{jet2}X$ $A \propto H_{1}^{\Box}(z_{1}, m_{1})H_{1}^{\Box}(z_{2}, m_{2})\cos(\phi_{1} + \phi_{2})$ Active and O alling 7. Phys. 600, 677 (4000)

Artru and Collins, *Z. Phys. C69, 277 (1996)* Boer, Jakob, and Radici, PRD67, 094003 (2003) No double ratios needed to cancel radiative and acceptance effects!

Observation of Lambda Polarization in e⁺e⁻ Annihilation with Belle

STAR: Collins in jets – 500 GeV

May 22nd

TMD Measurements in hadron-hadron and e+-e- Collisions

STAR: Collins in Jets – 200 GeV

May 22nd

Runs 2012+2015, 200 GeV Collins in Jets

Ting Lin, STAR, DIS 2022

Charged pion Collins-modulations in jets

STAR: First IFF – 200 GeV

First measurement of IFF at 200 GeV!

STAR PRL 115, 242501 (2015)

IFF – pion pairs vs invariant mass

STAR: High Statistics IFF – 200 GeV

May 22nd

TMD Measurements in hadron-hadron and e+-e- Collisions

STAR: High Statistics IFF, p_T dependence of A_{UT} vs $M_{\pi+\pi-}$

[

32

STAR: High Statistics IFF, p_T dependence of A_{UT} vs $M_{\pi+\pi-}$

Summary:

- Large TMD-dependent observables in e+e- and hadron-hadron.
- Consistent description also including SIDIS, eg JAM, resulting in extraction of tensor charge
- TMDs continue to be measured in jets with improving statistics and sytematics: STAR, sPHENIX
- Increasingly precise measurements using di-hadron interference fragmentation functions!
- More data & results to come from RHIC before EIC

Collins Effect in Quark Fragmentation

J.C. Collins, Nucl. Phys. B396, 161(1993)

