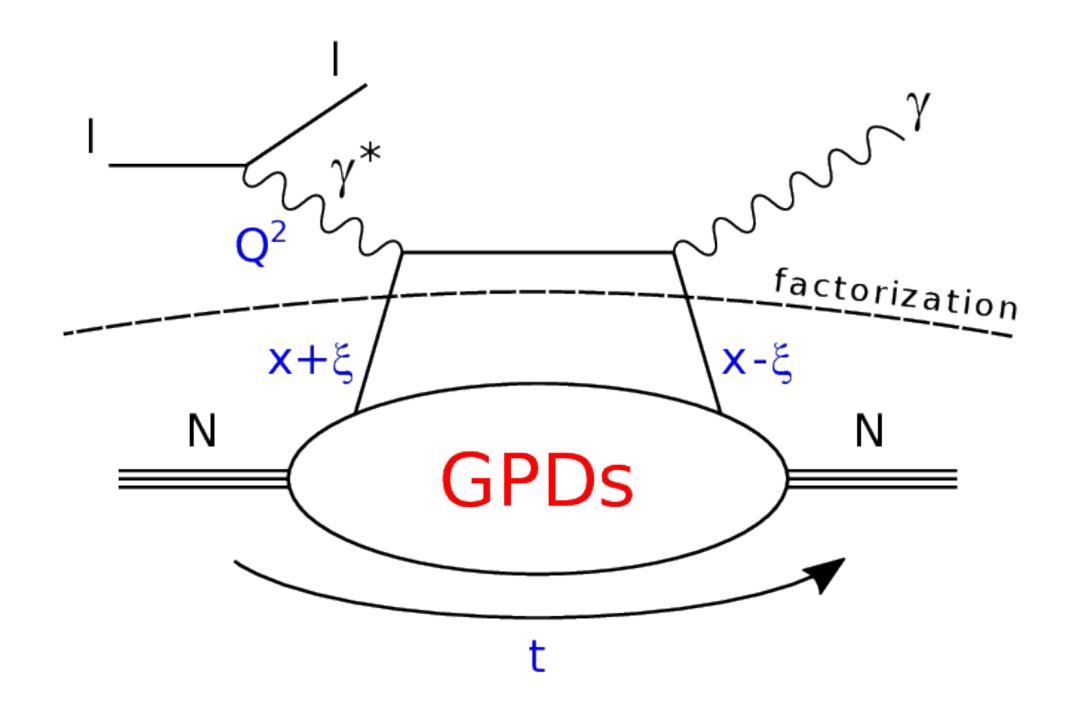
Addressing the problem of model dependency in GPD phenomenology

Paweł Sznajder National Centre for Nuclear Research, Poland

Transversity'22, Pavia, Italy, May 25th, 2022

NATIONAL CENTRE FOR NUCLEAR RESEARCH ŚWIERK

Deeply Virtual Compton Scattering (DVCS)



factorisation for $|t|/Q^2 \ll 1$

Paweł Sznajder / Addressing the problem of model dependency / May 25, 2022

Chiral-even GPDs: (helicity of parton conserved)

$H^{q,g}(x,\xi,t)$	$E^{q,g}(x,\xi,t)$	for sum over parton helicitie
$\widetilde{H}^{q,g}(x,\xi,t)$	$\widetilde{E}^{q,g}(x,\xi,t)$	for difference of parton helicitie
nucleon helicity conserved	nucleon helicity changed	

Reduction to PDF:

$$H(x,\xi=0,t=0) \equiv q(x)$$

Polynomiality - non-trivial consequence of Lorentz invariance:

$$\mathcal{A}_{n}(\xi,t) = \int_{-1}^{1} \mathrm{d}x x^{n} H(x,\xi,t) = \sum_{\substack{j=0\\\text{even}}}^{n} \xi^{j} A_{n,j}(t) + \mathrm{mod}(n,2) \xi^{n+1} A_{n,n+1}(t)$$

Positivity bounds - positivity of norm in Hilbert space, e.g.:

$$|H(x,\xi,t)| \le \sqrt{q\left(\frac{x+\xi}{1+\xi}\right)q\left(\frac{x-\xi}{1-\xi}\right)}$$

$$\frac{1}{1-\xi^2}$$

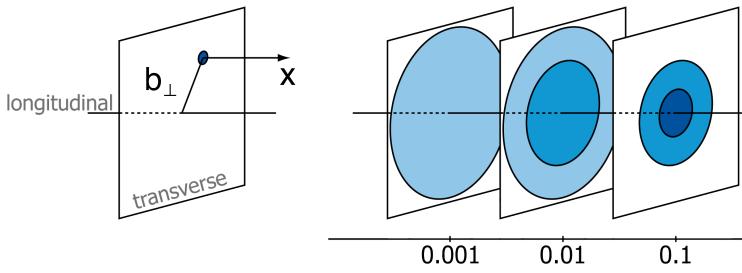
Nucleon tomography:

$$q(x, \mathbf{b}_{\perp}) = \int \frac{\mathrm{d}^2 \mathbf{\Delta}}{4\pi^2} e^{-i\mathbf{b}_{\perp} \cdot \mathbf{\Delta}} H^q(x, 0, t = -\mathbf{\Delta})$$

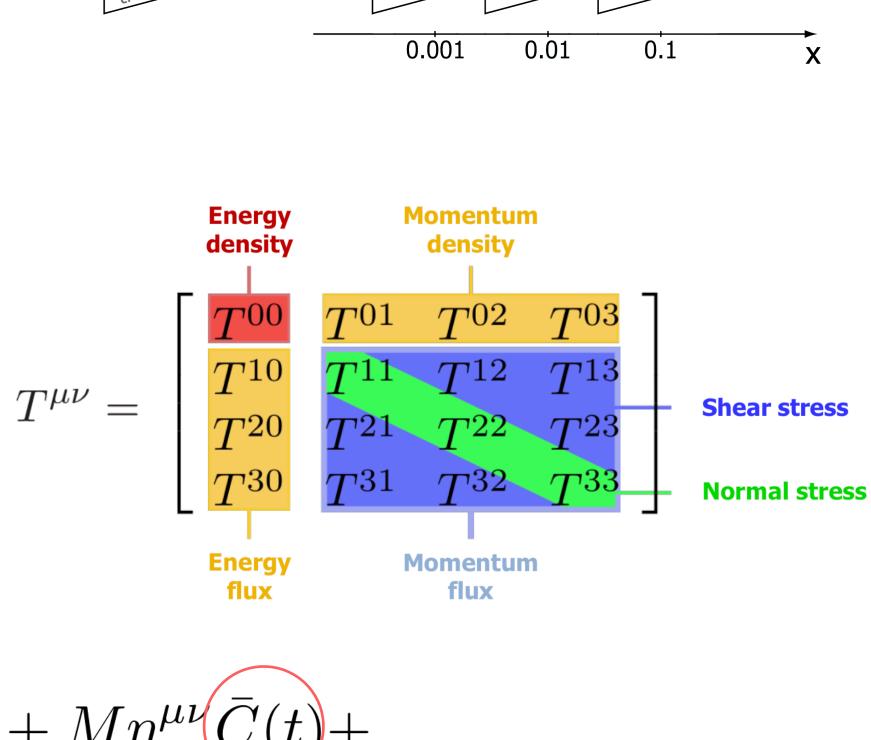
Energy momentum tensor in terms of form factors (OAM and mechanical forces):

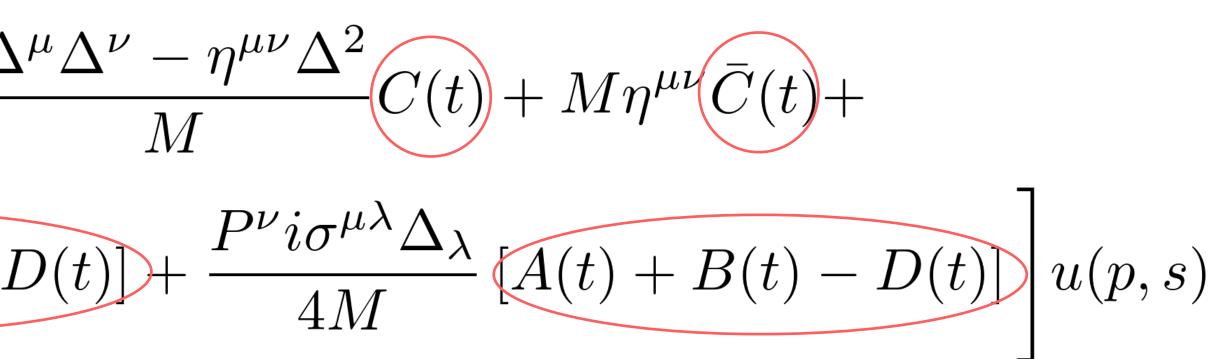
$$\langle p', s' | \widehat{T}^{\mu\nu} | p, s \rangle = \overline{u}(p', s') \left[\frac{P^{\mu}P^{\nu}}{M} A(t) + \frac{\Delta}{M} \frac{P^{\mu}i\sigma^{\nu\lambda}\Delta_{\lambda}}{4M} \left[A(t) + B(t) + L \right] \right]$$

Paweł Sznajder / Addressing the problem of model dependency / May 25, 2022



 $\mathbf{\Delta}^2$)





- lattice-QCD the problem of the model dependency of GPDs is still poorly addressed.
- Exceptions:
 - probing nucleon tomography at low-xB (see: N. d'Hose's talk)
 - extraction of D-term (see: Nature 570 (2019) 7759, E1, EPJC 81 (2021) 4, 300 and below)

ANN analysis

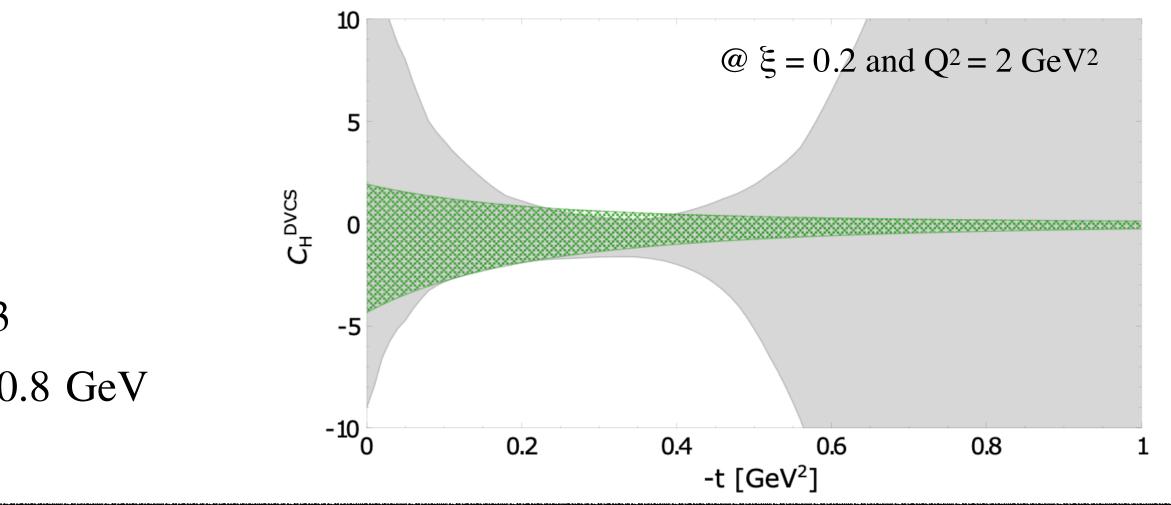
Model dependent extraction

$$d_1^{uds}(t,\mu_F^2) = d_1^{uds}(\mu_F^2) \left(1 - \frac{t}{\Lambda^2}\right)^{-\alpha} \qquad \alpha = 3$$
$$\Lambda = 0$$

extraction of GPDs, nucleon tomography and orbital angular momentum (see: EPJC 82 (2022) 3, 252 and this talk)

Paweł Sznajder / Addressing the problem of model dependency / May 25, 2022

Despite a substantial progress in both measurement and description of exclusive processes, and in



No GPD models that could be considered non-parametric \rightarrow no tools to study model dependency of the

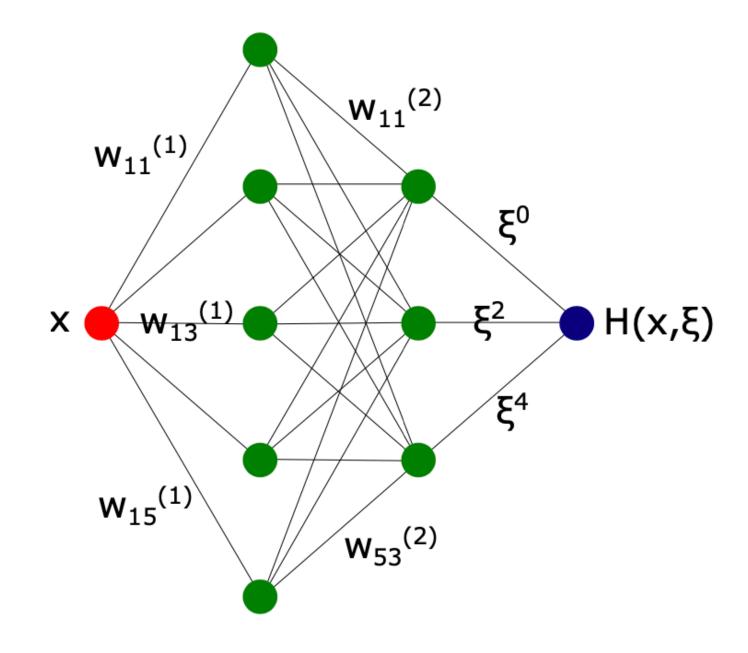
Modelling in (x, ξ) -space

• Polynomiality:

$$\mathcal{A}_{n}(\xi) = \int_{-1}^{1} \mathrm{d}x x^{n} H(x,\xi) = \sum_{\substack{j=0\\\text{even}}}^{n} \xi^{j} A_{n,j} + \mathrm{mod}(n,2) \xi^{n+1} A_{n,n+1}$$

suggests that true degrees of freedom of GPDs are A_{n,i} coefficients

- This leads us to the moment problem \rightarrow reconstruction of GPDs from their moments
- We address this problem with ANNs
- Drawback of this method: one can not keep PDF singularity for only x=0 and $\xi=0$
- See EPJC 82 (2022) 3, 252 and backup slides for more details



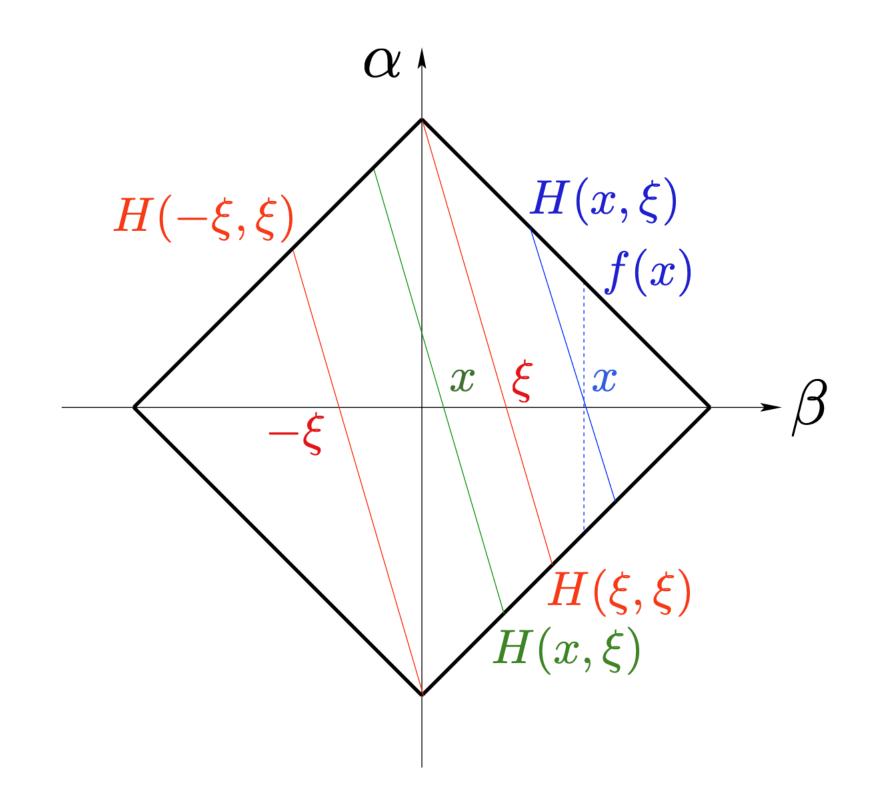
Double distribution:

$$H(x,\xi,t) = \int \mathrm{d}\Omega F(\beta,\alpha,t)$$

where:

$$d\Omega = d\beta \, d\alpha \, \delta(x - \beta - \alpha \xi)$$
$$|\alpha| + |\beta| \le 1$$

Paweł Sznajder / Addressing the problem of model dependency / May 25, 2022



from PRD83, 076006, 2011

Double distribution:

$$(1-x^2)F_C(\beta,\alpha) + (x^2-\xi^2)F_S(\beta,\alpha) + \xi F_D(\beta,\alpha)$$

Classical term:Shad
$$F_C(\beta, \alpha) = f(\beta)h_C(\beta, \alpha) \frac{1}{1 - \beta^2}$$
 $F_S(\beta, \alpha) = f(\beta)$ $f(\beta) = \operatorname{sgn}(\beta)q(|\beta|)$ $f(\beta) = \operatorname{sgn}(\beta)q(\beta)$ $h_C(\beta, \alpha) = \frac{\operatorname{ANN}_C(|\beta|, \alpha)}{\int_{-1 + |\beta|}^{1 - |\beta|} d\alpha \operatorname{ANN}_C(|\beta|, \alpha)}$ $h_S(\beta, \alpha)/N_S = -\int_{-1}^{\infty} \int_{-1}^{\infty} d\alpha \operatorname{ANN}_C(|\beta|, \alpha)$

 $\operatorname{ANN}_{S'}(|\beta|, \alpha) \equiv \operatorname{ANN}_C(|\beta|, \alpha)$

adow term:

 $(\beta)h_S(\beta,\alpha)$

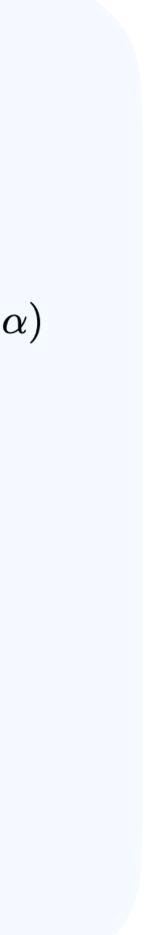
q(|eta|)

 $\frac{\text{ANN}_{S}(|\beta|, \alpha)}{\int_{-1+|\beta|}^{1-|\beta|} \text{d}\alpha \text{ANN}_{S}(|\beta|, \alpha)}$ $\frac{\text{ANN}_{S'}(|\beta|, \alpha)}{\int_{-1+|\beta|}^{1-|\beta|} \text{d}\alpha \text{ANN}_{S'}(|\beta|, \alpha)}$

D-term:

$$F_D(\beta, \alpha) = \delta(\beta) D(\alpha)$$

$$D(\alpha) = (1 - \alpha^2) \sum_{\substack{i=1 \ \text{odd}}} d_i C_i^{3/2} (\alpha)$$



Shadow term is closely related to the so-called shadow GPDs

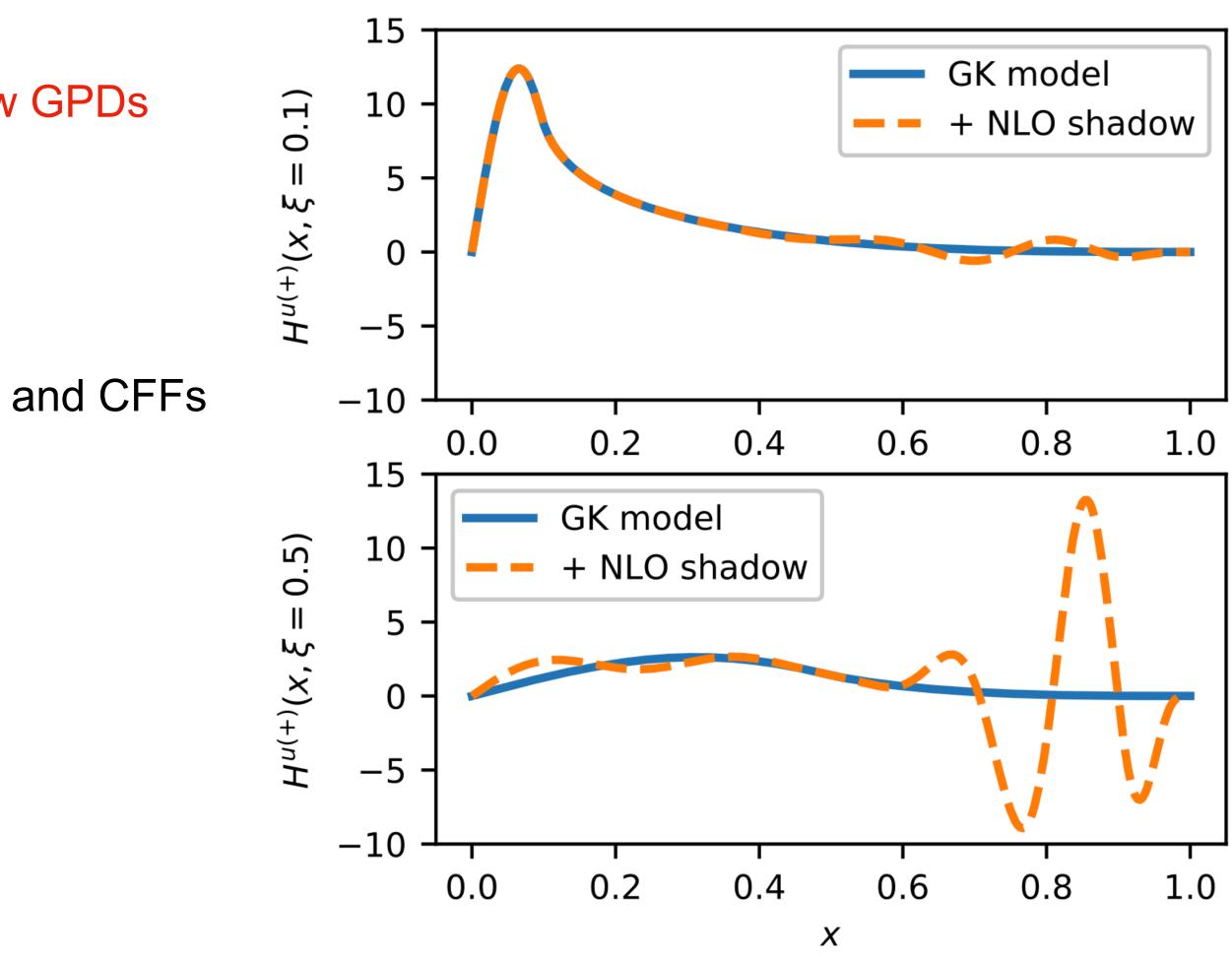
Shadow GPDs have considerable size and:

- at the initial scale do not contribute to both PDFs and CFFs
- at some other scale they contribute negligibly

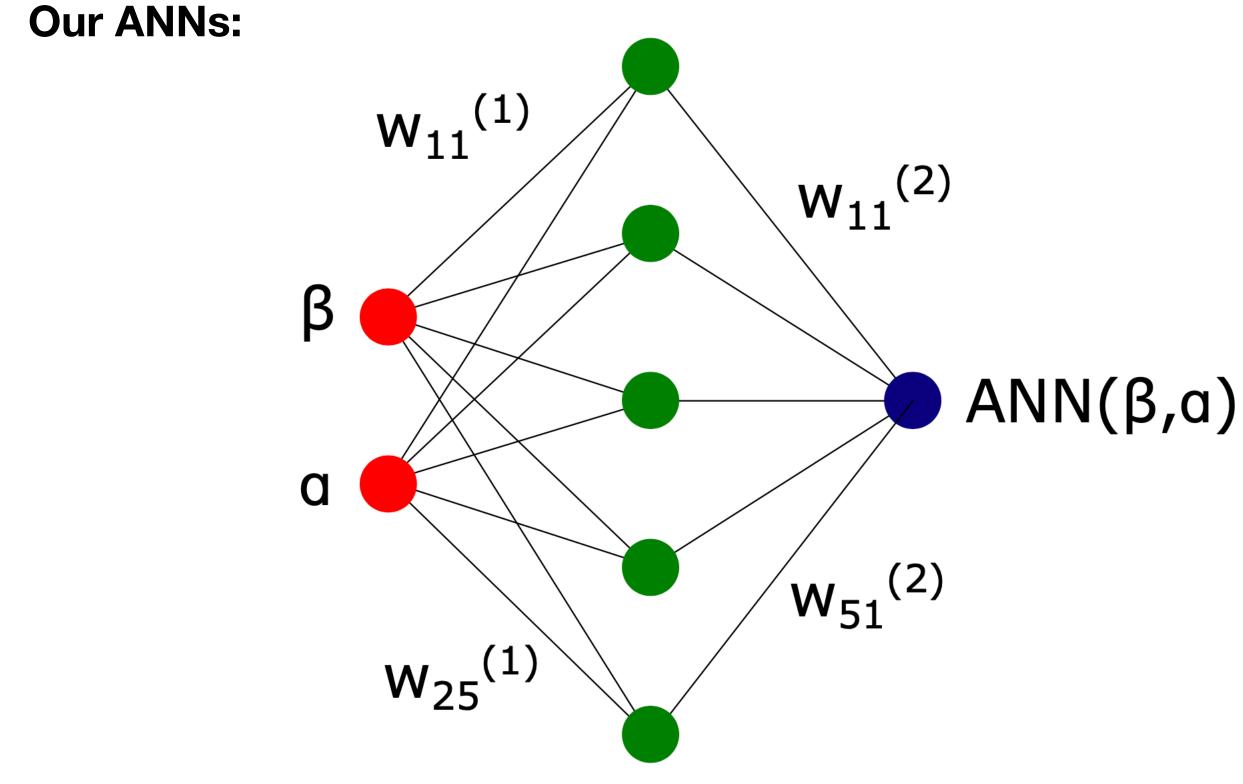
making the deconvolution of CFFs ill-posed

We found such GPDs for both LO and NLO

For more details see: \rightarrow V. Bertone et al., *PRD* 103 (2021) 11, 114019



Modelling in (β , α)-space



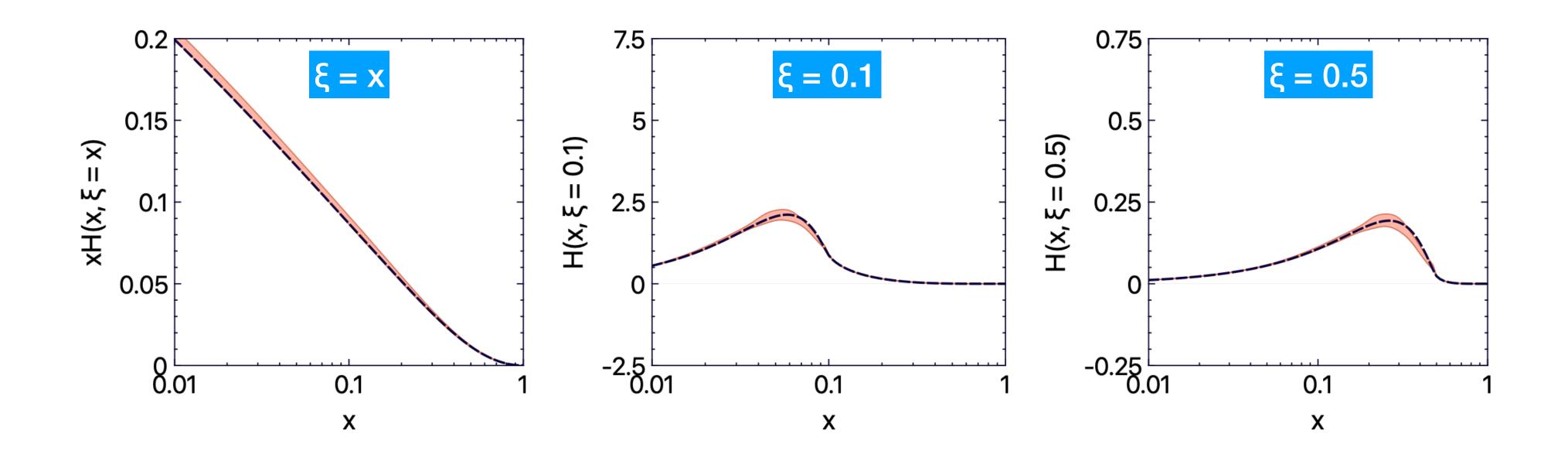
Activation function:

$$\left(\varphi_i\left(w_i^{\beta}|\beta| + w_i^{\alpha}\alpha/(1-|\beta|) + b_i\right) - \varphi_i\left(w_i^{\beta}|\beta| + w_i^{\alpha} + b_i\right)\right) + (w^{\alpha} \to -w^{\alpha})$$

Paweł Sznajder / Addressing the problem of model dependency / May 25, 2022

Requirements:

symmetric w.r.t. α symmetric w.r.t. β vanishes at $|\alpha| + |\beta| = 1$



Conditions:

- Input: $400 \text{ x} \neq \xi$ points generated with GK model
- Positivity not forced

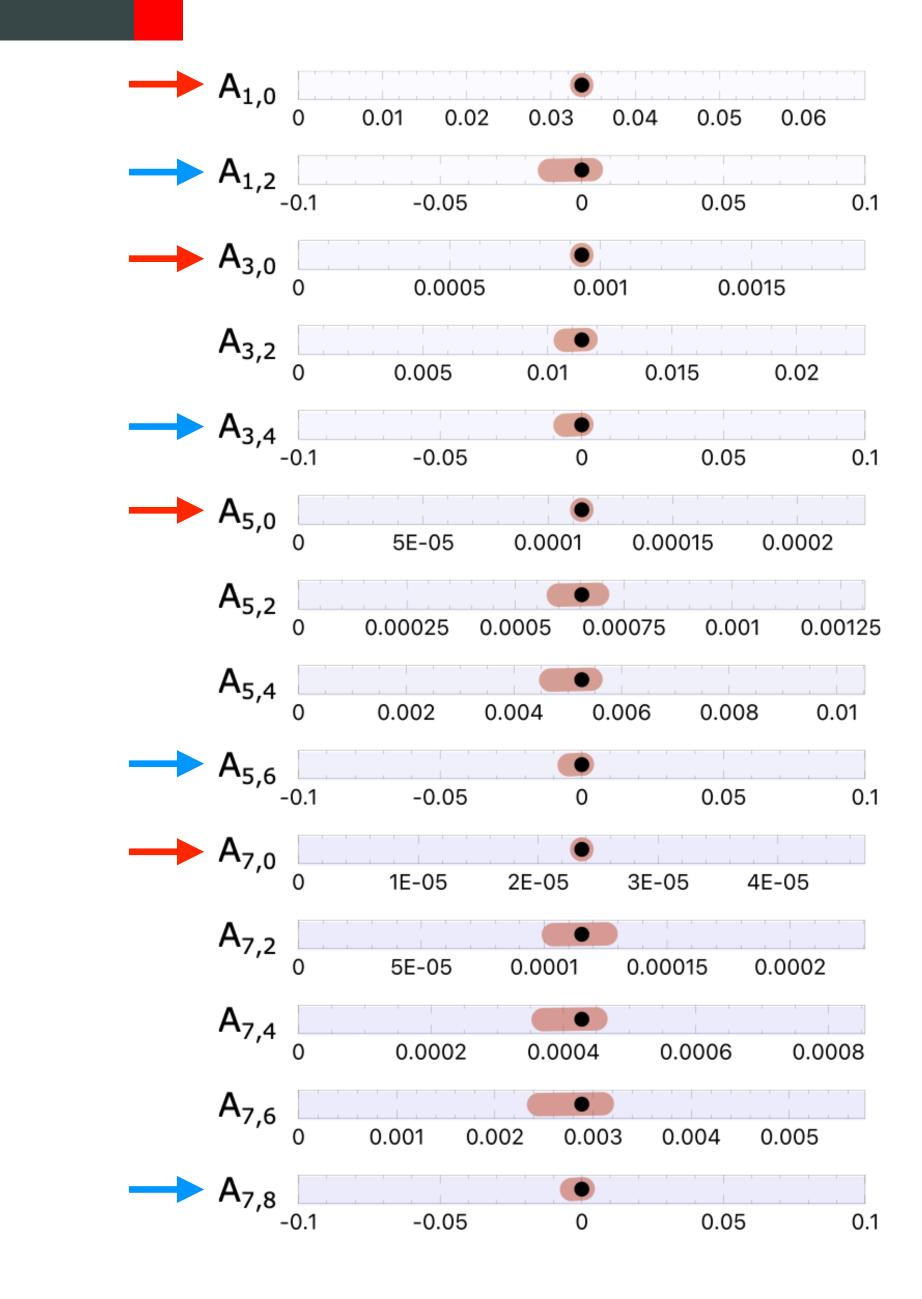
Technical detail of the analysis:

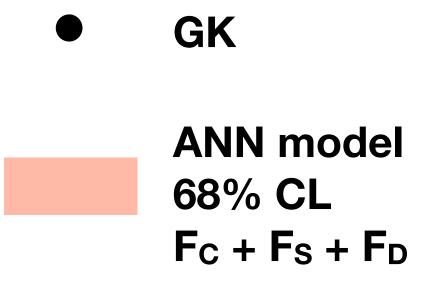
- Minimisation with genetic algorithm
- Replication for estimation of model uncertainties
- "Local" detection of outliers
- Dropout algorithm for regularisation

GK

ANN model 68% CL $F_{C} + F_{S} + F_{D}$

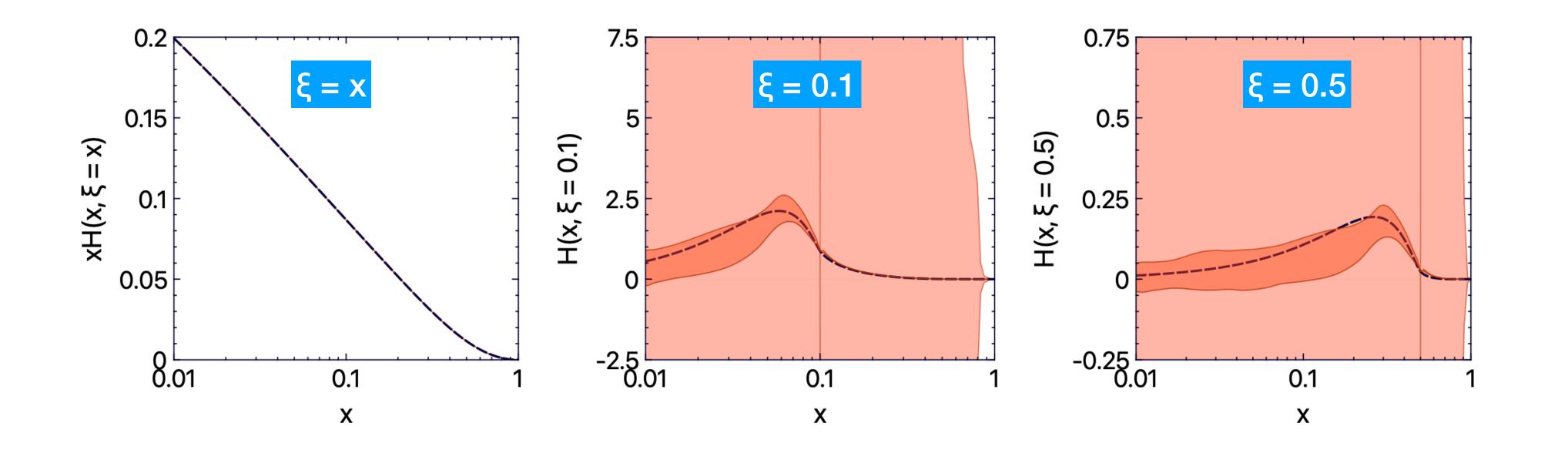
- Input: $400 \text{ x} \neq \xi$ points generated with GK model
- Positivity not forced





Mellin mom. coefficients:

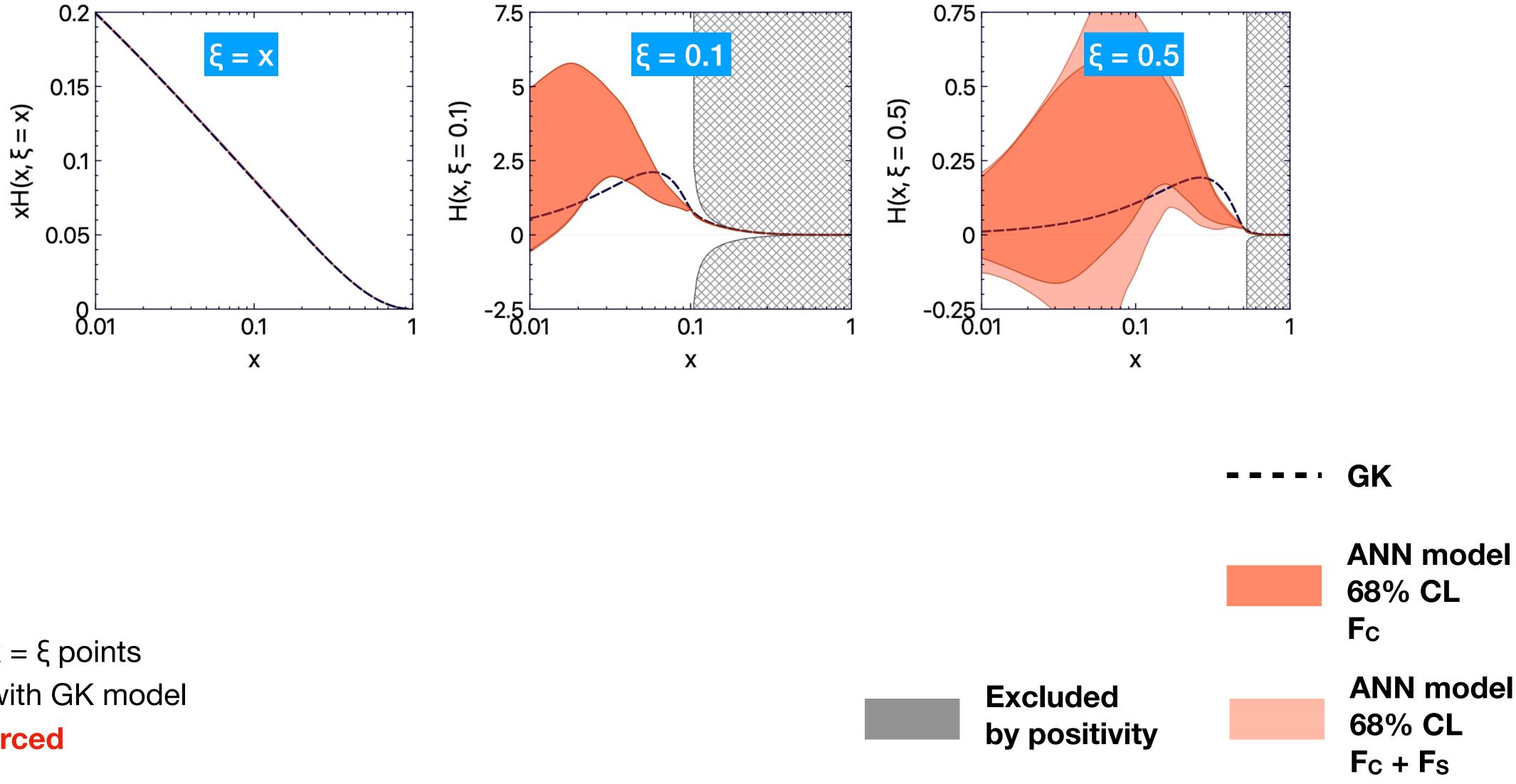
related to D-term



Conditions:

- Input: $200 x = \xi$ points generated with GK model
- Positivity not forced

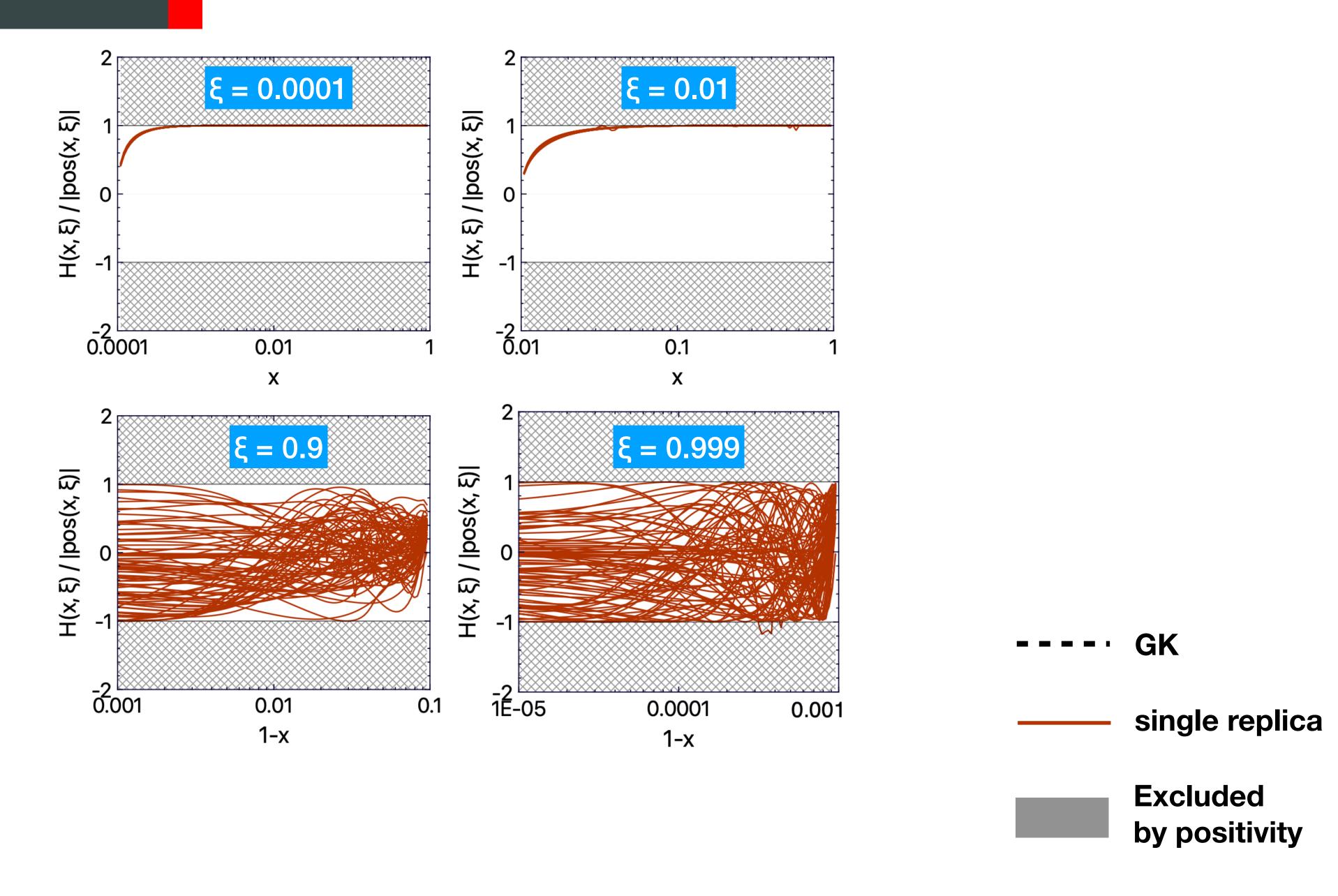
Paweł Sznajder / Addressing the problem of model dependency / May 25, 2022



Conditions:

- Input: $200 x = \xi$ points generated with GK model
- Positivity forced

Paweł Sznajder / Addressing the problem of model dependency / May 25, 2022



Conditions:

- Input: 200 x = ξ points
 generated with GK model
- Positivity forced

Paweł Sznajder / Addressing the problem of model dependency / May 25, 2022

- For the first time, we propose modelling GPDs based on ANNs \rightarrow new, nontrivial and timely analysis
- Our modelling fulfils all theory-driven constraints (including positivity) → subject not touched enough in the current literature
- Can easily accommodate lattice-QCD results → important to include additional sources of GPD information
- These is the new tool to address the long-standing problem of model dependency of GPDs



EpIC MC generator

• Novel MC generator called EpIC released \rightarrow E.C. Aschenauer et al., hep-ph/2205.01762 → https://pawelsznajder.github.io/epic

- EpIC is based on PARTONS (note: v3 version of PARTONS is now available!)
 - → B. Berthou, EPJC 78 (2018) 6, 478
 - → https://partons.cea.fr
- EpIC is characterised by:
 - flexible architecture that utilises a modular programming paradigm
 - a variety of modelling options, including radiative corrections
 - multichannel capability (initial version includes DVCS, TCS and DVMP)

• This is the new tool to be use in the precision era commenced by the new generation of experiments

Modelling in (x, ξ) -space

Polynomiality:

$$\mathcal{A}_{n}(\xi) = \int_{-1}^{1} \mathrm{d}x x^{n} H(x,\xi) = \sum_{\substack{j=0\\\text{even}}}^{n} \xi^{j} A_{n,j} + \mathrm{mod}(n,2) \xi^{n+1} A_{n,n+1}$$

Let us express GPD by:

$$H^N(x,\xi) = \sum_{\substack{j=0\\\text{even}}}^N f_j(x)\xi^j$$

only even j as there is no odd power of ξ in polynomiality expansion

Support:

$$f_j(-1) = f_j(1) = 0$$
 we want GPDs to

Mellin coefficients:

$$A_{n,j} = \int_{-1}^{1} \mathrm{d}x x^n f_j(x)$$
 choice of $f_j(x)$ func

where e.g.:

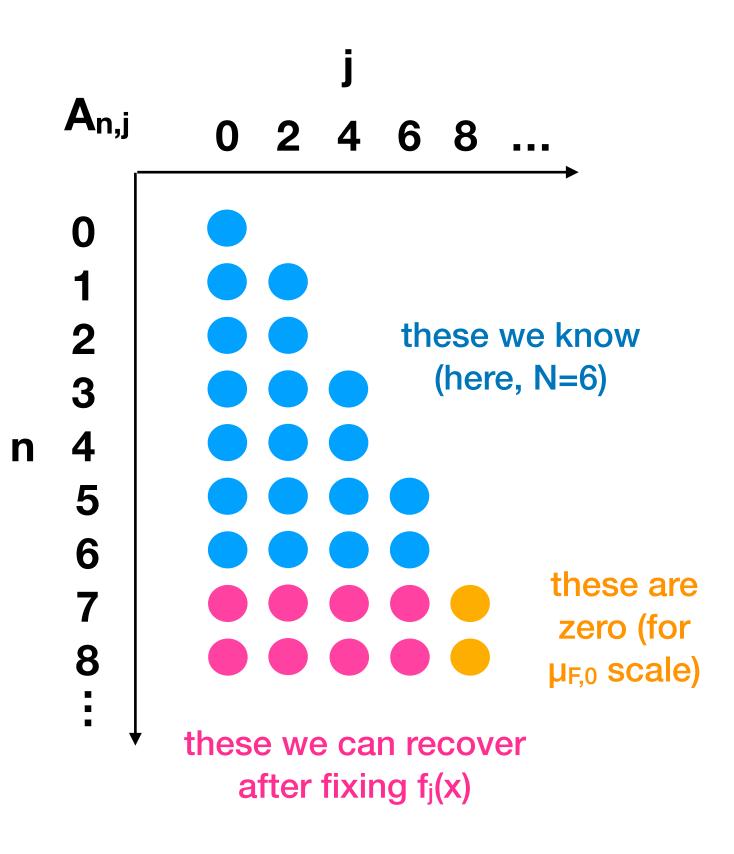
$$A_{0,2} = \int_{-1}^{1} \mathrm{d}x f_0(x) = 0$$

Paweł Sznajder / Addressing the problem of model dependency / May 25, 2022

Backup

vanish at |x| = 1

ctional form is arbitrary



Polynomial basis:

This basis leads to Dual Parameterisation \rightarrow M. Polyakov, A. Shuvaev, hep-ph/0207153

Any attempt of describing GPDs by orthogonal polynomials will lead to this basis

$$f_j(x) = \sum_{i=0}^{N+2} w_{i,j} x^i$$

GPD will be expressed by sum of monomials $x^i \xi^j$

ANN basis:

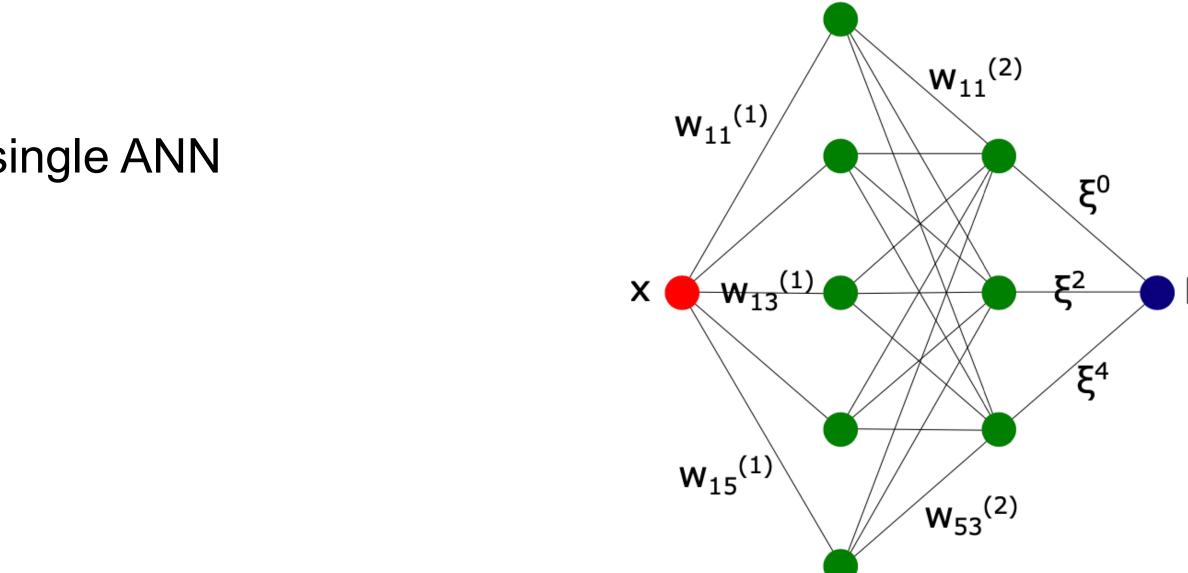
New! We can describe GPD by a single ANN

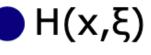
 $f_j(x) = ANN_j(x)$

GPD will be expressed by sum of ANNs multiplied by ξ^{j}

Paweł Sznajder / Addressing the problem of model dependency / May 25, 2022

Backup



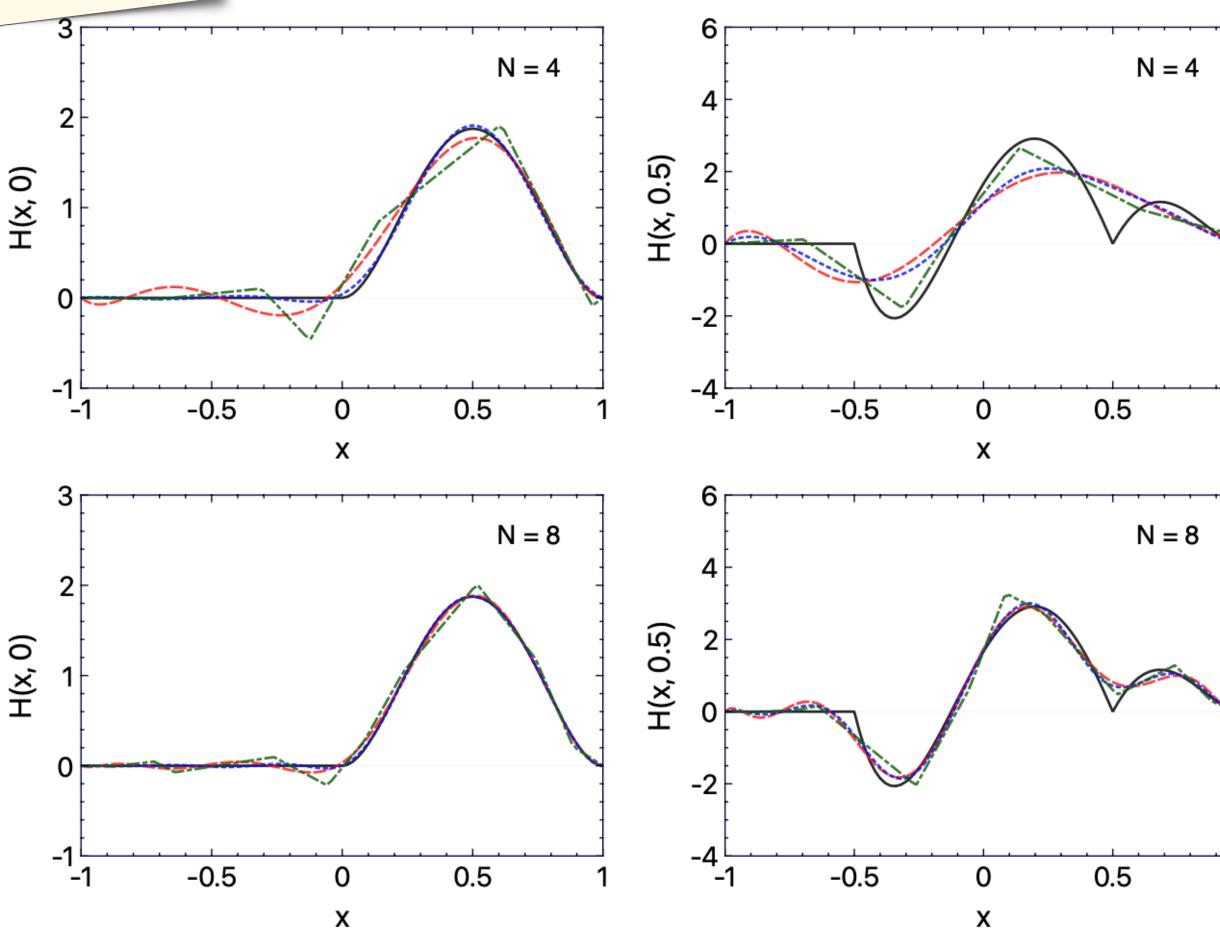


Test model (see e.g.: hep-ph/2110.06052): $H_{\pi}(x,\xi) =$ $\Theta(x - |\xi|) \, rac{30(1 - x)^2(x^2 - \xi^2)}{(1 - \xi^2)^2} +$ $\Theta(|\xi| - |x|) \frac{15(1-x)(\xi^2 - x^2)(x+2x\xi+\xi^2)}{2\xi^3(1+\xi)^2}$ **Polynomial basis ANN** basis - sigmoid $\varphi_k^{(2)}(\cdot) = \frac{1}{1 + \exp\left(-(\cdot)\right)}$ **ANN basis - ReLU**

$$\varphi_k^{(2)}(\cdot) = (\cdot) \,\Theta(\cdot)$$

Backup

ξ = 0.5



Note:

- positivity not enforced here
- few extensions of this modelling possible, see the next slide

Possible modifications

Basic:

With explicit PDF:

Vanishing at x=xi:

With D-term:

Paweł Sznajder / Addressing the problem of model dependency / May 25, 2022

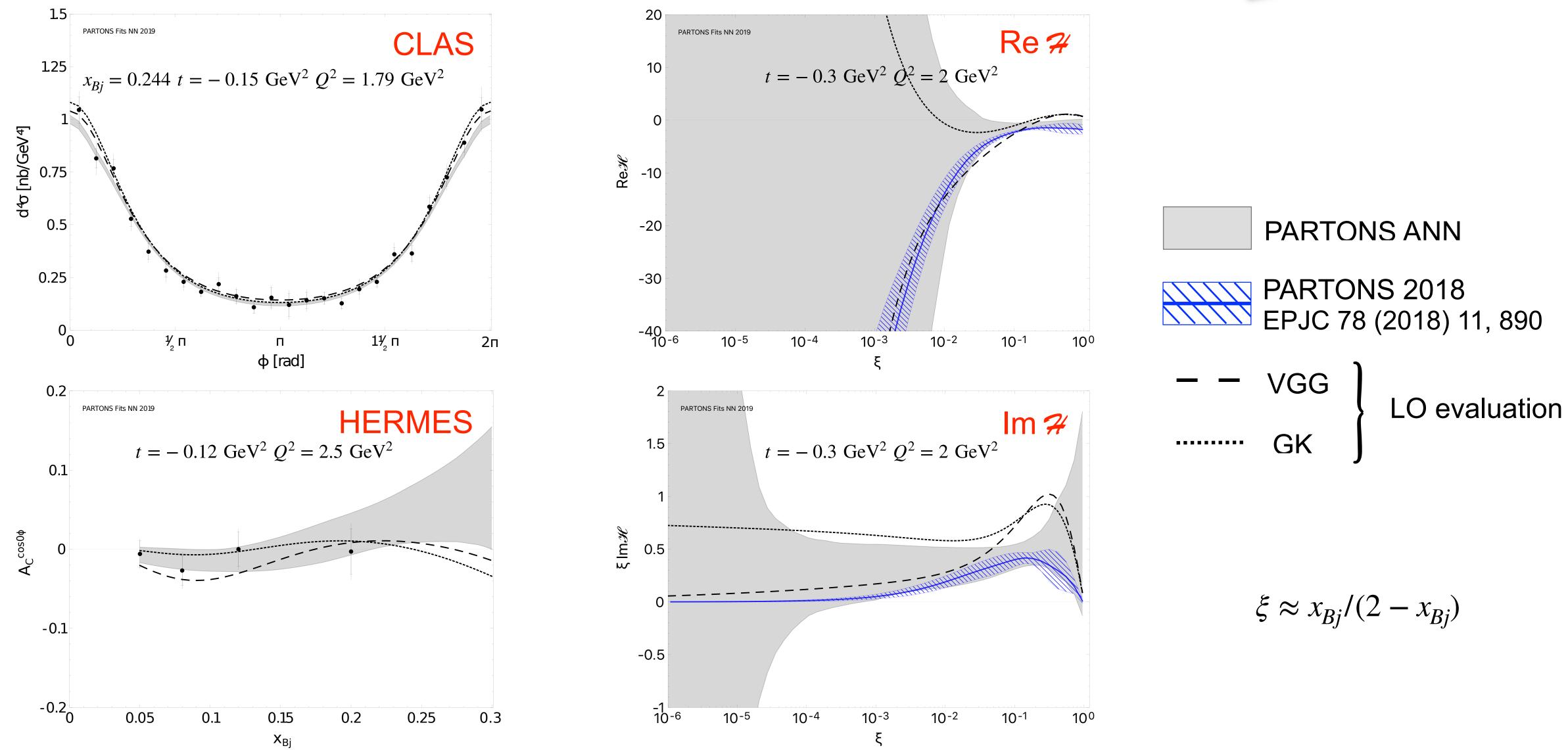
Backup

$$H(x,\xi) = \sum_{\substack{j=0\\\text{even}}}^{N} f_j(x)\xi^j$$

$$H(x,\xi) = q(x) + \sum_{\substack{j=2\\\text{even}}}^{N} f_j(x)\xi^j$$

$$H(x,\xi) = (x^2 - \xi^2) \sum_{\substack{j=0 \\ \text{even}}}^{N} f_j(x)\xi^j$$

$$H(x,\xi) = D_{\text{term}}(x/\xi) + \sum_{\substack{j=0\\\text{even}}}^{N} f_j(x)\xi^j$$



Paweł Sznajder / Addressing the problem of model dependency / May 25, 2022

Backup

Dispersion relation:

 $\mathcal{C}_H(t,Q^2) = \operatorname{Re}$

Relation between subtraction constant and D-term (z=z

Decomposition into Gegenbauer polynomials:

Finally:

Connection to EMT FF:

Paweł Sznajder / Addressing the problem of model dependency / May 25, 2022

$$e \mathcal{H}(\xi, t, Q^2) - \frac{1}{\pi} \int_0^1 \mathrm{d}\xi' \operatorname{Im} \mathcal{H}(\xi', t, Q^2) \left(\frac{1}{\xi - \xi'} - \frac{1}{\xi + \xi}\right)$$

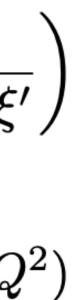
$$\mathcal{C}_{K}(\xi)$$
: $\mathcal{C}_{H}(t,Q^{2}) \stackrel{LO}{=} 2\sum_{q} e_{q}^{2} \int_{-1}^{1} \mathrm{d}z \, \frac{D_{\mathrm{term}}^{q}(z,t,\mu_{\mathrm{F}}^{2} \equiv Q)}{1-z}$

$$D_{
m term}^q(z,t,\mu_{
m F}^2) = (1-z^2) \sum_{
m odd } n d_n^q(t,\mu_{
m F}^2) C_n^{3/2}(z)$$

$$\mathcal{C}_H(t,Q^2) \stackrel{LO}{=} 4 \sum_q e_q^2 \sum_{\text{odd } n} d_n^q(t,\mu_F^2) \equiv \zeta_q$$

 $d_1^q(t, \mu_{\rm F}^2) = 5C_q(t, \mu_{\rm F}^2)$

Backup



Master formula:

$$\operatorname{Re}\mathscr{H}(\xi,t,Q^{2}) - \frac{1}{\pi} \int_{0}^{1} \mathrm{d}\xi' \operatorname{Im}\mathscr{H}(\xi,t,Q^{2}) \left(\frac{1}{\xi - \xi'} - \frac{1}{\xi + \xi'}\right)$$

Extraction of subtraction constant from DVCS data requires:

• integral over ξ (alternatively: x_{Bj} or v) between ε and 1

 $\epsilon = 10^{-6}$

Model assumptions to extract EMT FF C from subtraction constant:

truncation to d1

$$C_{H}(t,Q^{2}) = 4 \sum_{q} e_{q}^{2} d_{1}^{q}(t,\mu_{F}^{2} \equiv Q^{2})$$

• symmetry of light quark contributions

$$d_1^u(t,\mu_F^2) = d_1^d(t,\mu_F^2) = d_1^s(t,\mu_F^2) \equiv d_1^{uds}(t,\mu_F^2)$$

 $\int_{q}^{LO} = 4 \sum_{q} e_q^2 \sum_{\text{odd } n} d_n^q(t, \mu_F^2 \equiv Q^2)$

- - good knowledge of both Re and Im parts of CFF H

sensitivity to gluon contribution via evolution

$$d_1^G(t,\mu_{F,0}^2) = 0 \qquad \qquad \mu_{F,0}^2 = 0.1$$

tripole Ansatz for t-dependence

$$d_1^{uds}(t,\mu_F^2) = d_1^{uds}(\mu_F^2) \left(1 - \frac{t}{\Lambda^2}\right)^{-\alpha} \qquad \alpha = 3$$

 $\Lambda = 0.8 \text{ G}$

Subtraction constant:

Results:

ANN analysis

Model dependent extraction

$$d_1^{uds}(t,\mu_F^2) = d_1^{uds}(\mu_F^2) \left(1 - \frac{t}{\Lambda^2}\right)^{-\alpha} \quad \Lambda = 0.8$$

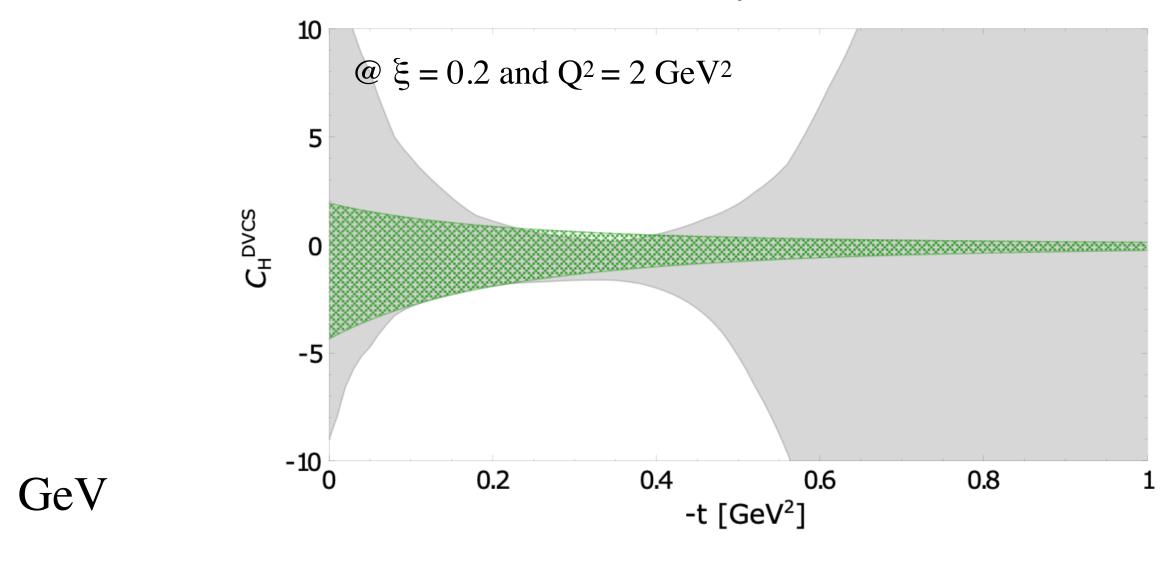
Parameter

 $d_1^{uds}(\mu_F^2 = 2 \text{ GeV})$

 $d_{1^{c}}(\mu_{F^{2}} = 2 \text{ GeV})$

 $d_1^{g}(\mu_{F^2} = 2 \text{ GeV})$

Backup



	Value
eV ²)	-0.5 ± 1.2
/2)	-0.0020 ± 0.0053
/ ²)	-0.6 ± 1.6

